
Towards ontological engineering: a process for
building a domain ontology from scratch in
public administration

Graciela Brusa,1 M. Laura Caliusco2 and Omar Chiotti3

(1) Dirección Provincial de Informática San Martı́n 2466, Santa Fe, Argentina
E-mail: gracielabrusa@santafe.gov.ar
(2) CIDISI Research Center, UTN – Facultad Regional Santa Fe, Argentina
E-mail: mcaliusc@frsf.utn.edu.ar
(3) INGAR – CONICET - UTN, Avellaneda 3657, Santa Fe, Argentina
E-mail: chiotti@santafe-ceride.gov.ar

Abstract: The state reformation that took place in the 1990s and the technological explosion have led

governments to reframe their way of working so as to be able to offer new and better services for citizens.

To achieve this goal, major obstacles must be overcome, such as the problem of semantic heterogeneity that leads

to more difficult recovery and integration of information from different government sectors. Although in the

private sector solutions to this problem through the building of ontologies have already been set out, the

characteristics of government itself have led the direct application of these practices to fail. This paper presents a

process for building a domain ontology in the public sector from scratch. In addition, it presents the application

of this process for building an ontology for the Budgetary Domain of Santa Fe Province (Argentina).

Keywords: domain ontology, development process, e-government

1. Introduction

Government organizations are moving towards

the use of web technologies, leading to unprece-

dented levels of data exchange. However, ex-

changing data does not mean that the data are

understood. There still exists a strong need to

help people and machines to understand the

meaning, or semantics, of the data and applica-

tions. Nowadays, the development of ontologies

tends to allow people and machines to share

semantic data and software applications.

Since ontologies have gained recognition

from academic and industrial areas, there are

several definitions of ontology. These definitions

come from different disciplines and have been

used for different purposes. In information

science, according to Smith (2003) ‘an ontology

is a dictionary of terms formulated in a canoni-

cal syntax and with commonly accepted defini-

tions designed to yield a lexical or taxonomical

framework for knowledge representation which

can be shared by different information systems

communities’. In order to build an ontology, we

must come to an agreement. This agreement has

to follow a comprehensive ontology engineering

process.

Several methodologies have been proposed to

structure this process and to facilitate its devel-

opment. The success of these methodologies has

been demonstrated on a number of applications

(Corcho et al., 2005). Nevertheless, ontology

DOI: 10.1111/j.1468-0394.2008.00471.x

Article _____________________________

484 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

development in some areas has not been as

expected. One example is the public sector,

which is characterized by a wide range of task

and work arrangements. In addition, there are

processes in which stakeholders participate be-

cause of legal rules without having the required

expertise. Therefore, knowledge plays an impor-

tant role in these processes (Klischewski & Lenk,

2002). Each public administration agency has its

own legal rules. As a result, it is difficult but not

impossible to reuse ontologies in different public

administration agencies or from the private sec-

tor. Then, in public administration, the scenario

will be to build an ontology from scratch invol-

ving a group of people whose knowledge and

decision-making power differ significantly.

The objective of this paper is to share a

process proposed for developing a domain on-

tology from scratch in public administration

with the ontology community. With this aim,

the paper is organized as follows. Section 2

discusses related work. Section 3 introduces

some topics that are being used in the paper.

Section 4 presents a process for building a

domain ontology from scratch. Section 5 ana-

lyses the application of the process in building

an ontology for the Budgetary Domain of Santa

Fe Province (Argentina). Finally, Section 6 is

devoted to the conclusions of the work.

2. Related work

2.1. Technological aspects of an ontology in the

public sector

The public administration area is somehow a

more promising application field for ontologies

than many other e-business areas. This is be-

cause legislative knowledge is highly ‘formal’ by

nature and, by definition, it is shared by many

stakeholders (Abecker et al., 2004). In the pri-

vate sector, many works have been developed to

improve both the technological aspects of an

ontology and the methods of development.

A replication of these advances in the public

sector, however, is questionable due to the

particular characteristics of public administra-

tion. Some examples of these particular features

are as follows.

� The complex goal structure of public admin-

istration distinguishes the public sector from

private business (Traunmüller & Wimmer,

2002).

� Legal norms are a standard vehicle of com-

munication between central authorities and

executive agencies. Generally, public admin-

istrations are highly regulated by legislation

that is enacted on several levels (suprana-

tional, national, regional, local). Legal

norms give particular meaning to adminis-

trative structures (Traunmüller & Wimmer,

2002).

� Public administration works via a complex

relation of cooperation between acting enti-

ties (Traunmüller & Wimmer, 2002).

� There are four basic roles in public adminis-

tration from the information system view-

point (Apostolou et al., 2005): (i) politicians

who define the law; (ii) public administrators

who define processes for implementing the

law; (iii) programmers who implement these

processes; and (iv) end-users. Since public

administrators have a good knowledge

about the domain, they have a key role.

� Business processes in the public sector cover

a wide range of tasks and work arrange-

ments. While some of them can be fully

automated, others rely on human agency

and professional knowledge and require

flexibility to a large extent. Legal rules and

the explicit and implicit knowledge of ad-

ministrators play an important role in such

processes (Klischewski & Lenk, 2002).

Thus, replicating approaches developed in the

commercial domain can only be a part of the

strategy that brings ontology technologies to

public administration.

2.2. Ontology development methodologies

Ontologies have been used in different disciplines

for different purposes. Several methodologies

for developing ontologies have been defined

(Wache et al., 2001; Corcho et al., 2003). Two

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 485

groups of methodologies can be figured out. The

first one is the group of experience-based meth-

odologies represented by the Grüninger and

Fox methodology defined in the TOVE project

(1995) and by the Uschold and King methodol-

ogy based on the experience of developing the

Enterprise Ontology (1995). The second one is

the group of methodologies that propose a set

of activities to develop ontologies based on their

life cycle and the prototype refinement, such as

the METHONTOLOGYmethodology (Gómez-

Pérez et al., 2004) and the Ontology Develop-

ment 101 Method (Noy & McGuinness, 2001).

There is not just one correct way or metho-

dology for developing ontologies; there are

always viable alternatives. The best solution

usually depends on the application that ontolo-

gists have in mind and the extensions that they

anticipate. On the one hand, the ontologist could

decide to use a previously defined methodology.

Usually, the first group of methodologies is

appropriate when purposes and requirements

of the ontology are clear; the second group is

useful when the environment is dynamic and

difficult to understand and the objectives are not

clear from the beginning (Cristani & Cuel,

2004b). On the other hand, it is common to

merge different methodologies since each of

them provides some different design ideas.

Mainly, this merging depends on the ontology

application, the tools used to develop it, and the

background knowledge ontologists have.

Although several ontologies have been devel-

oped with the methodologies of the first group,

they present some weaknesses: the ontology life

cycle is not completely identified and these

methodologies have only been tested in the

business domain. With regard to the second

group of methodologies, it is important to high-

light that METHONTOLOGY is an approach

that proposes an ontology life cycle model and it

provides the most accurate descriptions of each

activity. However, from the viewpoint of the

public administration domain, in this methodol-

ogy the cognitive representation of the reality,

ontological commitments and design criteria are

implicit in the ontology code. Furthermore, both

the informal description of the ontology and the

ontology implementation are often developed in

separate stages. This increases the gap between

real-world representations and executable sys-

tems (Cristani & Cuel, 2004a). The purpose of

this paper is therefore to solve these drawbacks.

3. Preliminaries

Since ontologies have been used in different

disciplines for different purposes, there are several

definitions about what an ontology is and what its

elements represent. The purpose of this section is

to provide an introduction to some topics that

are being used in the remainder of the paper.

From a pragmatic point of view, a domain

ontology is a representational artefact whose

representational units are terms, relations be-

tween them, axioms and instances. A term is a

word or group of words representing an entity

from the domain of discourse. A domain is a

portion of the reality that forms the subject

matter of a single science or technology or mode

of study. The entities represented in the ontol-

ogy are first order entities in reality (B. Smith

et al., 2006), e.g. organizations, persons, laws,

procedures, among others. An instance is a

certain individual of a corresponding entity in

the domain of discourse. For example, a parti-

cular budgetary law is an instance of the entity

law. A term representing an entity and its

instances is related by the association instance-

of. Relations represent a type of association

between entities of the domain. Relations can

be divided into hierarchical relations (is-a), bidir-

ectional relations (e.g. synonym and antonym)

and particular relations (defined by the ontology

designer) (Caliusco et al., 2005). Axioms serve to

represent sentences that are always true in a

domain. Finally, a computational ontology is a

domain ontology converted into a formalized

representation by using a language interpretable

by a computer. The choice of this language will

depend on the complexity of what one needs to

represent and on the sorts of reasoning one

needs to perform (B. Smith et al., 2006).

A process for the development of an ontology

refers to the activities that are performed to

build it. An ontology can be built by using

486 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

different representational artefacts depending

on the potential use of the ontology, obtaining

layers of representations as a result. In this way,

the gap between real-world representations and

executable systems is reduced. Considering these

ideas, the proposed ontology building process

suggests using the Unified Modelling Language

(UML) to build a graphical representational

artefact. The resulting artefact is a UML class

diagram making the ontology more shareable. A

class is a collection of just individuals to which a

given general term is applied. The hierarchical

relations between terms are represented in the

UML class diagram as a subclass relation. Other

relations are represented as associations.

In the knowledge management area, ontologies

have been used for making explicit the concep-

tualization behind knowledge bases (O’Leary,

1998; Brewster & O’Hara, 2004). Then, in this

area, ontologies have been developed from a

concept orientation point of view. In contrast,

the methodology proposed in this work allows

us to develop an ontology as an artefact to

represent entities of a given domain.

4. A process for building a public domain

ontology

The process proposed in this paper is defined

to satisfy the requirements of ontology deve-

lopment in the public administration domain.

These requirements are as follows: a more

adequate representation of a local domain, and

an effective development of a domain ontology

from scratch. Taking into account these re-

quirements, the process is developed based on

METHONTOLOGY, since it is based on the

IEEE standard for software development (IEEE,

1996), and the Grüninger and Fox methodol-

ogy, since it is based on the domain features

of enterprise modelling and it proposes a high

degree of formality. In addition, the process

includes some activities of the Ontology Devel-

opment 101 Method. Finally, in order to fulfil

the requirements, some intermediate representa-

tions based on mature software engineering

techniques are included.

The goal of this ontology development pro-

cess is to build a domain ontology as a formal

structure expressed in a formally defined lan-

guage based on artificial intelligence techniques.

Three main subprocesses compose the process:

specification, concretization and implementa-

tion. The output of each subprocess is the input

of the next one. In this way, integration among

subprocesses is achieved, avoiding gaps between

them. Figure 1 shows the relations between these

subprocesses and the output of each of them. The

figure is based on the software process engineer-

ing metamodel. Each subprocess consists of a set

of activities that are described below.

4.1. Subprocess 1: Specification

The goal of the specification subprocess is to

develop a domain cognitive representation and

estimate the amount of effort required to devel-

Specification Concretization Implementation

Ontology Requirements
Cost Estimation

Formal and Correct OntologyGraphical Representations

of Ontology

Documents

Start

End

End

Figure 1: Domain ontology development process.

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 487

op a domain ontology. The input of this sub-

process constitutes the need to solve semantic

aspects in a certain government area and the

political decision to work on it. The output is a

specification document of the ontology require-

ments and a cost estimation document. The first

document contains a domain description in nat-

ural language and the ontology goal and scope.

Furthermore, this document has to include both

a motivating scenario using a formal intermedi-

ate representation and competency questions.

The second document contains the estimation of

the costs of ontology development.

The specification subprocess consists of four

activities (Figure 2): (1) describing the domain,

(2) elaborating the motivating scenario and

competency questions, (3) determining the on-

tology goal and scope and (4) estimating the

development cost. These activities are described

in the following.

4.1.1. Describing the domain The process sug-

gests starting the development of an ontology

by informally describing the domain of dis-

course. To this aim, meetings with public agents

must be held. The objective of these meetings

is to identify the roles played by these public

agents and the domain experts and to develop a

domain cognitive representation.

In public administration, the group of experts

is quite heterogeneous and communication be-

tween them is ruled by legal norms. In addition,

they do not have much time to attend the meet-

ings. This group is the support to develop a

cognitive representation of the domain. Then, to

share it with domain experts, with the purpose

of being criticized by them, it is necessary to use

an appropriate representational artefact. This

artefact has to be selected taking into account

the background knowledge of the domain ex-

perts and the time they could spend.

4.1.2. Elaborating motivating scenarios and com-

petency questions In order to represent the real

world, Grüninger and Fox (1995) proposed

deriving requirements by analysing different

scenarios. Following this criterion, the second

activity proposed in this process is to elaborate

motivating scenarios and competency questions.

The motivating scenarios are artefacts that

describe a set of requirements that an ontology

should satisfy after being formally implemented

in software. A motivating scenario also provides

a set of intuitively possible solutions to the

scenario problems. These solutions give a first

idea of the informal intended semantics of the

entities and relations that will be later repre-

sented in the ontology. In order to share the

motivating scenarios with the people involved, it

is useful to use a template as a representational

artefact of them. This template could be based

on those proposed to specify use cases in object-

oriented methodology (Uschold & Grüninger,

1996). The process presented in this paper pro-

poses to use the template shown in Table 1.

Since this template only shows the most impor-

tant information in a concise way, it is useful,

when experts do not have much time, for analys-

ing the scenarios. When a scenario is complex, it

could be divided into different sub-scenarios to

simplify its understanding.

After describing motivating scenarios, a set of

informal competency questions based on them

has to be elaborated. Informal competency

Elaborating Motivating

Competency
Questions

Costs

End

the Domain
Describing

[Preliminary]
Requirements

Ontology
Scenarios and

[Preliminary]
Requirements

Ontology

and Scope
Ontology Goal

Determining the

[Final]
Requirements

Ontology

costs
development

Estimating the
Estimation

Concretization

Figure 2: Specification subprocess activities.

488 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

questions are those written in natural language

to be answered by the ontology once the ontol-

ogy is implemented. Competency questions al-

low the scope of the ontology to be decided and

they will serve to validate the ontology during

the implementation subprocess.

4.1.3. Determining the ontology goal and

scope The ontology goal represents the purpose

for which the ontology will be used. An ontology

could be used to assist natural-language pro-

cessing, support information integration or just

represent the semantics of a certain domain to

support information search. Depending on the

ontology goal, the entities to be represented in

the ontology will be identified.

The scope limits the ontology, specifying what

must be represented and what must not. It means

that an entity must not be represented in the

ontology if there is no competency question that

uses it. Determining the ontology scope is an

important activity of the specification sub-

process in that it minimizes the amount of data

to be analysed, especially for the extent and

complexity of the public administration domain.

The definition of the ontology goal and scope

was considered the first task in the 101 Method.

There are two main reasons that justify defining

motivating scenarios and competency questions

at the beginning.

First, the ontology goal can be derived from

the description of motivating scenarios. There

are different goal-driven requirements analysis

methods that could be applied to derive a goal of

complex public administration structure from

use cases. A method that adjusts to the charac-

teristics of the public administration goal is the

goal-based requirements analysis method (An-

ton, 1996). This method assumes that goals have

not been previously and explicitly elicited from

the stakeholders. To determine the goals, the

analyst must work according to existing diagrams

of processes or information flows, textual state-

ments of needs, and=or additional sources of

information such as transcripts of interviews

with stakeholders.

Second, and according to the actors of moti-

vating scenarios, people who will use and main-

tain the ontology have to be settled during this

activity. In public administration, it is important

to identify first the roles played by public agents.

Without this previous task, it is difficult to

capture the attention of public agents and to

have them engaged in the ontology development

process. It is necessary to have public agents

engaged in the ontology use showing them the

semantic problems they have and how they

could solve these problems using the ontology.

4.1.4. Estimating development costs Ontology

cost estimation is the activity of predicting the

amount of effort required to build an ontology.

This task depends on the details of the current

project as regards product, personnel, and the

aspects of the ontology development process. In

the process presented in this paper, a sequential

development process is proposed; it captures the

number of participants, the expected size of the

ontology, information sources used, and other

relevant information that can be used in a cost

Table 1: The scenario description template

Scenario
number

Scenario identification

Name Scenario name
Description Brief scenario description
Site Location where the scenario

occurs
Actors People that participate in that

scenario
Pre-
requirements

Set of requirements that must
always be met prior to the
execution of the scenario

Requirements List of needs required to execute
the scenario

Normal
sequence

Set of tasks that define the normal
sequence of the scenario

Post-
condition

Condition that must always be
true just after the execution of the
normal sequence

Exceptions Actions that are not part of
normal operations or standards

Legal norms List of legal norms that are related
to the scenario

Main
problems

List of possible problems caused
by semantic heterogeneity

Main terms List of possible terms=concepts
related to the scenario

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 489

estimation methodology. Taking this into con-

sideration, ONTOCOM (Bontas et al., 2006)

could be used. This ontology costing artefact

focuses on a sequential development process

and includes mathematical equations based on

research and previous project data.

In the public area this activity is very important

because the project continuity depends on the

approval of this document by the corresponding

authorities, and sometimes the approval could

involve the issue of legal norms.

4.2. Subprocess 2: Concretization

The goal of concretization is to build a graphical

representational artefact that represents the on-

tology organizing the relevant entities identified

from the domain cognitive representation devel-

oped in the previous subprocess. This artefact can

be built by using a graphical modelling language.

The language has to be independent of the

ontology implementation languages and tools.

The development of the graphical representa-

tional artefact is the most important task in the

proposed methodology. It is important to assign

all the necessary time to carry out a good

analysis. The domain ontology has to be agreed

with domain experts. The use of a graphical

representational artefact is essential to facilitate

communication between ontology engineers and

experts. So, software engineering techniques

that could be familiar to domain experts, such

as the UML (UML, 2006), can be useful.

Although UML in its standard form is not

suitable for semantic representation, the use

of graphical representation is suitable to enable

communication between ontology engineers and

domain experts (Falbo, 2004). The UML class

diagram can be used to represent the ontology in

term of classes and relationships between them

(Cranefield & Purvis, 1999). In addition, if an

ontology-based application is being constructed

using object-oriented technology, it may be ad-

vantageous to use the same paradigm for repre-

senting ontologies (Cranefield, 2001). In the last

few years, some meta-object facility based

ontology modelling languages were defined

(Caliusco et al., 2005). However, there are no

appropriate tools to use them yet.

Figure 3 shows a schematic representation

of the concretization subprocess. The input of

this subprocess is the ontology requirement

specification document defined in the previous

subprocess. The output is a graphical represen-

tation of the domain ontology based on UML

class diagrams adding instances. The activities

of this subprocess are described below.

4.2.1. Defining classes and class hierarchy The

first task is to identify a list of the most relevant

terms from the ontology requirement document.

Initially, it is acceptable to get a comprehensive

list of terms without worrying about the overlap

between entities they represent, relations among

the terms, or any properties that the entities may

have, or whether the entities are classes or

attributes (Noy & McGuinness, 2001).

The second task is to represent the terms of

this list as a hierarchy of classes. With this aim,

the middle-out strategy (Uschold, 1996) could

be used. With this strategy, the core of basic

terms has to be identified first. Then, they have

to be specified and generalized if necessary.

In order to represent the class hierarchy the

use of a UML class diagram is proposed, defin-

Requirements
Ontology

hierarchy
the class

classes and
Defining

[Preliminary]
Representation

Ontology Concrete

[Preliminary]
Document

Concretization

To Identify
class relations,
attributes and

properties

[Preliminary]
Representation

Ontology Concrete

[Preliminary]
Document

Concretization

restrictions
rules and

Representing

[Preliminary]
Representation

Ontology Concrete

[Preliminary]
Document

Concretization

Individuals
Representing

[Final]
Representation

Ontology Concrete

[Final]
Document

Concretization

Figure 3: Concretization subprocess activities.

490 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

ing a class called ‘Thing’ as the top class of the

hierarchy. If the diagram becomes complex and

difficult to manage, it can be modularized by

using packages. This modularization can be

useful later to decide if it is necessary to build a

task ontology for each package. A task ontology

represents entities from a specific task. Working

with different ontologies allows term reusability

and usability, which are relevant goals in ontol-

ogy development and differ finely. While reusa-

bility implies maximizing ontology use among

different task types, usability maximizes the

number of different applications using the same

ontology (Jarrar, 2005).

Finally, disjoint classes, exhaustive decompo-

sitions and partitions (Horridge et al., 2004)

may be identified in the UML class diagram. A

disjoint decomposition of a class C is a set of

subclasses of C that do not have common

instances and do not cover C, i.e. there can be

instances of class C that are not instances of any

of the classes in the decomposition. An exhaus-

tive decomposition of a class C is a set of

subclasses of C that cover C and may have

common instances and subclasses, i.e. there

cannot be instances of the class C that are not

instances of at least one of the classes in the

decomposition. Partition of a class C is a set of

subclasses of C that do not share common

instances and that cover C, i.e. there are no

instances of C that are not instances of one of

the classes in the partition.

4.2.2. Identifying class relations, attributes and

properties Once the hierarchies and their fea-

tures have been identified, a table to reflect the

bidirectional and user-defined relations may be

elaborated, assigning names following uniform

criteria and identifying domain, range, cardin-

ality and inverse relations.

Then, the information of this table has to be

represented in a UML class diagram. The UML

class diagram could be used to share the devel-

oped domain cognitive representation with the

experts. Furthermore, this diagram could be

used later to compare it with the graphical

representation of the formalized representation

of the ontology. Empirical studies have demon-

strated that people understand graphical nota-

tions more easily than other formalisms such as

predicate logic.

4.2.3. Representing rules and restrictions The

next activity in the concretization subprocess is

to represent rules and restrictions. On the one

hand, in general usage a restriction is a specific

type of rule that sets a finite (and generally

absolute) boundary defined for a type of process

or function. With regard to ontology, restriction

refers to constraints imposed by the way entities

are structured in reality. For example, cardinal-

ities and allowed values express restrictions.

Restrictions can be captured by the graphical

representation and should not be written expli-

citly (Falbo, 2004). They could be represented

while specifying class relations and attributes.

On the other hand, a rule is a widely accepted

norm, truth, definition or qualification in the

domain of discourse. In the public administra-

tion domain, rules are clearly founded in the

legal norms. Then, in order to set rules, an

ontological engineer has to analyse not only the

scenario description templates associated with

the term under consideration, but also legal

norms associated with these scenarios. Rules

need to be explicitly represented using a formal

language, such as first order logic.

This distinction is suitable for guiding onto-

logical engineering to represent ontology con-

straints.

4.2.4. Representing individuals The last activity

of the concretization subprocess is to represent

individuals as instances of classes. Representing

an individual in the UML diagram requires

(1) choosing a class, (2) identifying the term that

is represented by that class, (3) identifying the

individuals associated with the term, (4) repre-

senting these individuals as instances of the class

and (5) filling in the attribute values. In order to

identify individuals associated with the terms

represented in the ontology, it is useful to

analyse the scenario description templates and

competency questions.

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 491

4.3. Subprocess 3: Implementation

The goal of the implementation subprocess is

to convert the ontology into a formalized repre-

sentation interpretable by a machine, using an

appropriate language with formal semantics.

With this aim, the subprocess is divided into

three main activities: creating a computational

ontology, verifying the ontology, validating the

ontology. Figure 4 shows a graphical represen-

tation of this subprocess. The activities are

described in the following.

4.3.1. Creating a computational ontology Creat-

ing a computational ontology means converting

the ontology into a formalized representation

interpretable by a machine. There are different

languages. The most relevant ones are RDF

(Resource Description Framework) and OWL

(Web Ontology Language) (Corcho et al., 2003).

The former was developed by the W3C (the

World Wide Web Consortium) as a semantic

network based language to describe web re-

sources. The latter was created by a W3C Work-

ing Group called Web-Ontology (WebOnt) with

the aim of making a new ontology markup

language for the semantic web.

The first challenge during this task is to convert

the ontology represented as a UML class diagram

into one of these languages. This task is time con-

suming; it implies transforming composition rela-

tions into bidirectional relations considering that

not all relations in UML have to be represented in

the formalized ontology but only those relations

that are necessary to answer competency questions.

In order to carry out this activity, an ontology

development tool could be used. In the last few

years, a new generation of ontology engineering

environments has been developed with the aim of

integrating ontology technology in new informa-

tion systems. Among these environments, Protégé

3.1 (Gennari et al., 2003), WebODE (Corcho et al.,

2002) and OntoEdit (Sure et al., 2002) can be

mentioned.

4.3.2. Verifying the ontology In the context of

software engineering, formal verification is the act

of proving or disproving the correctness of a

software application as regards certain formal

specifications or properties, using formalmethods.

In order to prove the correctness of the ontol-

ogy, consistency, completeness and conciseness

have to be proved (Gómez-Pérez et al., 2004).

� Consistency. A given representation is con-

sistent if and only if the individual represen-

tation is consistent and no contradictory

sentences can be inferred using other repre-

sentations and axioms. The common errors

associated with consistency are circularity

errors, partition errors and semantic incon-

sistency errors.

� Completeness. In fact, neither the complete-

ness of an ontology nor the completeness of

its representations can be proved, but we can

prove the incompleteness of an individual

representation and thus deduce the incom-

pleteness of an ontology. Furthermore, we can

prove the incompleteness of an ontology if at

least one representation is missing with regard

Ontology
Requirements

End
Concretization

Document

Representation
Ontology Concrete

ontology
computing
Creating a

language]
processible
[machine-
Ontology

ontology
Verifying the

[Preliminary]
Ontology
Correct Validating

the
ontology

Implementation
Concretization or
Specification or [Final]

Ontology
Correct

Formal and

Figure 4: Implementation subprocess activities.

492 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

to the established reference framework. So,

an ontology is complete if and only if

� all that is supposed to be in the ontology

is explicitly represented in it, or can be

inferred;

� each representation is complete. This is

determined by figuring out what entities of

the world are or are not explicitly repre-

sented, and all entities that are required but

are not explicitly represented can be inferred

using other representations and axioms. If it

can be inferred, the representation is com-

plete. Otherwise, it is incomplete.

The common errors associated with

completeness are incomplete class classi-

fication and partition errors (subclass

partition omission and exhaustive sub-

class partition omission).

� Conciseness. An ontology is concise if it does

not store any unnecessary or useless repre-

sentations, if explicit redundancies do not

exist between representations, and redun-

dancies cannot be inferred using other repre-

sentations and axioms. Common errors

associated with redundancy are redundan-

cies of subclass-of relations, redundancies of

instance-of relations, identical formal repre-

sentation of some classes, identical formal

representation of some instances.

Two main types of measurement for verifica-

tion can be identified: structural measures and

formal measures. The first is required to repre-

sent the ontology graphically. The second im-

plies using a reasoner.

During the ontology development process, it is

acceptable to carry out a permanent and iterative

verification process, taking into account that

partial verifications allow propagation of identi-

fying errors among sets of classes. The verifica-

tion activity can be carried out using the support

provided by ontology development tools.

4.3.3. Validating the ontology In general, vali-

dation is the process of checking if something

satisfies a certain criterion. Ontology validation

refers to whether the ontology really represents the

real world for which it was created (Gómez-Pérez

et al., 2004). Then, validating the ontology means

checking if the ontology meets the requirements

listed in the ontology requirement document.

The validation process must always be con-

ducted against some kind of reference frame. The

reference frame may be requirement specifications

and competency questions.

The evaluation may be performed automati-

cally if the competency questions are represented

formally, or semi-automatically using specific

heuristics or human judgement. To formalize

competency questions RDF Data Query Lan-

guage (RDQL) (Seaborne, 2004) and OWL-

QL (Fikes et al., 2003) could be used. RDQL is

an implementation of an SQL-like query language

for RDF. It treats RDF as data and provides

queries with triple patterns and constraints over a

single RDF model. OWL-QL was designed for

query-answering dialogues among agents using

OWL. Thus, OWL-QL is suitable when it is

necessary to carry out an inference in the query.

During this subprocess, communication with

domain experts is essential. The ontology valida-

tion must check if competency questions are being

correctly answered and if the competency questions

actually pose the right questions for the ontology

purpose (Falbo, 2004). In this sense, domain ex-

perts are asked to say if competency questions

satisfy their needs. One simple way to calculate the

ontology confidence degree is to use the formula

g¼
Pe

1 ð
Pn

1 qÞ=n
� �

e
ð1Þ

where g is the ontology confidence degree, n is

the number of competency questions, q is the

degree of answer given by the ontology to each

competency question (satisfactory¼ 1; med-

ium¼ 0.50; not satisfactory¼ 0) and e is the

number of domain experts.

Verification and validation task results are

reflected in a set of modifications=refinements in

the specification, concretization or implementa-

tion subprocesses. The refinement process ends

when the ontology confidence degree (equation

(1)) is greater than a previously specified thresh-

old, e.g. 95%.

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 493

5. A study case: an ontology for the Budgetary

Domain of Santa Fe Province

The objective of this section is to present the

implementation of the process described above.

With this aim, the process was applied to the

development of an ontology for the Budgetary

Domain of Santa Fe Province (Argentina).

Since then, this approach has been used to create

a Government Budgetary Ontology (Brusa et al.,

2006a, 2006b).

5.1. Specification subprocess

5.1.1. Activity 1: Describing the domain In this

activity, the information system that supports

the provincial budget formulation and its re-

lated documentations was studied and revised.

Furthermore, meetings with a group of experts

were held. This group was constituted by public

officials responsible for the whole budget for-

mulation process in the Executive Power, expert

professionals of the Budget Committee of the

Legislative Power, public agents of the adminis-

trative area in charge of creating their own

budget and software engineers who provided

informatics support for these tasks.

In the following, a brief description of the

domain is presented.

Budgetary and financial domain The budget of

a government is a plan for the intended revenues

and expenditures of that government. The bud-

get is prepared by different entities in different

government areas. Specifically, in Santa Fe Pro-

vince (Argentina) these entities are

� Executive Power: this government entity

elaborates the Provincial Budget Draft and

is formed by a ruling organism and executing

organisms. The first defines all activities for

formulating a budget and the others execute

these activities.

� Legislative Power: this government entity

passes the Annual Budget Law.

Along the life cycle of a budget, the evaluation

and control of current financial resources are

carried out, and all of them are assigned to

goods and services production. Table 2 shows

these steps in detail.

There is common information for all budget

life cycle stages. A classifier is an information

classification. In the particular case of budget-

ary classifiers, they show different ways of

classifying information. Budgetary classifiers

are derived from the expenses and resources

transactions of public institutions. This level of

detail is necessary to express, formally and in a

precise way, revenue sources (resource classi-

fiers) and expense characteristics (expense clas-

sifiers). This involves specifying goods and

services to acquire in a government programme,

their geographical location and destination.

Classifiers are used for programming, analysing

and controlling the economic and financial

management of public institutions. Classifiers

used in this work are institutional classifier,

expense object, geographical location, finality

function, resource item, financing source and

programmatic category.

Two situations were analysed in this work

where the availability of semantic information

associated with budgetary data is critical: budget

formulation and approval tasks. In the first case,

only government staff with specific knowledge

can be involved, concentrating a great responsi-

bility on a few people. In the second case,

semantic information is necessary for analysing

budgetary data and then having the budget law

passed. Here, this is more complex because all

legislators must vote and most of them have

no specific knowledge. For simplicity, only the

Table 2: Budget life cycle steps

1. Initiate fiscal year and distribute classifiers
2. Prepare preliminary budget and resources
estimation

3. Define budgetary policy and expenses projection
4. Determine expenses top
5. Formulate budget project draft
6. Present budget project draft to legislature
7. Approve budget in legislature
8. Elaborate a new budget based on budget law
9. Distribute budget for execution
10. Elaborate budgetary modifications
11. Program budget executing
12. Reconduct budget
13. Closure fiscal year

494 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

formulation stage for the expense budget was

considered for this case study.

5.1.2. Activity 2: Elaborating motivating scenar-

ios and competency questions A motivating

scenario describing the main features of the

local budget formulation was defined. In order

to arrive at a precise description of the scenario,

several meetings with domain experts were held.

Since the main scenario was very complex, it was

defined including different sub-scenarios that

describe in detail one step of the normal se-

quence. The inclusion is expressed with the key-

word include followed by the name of the

scenario that is included. The template that

represents the main scenario of local budget

formulation is shown in Table 3.

Based on this template scenario description

simple and complex competency questions were

derived. As an example, some of them are shown

in Table 4.

5.1.3. Activity 3: Determining the ontology goal

and scope The ontology goal is to represent the

set of entities involved in the budget formulation

task to be mainly used by public agents when

they have to define a budget for the next fiscal

year.

This ontology only considers the needs for

creating an analytic budget with entities related

to expenses. It does not consider the entities

related to other stages such as budgetary execut-

ing, accounting, payments, purchases or fiscal

year closure. Therefore, it includes general enti-

Table 3: Scenario of local budget formulation

Scenario number 1
Name Local Budget Formulation
Description Necessary tasks to estimate expenses for the following year, which will be integrated

with the other government jurisdictions for outlining the Draft Local Budget
Site Executing organism of a jurisdiction
Actors � Public agents uncharged jurisdictional budget

� Ruling organism agents
� Public agents from areas of a jurisdiction

Pre-requirements � Budgetary policy defined
� Expenses classifiers received from ruling organism
� Reference documentation

Associated
requirements

� Trained agents in budget formulation tasks
� Advisory agents from ruling organism

Normal sequence STEP ACTION
1 To receive expenses estimations from jurisdiction areas
2 To bring support to this area for elaborating own expenses programs
3 To integrate all expenses programs for jurisdiction
4 To create programming categories; this includes programming categories

formulation
5 To create the jurisdictional budget project; this includes jurisdictional budget

project formulation
6 To load budget in informatics system and send it to ruling organism
7 To receive approved jurisdictional budget from ruling organism

Post-condition � Jurisdictional expense budget project
� Jurisdictional programmatic categories

Exceptions STEP ACTION
5 To consult the rector organism on the different aspects of formulating the budget
7 To modify the budget if it is not approved

Main problems � Too much time spent in clarifying conceptual doubts
� Major problems when an agent must be replaced in key work places
� The whole process is highly dependent on a few people’s knowledge

Main terms Budgetary classifier, expenses classifier, institutional, programmatic category,
geographic, expenses object, financing source and finality function classifiers, . . .

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 495

ties for the budget life cycle and specific entities

for the formulation stage.

5.2. Concretization subprocess

5.2.1. Activity 1: Defining classes and class hier-

archy In this task, a list of terms that represent

the most important entities in the budget for-

mulation domain was created using the middle-

out strategy. The list is shown in Table 5. It does

not include partial or total overlapping of terms,

synonyms, properties or relations.

In order to identify classes, those terms with

independent existence from the key terms list

were identified. A UML diagram (UML, 2006)

was elaborated with the hierarchy relations

among these terms.

This UML representation was useful to verify

the ontology scope and to discover two granu-

larity levels for budgetary domain entities.

Then, it was necessary to make an important

design decision: working with two ontologies.

One of them is the domain ontology, shown in

Figure 5, which contains the general terms for

representing the budget life cycle and a coarse

granularity is adequate. The other, the formula-

tion ontology, contains the specific terms for

formulating a budget. This is a task ontology

(Gómez-Pérez et al., 2004) since it represents

entities related to a specific task and a fine

granularity is required. So, the list of key terms

and hierarchical relations was modified and

competency questions were grouped depending

on the ontology terms they were related to.

From the class hierarchy diagram, disjoint

classes, exhaustive decompositions and parti-

tions were identified. As an example (Figure 5),

the finality function, financing source, expense

object, programmatic category, geographical

location and institutional classifier can be men-

tioned as disjoints. Furthermore (Figure 5), the

classes Expenses Classifier and Resource Classi-

fier make up an exhaustive decomposition of the

class Budgetary Classifier. This is because there

is no classifier that is not an instance of at least

one of those classes, and the classes can have

common instances. Finally, there are no parti-

tions in this scenario. It is always convenient to

begin with primitive classes, analysing which of

them are disjoint and verifying if that condition

does not produce instance absences.

5.2.2. Activity 2: Identifying class relations,

attributes and properties Once the hierarchies

and their features have been identified a table

may be created to reflect the relations, assigning

names according to a uniform criterion, and

identifying domain and range, cardinality and

inverse relations. An example is shown in Table 6.

The relation direction depends on competency

questions to be solved and the possible conflicts

with other represented class restrictions.

Table 4: Competency questions

Simple questions Complex questions

Which are the
budget states?
Which are the
budgetary classifiers?

Which are the
Department
and Province for the
District ‘Santa Fe’?

Which are the
expenses classifiers?
Which are the
resource classifiers?

Which are the sector and
subsector for the Main
Administration?

Table 5: Key term list

Activity Budgetary fiscal year Financial administration Program

Budget Budgetary policy Financing source Subprogram
Budget analytic Budgetary top Geographical location Program executer unit (UEP)
Budget approved Executing organism Institutional classifier Programmatic category project
Budget project draft Expenses Institution Project
Budget synthetic Expenses classifier Financial administrative

service (SAF)
Public funds administrative
service (SAFOP)

Budget states Expense object Jurisdiction Ruling organism
Budgetary classifier Finality function Jurisdiction government Resource

496 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

The last step of this task is to capture in the

graphic representational artefact the relations

and restrictions listed in the relation table. An

excerpt of these relations is shown in Figure 6.

5.2.3. Activity 3: Representing rules and restric-

tions The first step of this task is to analyse the

restrictions represented in the last task and to

add those that have not been represented. Then,

taking into account the scenario description

templates and legal norms, several rules were

identified and represented in natural language.

After that, these rules were formally represented

in description logic. For example, the following

axiom states that a programmatic category is an

expenses classifier and, if it has a subprogram, it

has to be associated to a program.

ProgrammaticCategory � ExpensesClassifier

^ 8hasSubprogram.(9hasProgram.Program)

Finally, the axioms have to be analysed both

individually and in groups of classes to verify

whether closure restrictions are required.

Closure restrictions are a statement of universal

restriction which means that a property can

only be satisfied by an exhaustive list of condi-

tions.

Thing

Budget State

Budgetary Fiscall Year

Budget

Budget Manner

Program

Project Budgetary Classifier Subprogram Activity

Resource ClassifierExpenses Classifier

Financial Administration

Budget SyntheticBudget Analytic

Closure
Approval

ExecutionFormulation
Finality Function

Programmatic Category Expense Object

Sector

Subsector

Financing Source Institutional_Classifier

Character Institution

Executing Organism Ruling Organism

UEPSAFSAFOP

Geographical Location

Resource Item

Figure 5: The class hierarchy in UML.

Table 6: An excerpt of the relation table of the budgetary ontology

Class name Relation Cardinality Class name Inverse relation

Institutional classifier inst-include-sec 1 Sector sec-isPartOf-Inst
Institutional classifier inst-include-sbsec 1 Subsector sbsec-isPartOf-Inst
Institutional classifier inst-include-char 1 Character char-isPartOf-Inst
Sector sec-isPartOf-Inst 1, n Institutional classifier inst-include-sec
Subsector sbsec-isPartOf-Inst 1, n Institutional classifier inst-include-sbsec
Character char-isPartOf-Inst 1, n Institutional classifier inst-include-char
Institutional classifier ins-has-SAF 1 SAF SAF-correspond-inst

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 497

5.2.4. Activity 4: Representing individuals The

final activity for arriving at an ontology is to

represent individuals as instances in the UML

class diagram. First, an instance table has to be

built analysing the individuals of the domain.

Each instance should be provided with its name,

the name of the term it is associated with, and its

attribute values, if known, as shown in Table 7.

Then, each instance has to be associated with

the corresponding class represented in the UML

class diagram.

5.3. The implementation subprocess

5.3.1. Activity 1: Creating a computational onto-

logy In order to implement the ontology, we

chose Protégé because it is extensible and pro-

vides a plug-and-play environment that makes it

a flexible base for rapid prototyping and appli-

cation development (Knublauch et al., 2005).

Protégé ontologies can be exported into differ-

ent formats including RDF Schema (RDFS)

(Brickley & Guha, 2004) and OWL (M. Smith

et al., 2004). In particular, the budgetary ontol-

ogy was implemented in OWL. Figure 7 shows

the logical view window of Protégé.

5.3.2. Activity 2: Verifying the ontology During

the verification activity, experiences of CO-ODE

Project (Knublauch et al., 2005) and practical

experience of teaching OWL-DL reported by

Rector et al. (2004) were taken into account.

The verification phase was incremental and con-

tinuous to avoid future propagation of errors. It

was divided into a formal verification and gra-

phical verification.

Department

11

11

11has

has

has

has

has11

0..n
0..nhas 1..n

1..n

1..n
1..n

1..n

1..n

1..n

0..n

has

has

11

11

0..n

has

1..n

has 11

has

11

11

1inst-include-sbsec

has

has

has

has

Program

Project Subprogram

has-Project

has-Subprogram

ActWork

Subsector

has-ActWork

Character

inst-include-char

Institutional Classifier

Institution

ins-has-UEP

ins-has-SAF SAF

correspond

UEP

SAFOP

Distrit

ProvinceGeographical Location

inst-include-sec

Sector

Programmatic Category

has-Program

Finality Function

Expenses Classifier

Figure 6: An excerpt of the UML class diagram.

Table 7: An excerpt of the instance table of the budgetary ontology

Class name Instance name Relation Value

Institutional
classifier

Institutional_111 cod-institutional 1.1.1
inst-include-sec 1 – No financial local public sector
inst-include-sbsec 1 – Local administration
inst-include-char 1 – Main administration

Institutional_212 cod-institutional 2.1.2
inst-include-sec 2 – Financial local public sector
inst-include-sbsec 1 – Official banking system
inst-include-char 2 – Official banks

498 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

On the one hand, to conduct a formal verifica-

tion, consistency validation and classification from

Protégé and Racer reasoner (Haarslev & Möller,

2001) were used. When a class is unsatisfiable,

Protégé highlights it. There are different causes of

dissatisfaction which could generate a propaga-

tion of errors. At this point, it is very important

how classes are defined (disjoint, isSubclassOf,

Partial Class, Defined Class etc.) and their restric-

tions (unionOf, allValuesFrom etc.). The classifi-

cation process can be invoked either for the whole

ontology or for selected subtrees only. When the

test is done on the whole ontology, errors are

searched beginning with minor level classes in the

hierarchy for minimizing error propagation.

On the other hand, to graphically verify the

ontology implementation with its concretization

(the UML class diagram representation), graphics

using the OWLViz and Ontoviz plug-ins were

generated and compared with UML diagrams.

OWLViz allows class hierarchies to be viewed in

OWL ontology (Figure 8). Then, this ontology

can be compared with the UML class hierarchy

(Figure 5).

OntoViz generates diverse combinations of gra-

phics with all relations represented in the ontol-

ogy, instances and attributes. As an example,

Figure 9 shows the main relations of the class

Institutional Classifier with other classes, and one

instance of this class that represents the way in

which the Local Administration is classified. On-

toViz allows several disconnected graphs to be

visualized at once. These graphs are suitable for

comparing the ontology concretization sketched

in a UML class diagram (Figure 6) and in the

instance table (Table 7) with its implementation.

5.3.3. Activity 3: Validating the ontology Ontol-

ogy validation refers to whether the ontology

really represents the actual world for which it was

created. The goal is to prove that the real world is

compliant with that world formally represented.

Figure 7: Protégé logical view window.

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 499

In order to validate the ontology, it is necessary

to verify whether the ontology correctly answers

the competency questions. With this aim, the

competency questions were codified using RDQL

and then the results were checked by the domain

experts. A possible RDQL query is

SELECT ?x ?y ?z ?nsec ?nsbsec

WHERE (?x, < adm:sec-has-sbsec> ,?y)

(?y, < adm:bsec-has-char> ,?z)

(?z, < rdfn:label> ,’1-Main

Administration’)

(?x, < rdfn:label> , ?nsec),

Figure 8: Budgetary ontology taxonomy in OWLViz.

Figure 9: Main relations and an instance of Institutional Classifier class in OntoViz.

500 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

(?y, < rdfn:label> , ?nsbsec)

USING rdfn FOR http://www.w3.org/2000/01/

rdf-schema#

adm FOR http://protege.stanford.edu/

This RDQL query codifies the competency ques-

tion ‘Which is the sector and subsector for the

Main Administration?’. The query contains

three main clauses: SELECT, WHERE and

USING. In the SELECT clause we have de-

fined five variables from which a valid RDF

triple could be created in the WHERE clause.

In the first line of the WHERE clause a set of

(sector, sec-has-sbsec and subsector) triple is

retrieved. Then, in the second line, the charac-

ter of each subsector is obtained and in the

third line has been restricted to only that sector

and subsector whose character is ‘1 – Main

Administration’. Finally, in the fourth and fifth

lines, the labels of this sector and subsector

are retrieved. Both, the rdfn and the adm pre-

fixes are defined in the USING clause, repre-

senting the commonly used prefix for RDF

and the URI for the schema of the ontology

respectively.

Finally, the queries were implemented using

Jena Toolkit (McBride, 2002). Jena is a Java

framework that provides an API for creating

and manipulating RDF models.

6. Conclusions

Successful implementation and application of

ontologies in public administration depends on

the availability of appropriate methodologies.

In this paper, a process for building a domain

ontology from scratch in public administration

is proposed. This process aims to meet the

requirements of an ontology development in this

area. The requirements are an explicit repre-

sentation of a local domain, and an effective

development of a domain ontology from scratch

involving different stakeholders. Furthermore,

the process proposes to represent the cognitive

representation by using a graphical language

following some ontology implementation char-

acteristics, trying to fill the gap between domain

cognitive representation and its implementation.

In addition, a case study has been presented.

This case study is based on the ontology devel-

opment for the Budgetary Domain of Santa Fe

Province (Argentina).

Building domain ontologies is not a simple

task when domain experts have no background

knowledge of engineering techniques and=or
they have not much time to spend during

the task of supporting the domain cognitive

representation. Then, the use of graphical re-

presentation is crucial in order to facilitate

communication between ontology engineers

and domain experts. The process discussed in

this paper proposes the use of the UML class

diagram as an intermediate ontology represen-

tation artefact.

References

ABECKER, A., N. STOJANOVIC and R. STUDER (2004)
An approach for the change management in the
e-government domain, in Proceedings of the 2nd
International Conference on Knowledge Economy
and Development of Science and Technology, Beijing:
Institute of Computer Technology, Chinese Acad-
emy of Sciences, and Institute of Knowledge Econo-
my (Tokyo). 1080–1097.

ANTON, A.I. (1996) Goal identification and refinement
in the specification of software-based information
systems, PhD Thesis, Georgia Institute of Technol-
ogy, Atlanta, GA.

APOSTOLOU, D., L. STOJANOVIC, T. LOBO and B.
THOENSSEN (2005) Towards a semantically-driven
software engineering environment for e-government,
in Proceedings of TCGOV 2005, M. Böhlen, J.
Gamper, W. Polasek and M.A. Wimmer (eds),
LNAI 3416, Berlin: Springer, 157–168.

BONTAS, E., C. TEMPICH and Y. SURE (2006) ONTO-
COM: a cost estimation model for ontology engi-
neering, in Proceedings of the 5th International
Semantic Web Conference, LNCS 4273, Berlin:
Springer, 625–639.

BREWSTER, C. and K. O’HARA (2004) Knowledge repre-
sentation with ontologies: the present and future,
IEEE Intelligent Systems, 19 (1), 72–81.

BRICKLEY, D. and R.V. GUHA (2004) RDF Vocabulary
Description Language 1.0: RDF Schema, W3C
Recommendation, at http://www.w3.org/TR/rdf-
schema/.

BRUSA, G., M.L. CALIUSCO and O. CHIOTTI (2006a)
Building ontology in public administration: a case
study, in Proceedings of the 1st International Work-
shop on Applications and Business Aspects of the

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 501

Semantic Web at the 5th International Semantic Web
Conference, E. Pasalaru, B. Simperl, M. Hepp and
C. Tempich (eds), 16–30.

BRUSA, G., M.L. CALIUSCO and O. CHIOTTI (2006b) A
process for building a domain ontology: an experi-
ence in developing a government budgetary ontol-
ogy, in Conferences in Research and Practice in
Information Technology, M.A. Orgun and T. Meyer
(eds), Hobart: Australian Computer Society, Vol.
72, pp. 7–15.

CALIUSCO, M.L., M.R. GALLI and O. CHIOTTI (2005)
Contextual ontologies for the semantic web – an
enabling technology, in Proceedings of the 3rd Latin
American Web Congress, New York: IEEE Compu-
ter Society, 98–101.

CORCHO, O., M. FERNÁNDEZ-LÓPEZ, A. GÓMEZ-PÉR-

EZ and O. VICENTE (2002) WebODE: an integrated
workbench for ontology representation, reasoning,
and exchange, in 13th International Conference on
Knowledge Engineering and Knowledge Management
(EKAW ‘02), A Gómez-Pérez and V.R. Benjamins.
(eds), LNAI 2473, Berlin: Springer, 138–153.

CORCHO, O., M. FERNÁNDEZ-LÓPEZ and A. GÓ-
MEZ-PÉREZ (2003) Methodologies, tools and lan-
guages for building ontologies. Where is the
meeting point?, Data and Knowledge Engineering,
46, 41–64.

CORCHO, O., M. FERNÁNDEZ-LÓPEZ, A. GÓMEZ-
PÉREZ and A. LÓPEZ-CIMA (2005) Building legal
ontologies with METHONTOLOGY and We-
bODE, in Law and the Semantic Web. Legal Ontol-
ogies, Methodologies, Legal Information Retrieval,
and Applications, LNCS 3369, Berlin: Springer,
142–157.

CRANEFIELD, S. (2001) UML and the semantic web, in
Proceedings of the 1st Semantic Web Working Sym-
posium, Stanford, CA, 113–130.

CRANEFIELD, S. and M. PURVIS (1999) UML as
an ontology modelling language, in IJCAI ‘99
Workshop on Intelligent Information Integration,
D. Fensel, C. Knoblock, N. Kushmerick and
M. C. Rousset (eds), CEUR Workshop Proceedings
23, 5.1–5.8 (http://CEUR-WS.org/Vol-23/).

CRISTANI, M. and R. CUEL (2004a) A comprehensive
guideline for building a domain ontology from
scratch, in International Conference on Knowledge
Management (I-KNOW ‘04), Know Center Graz,
205–212.

CRISTANI, M. and R. CUEL (2004b) Methodologies for
the semantic web: state-of-the-art of ontology meth-
odology, SIGSEMIS Bulletin, Theme: SW Chal-
lenges for KM, 1 (2), 103–136.

FALBO, R.A. (2004) Experiences in using a method for
building domain ontologies, in Proceedings of the
16th International Conference on Software Engineer-
ing and Knowledge Engineering, International Work-
shop on Ontology in Action, Banff, 474–477.

FIKES, R., P. HAYES and I. HORROCKS (2003) OWL-
QL – a language for deductive query answering on
the semantic web, Report, KL Laboratory, Stanford
University

GENNARI, J., M.A. MUSEN, R.W. FERGERSON, W.E.
GROSSO, M. CRUBEZY, H. ERIKSSON, N.F. NOY and
S.W. TU (2003) The evolution of Protégé: an envir-
onment for knowledge-based systems development,
International Journal of Human–Computer Studies,
58 (1), 89–123.

GÓMEZ-PÉREZ, A., M. FERNÁNDEZ LÓPEZ and O.
CORCHO (2004) Ontological Engineering with Exam-
ples from the Areas of Knowledge Management,
E-Commerce and the Semantic Web, London:
Springer.

GRÜNINGER, M. and M.S. FOX (1995) Methodology
for the design and evaluation of ontologies, in IJCAI
Workshop on Basic Ontological in Knowledge Shar-
ing, D. Skuce (ed.), 6.1–6.10.

HAARSLEV, V. and R. MöLLER (2001) Description of
the RACER system and its applications, in Interna-
tional Workshop on Description Logics (DL ‘01),
C.A. Goble, D.L. McGuinness, R Möller and
P.F. Patel-Schneider (eds), CEUR Workshop
Proceedings 49, 132–141 (http://CEUR-WS.org/
Vol-49/).

HORRIDGE, M., H. KNUBLAUCH, A. RECTOR, R.
STEVENS and C. WROE (2004) A Practical Guide to
Building OWL Ontologies using the Protégé-OWL
Plugin and CO-ODE Tools Edition 1.0, University of
Manchester.

IEEE (1996) IEEE Standard for Development Software
Life Cycle Processes, New York: IEEE Computer
Society, IEEE Std 1074-1995.

JARRAR, M. (2005) Towards methodological principles
for ontology engineering, PhD Thesis, Vrije Univer-
siteit Brusell.

KLISCHEWSKI, R. and K. LENK (2002) Understanding
and modelling flexibility in administrative processes,
inProceedings of EGOV 2002, R. Traunmuller andK.
Lenk (eds), LNCS 2456, Berlin: Springer, 129–136.

KNUBLAUCH, H., M. HORRIDGE, M. MUSEN, A. REC-

TOR, R. STEVENS, N. DRUMMOND, P. LORD, N.
NOY, J. SEIDENBERG and H. WANG (2005) The
Protégé OWL experience, in Workshop on OWL:
Experiences and Directions, 4th International Seman-
tic Web Conference, B. Cuenca Grau, I. Horrocks,
B. Parasia and P. Patel-Schneider (eds), CEUR
Workshop Proceedings 188 (http://CEUR-WS.org/
Vol-188/).

MCBRIDE, B. (2002) Jena: A semantic web toolkit,
IEEE Internet Computing, 6 (6), 55–59.

NOY, N. and D. MCGUINNESS (2001) Ontology devel-
opment 101: A guide to creating your first ontology,
Stanford Knowledge Systems Laboratory Technical
Report KSL-01-05 and Stanford Medical Infor-
matics Technical Report SMI-2001-0880.

502 Expert Systems, November 2008, Vol. 25, No. 5 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd

O’LEARY, D. (1998) Using AI in knowledge manage-
ment: knowledge bases and ontologies, IEEE Intelli-
gent Systems, 13 (3), 34–39.

RECTOR, A., N. DRUMMOND, M. HORRIDGE, J. RO-

GERS, H. KNUBLAUCH, R. STEVENS, H. WANG

and C WROE (2004) OWL pizzas: practical experi-
ence of teaching OWL-DL: common errors and
common patterns, in Proceedings of the European
Conference on Knowledge Acquisition, E. Motta
and N. Shadbolt (eds), LNAI 3257, Berlin: Springer,
63–81.

SEABORNE, A. (2004) RDQL – a query language for
RDF, W3C Submission, at http://www.w3.org/Sub
mission/2004/.

SMITH, B. (2003) Ontology, in Blackwell Guide to the
Philosophy of Computing and Information, L. Floridi
(ed.), Oxford: Blackwell, 155–166.

SMITH, B., W. KUSNIERCZYK, D. SCHOBER and W.
CEUSTERS (2006) Towards a reference terminology
for ontology research and development in the bio-
medical domain, in Proceedings of KR-MED 2006,
Biomedical Ontology in Action International Work-
shop, S. Schulz, B. Smith and F. Neuhaus (eds),
Baltimore, MD.

SMITH, M., C. WELTY and D. MCGUINNESS (2004)
OWL Web Ontology Language Guide, W3C Recom-
mendation 10, at http://www.w3.org/TR/owl-guide/.

SURE, Y., M. ERDMANN, J. ANGELE, S. STAAB, R.
STUDER and D. WENKE (2002) OntoEdit: collabora-
tive ontology engineering for the semantic web,
in Proceedings of the 1st International Semantic
Web Conference, LNCS 2342, Berlin: Springer,
221–235.

TRAUNMÜLLER, R. and M. WIMMER (2002) KM
for public administration: focusing on KMS
feature requirement, in Practical Aspects of Knowl-
edge Management, LNAI 2569, Berlin: Springer,
314–325.

UML (2006) Unified Modeling Language, at http://
www.uml.org/.

USCHOLD, M. (1996) Building ontologies: towards a
unified methodology, in 16th Annual Conference of
the British Computer Society Specialists Group on
Expert Systems, I. Watson (ed.), Cambridge.

USCHOLD, M. and M. GRÜNINGER (1996) Ontologies:
principles, methods and applications, Knowledge
Engineering Review, 11 (2), 93–155.

USCHOLD, M and M. KING (1995) Towards a metho-
dology for building ontologies, in IJCAL’95 Work-
shop on Basic Ontological Issues in Knowledge
Sharing, D. Skuce (ed.), 6.1–6.

WACHE, H., T. VöGELE, U. VISSER, H. STUCKENSCH-

MIDT, G. SCHUSTER, H. NEUMANN and S. HÜBNER

(2001) Ontology-based integration of information –
a survey of existing approaches, in Proceedings of the
IJCAI-01 Workshop: Ontologies and Information
Sharing, 108–117.

The authors

Graciela Brusa

Graciela Brusa received her Bachelors degree in

applied mathematics in 1980 from UNL – Litoral

National University, Santa Fe, Argentina, and her

Masters in information systems engineering from

Universidad Technológica Nacional – Facultad

Regional Santa Fe (UTN-FRSF), Argentina, in

2006. She is working in the public sector, in

particular in the informatics and communications

areas. Her principal interests are such themes as

knowledge management and ontologies.

M. Laura Caliusco

M. Laura Caliusco received her degree in infor-

mation systems engineering in 1999 and her PhD

in information systems from UTN-FRSF, Santa

Fe, Argentina, in 2005. She is now an Associate

Professor at FRSF. She was elected post-doctor-

al fellow of Argentina’s National Council of

Scientific Research (CONICET) in 2005. At pre-

sent, she is working as a research scientist at the

IþD Center in Information Systems Engineer-

ing (CIDISI). Her interests are primarily in the

areas of software agents, knowledge discovery, e-

collaboration, context, and ontology.

Omar Chiotti

Omar Chiotti received his degree in chemical

engineering in 1984 from UTN – Facultad

Regional Villa Marı́a, Córdoba, Argentina, and

his PhD in chemical engineering from Universi-

dad Nacional del Litoral, Santa Fe, Argentina,

in 1989. Since 1984, he has been working for

CONICET as a researcher. He has been a full

Professor of Information Systems Engineering

at UTN-FRSF since 1986. At present, he is the

director of the IþD Center in Information

Systems Engineering (CIDISI) and the director

of the PhD in engineering. His current research

interests include decision support systems, data

warehouse, e-collaboration, and multi-agent

systems.

c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd Expert Systems, November 2008, Vol. 25, No. 5 503

