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a b s t r a c t

DFT broken-symmetry calculations at the B3LYP level were carried out to evaluate the exchange coupling
constants defined by the Heisenberg–Dirac–van Vleck spin Hamiltonian (HDvV), Ĥ = �2JŜaŜb, in a 1D
chain of iron basic carboxylate cores [Fe3O(Piv)6(H2O)] bridged by dicyanamide, and two related trinu-
clear Fe3O moieties. The chain complex was modeled as two Fe3O units that preserve all features of
the repetitive unit in the infinite real system. All geometries were taken from the crystallographic data
previously reported. The obtained calculated values for the J constants are in good agreement with exper-
imental results. The weak anti-ferromagnetic inter-Fe3O core interaction along the chain is also reason-
ably accounted by the calculations. This methodology appears as a useful tool in the theoretical
evaluation of exchange coupling constants in 1D systems.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

During the last years multinuclear transition metal complexes
have been attracting much attention because of their varying mag-
netic properties among other interesting features [1–6]. Molecular
magnetic properties of complexes bearing high spin ground states
and negative zero-field splitting values are of vital importance for
single-molecule magnets (SMMs) [6]. Usually, their spins are
highly exchange-coupled. In these systems the exchange coupling
constant, J, of the Heisenberg–Dirac–van Vleck spin Hamiltonian
(HDvV), Ĥ = �2JŜaŜb, which is the most commonly used formalism
to interpret the experimental magnetic data, may be computed
using the broken symmetry (BS) approach developed by Noodle-
man et al. as already described in the literature [7,8]. Density func-
tional theory (DFT) has been widely applied to compute the
magnetic properties of binuclear transition-metal complexes, or-
ganic biradicals, and several organic-radical–transition-metal com-
plexes [9–18] because of the small CPU cost/accuracy ratio
achieved by this formalism, allowing one to handle systems of
chemical complexity.

The broken symmetry approach within DFT methods has been
applied with reasonable success to a big number of dinuclear com-
plexes [9,10] but also to high nuclearity systems [19–21], for which
this type of calculations has become more crucial as solving the full
Hamiltonian problem for large clusters is not viable due to rapid
increase of spin basis set matrix dimensions precluding the energy

levels calculation. Most of the efforts have been performed with
discrete molecular systems comprising different number of metal-
lic centers while DFT BS calculations of 1D infinite systems are
comparatively still scarce [22–24].

We have recently reported the preparation of a 1D chain com-
plex based on the stringing of an iron basic carboxylate of formula
[Fe3O(Piv)6(H2O)]+ (Piv = trimethylacetate) with the bridging dicy-
anamide anion (dca) [25]. Its crystal structure proves that the
chains are well isolated from each other. Magnetic measurements
of this complex showed that the individual Fe3O cores are weakly
anti-ferromagnetically coupled through the dca (J � �0.6 cm�1)
while strongly anti-ferromagnetically coupled within their own
core to afford a well isolated S = 1/2 ground state. To give a theoret-
ical support for these experimental results we are reporting in this
work DFT broken-symmetry calculations modeling the infinite
chain complex as a Fe3O-l-dca-Fe3O dimer. Additionally we are
reporting the calculations with the related non-bridged complex
[Fe3O(Piv)6(CH3OH)2dca] also recently reported by us. Most of
the calculations relied in the B3LYP-LanL2DZ hybrid functional-ba-
sis set combination that we have successfully employed in the pre-
diction of exchange coupling parameters in a related system [26].

2. Methodology

2.1. Molecular models

For the calculations of the infinite 1D chain complex (1) we
adopted a discrete model consisting of only a pair of Fe3O cores
bridged by dicyanamide (Fig. 1), which was taken directly, from
the X-ray structure [25]. In order to preserve the neutral character
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of the real 1D chain, a proton was added to one terminal dca ligand.
This hydrogen atom was placed at an ideal position and optimized
with a simple molecular mechanics force field. In the case of the
non-bridged Fe3O complexes, the X-ray geometry was employed,
running separately calculations for the two species co-crystallized

in the structure [25], [Fe3O(Piv)6(CH3OH)2dca] (2) and [Fe3O(-
Piv)6(CH3OH)3]+ (3) (Fig. 1).

2.2. DFT calculations

Density functional theory (DFT) spin-unrestricted calculations
were performed using the GAUSSIAN03 program [27] (revision D.01)
at the B3LYP level employing the LanL2DZ basis set and in the case
of the smaller complexes 2 and 3 the triple f valence split basis set
from Ahlrichs with polarization functions (TZVP) was also used.
Both basis sets were used as implemented in the Gaussian package.
Tightly converged (10�8 Eh in energy) single point calculations
were performed in order to analyze the exchange coupling be-
tween the iron centers. The methodology applied here relies on
the broken symmetry formalism, originally developed by Noodle-
man for SCF methods [7], which involves a variational treatment
within the restrictions of a single spin-unrestricted Slater determi-
nant built upon using different orbitals for different spin. This ap-
proach has been later applied within the frame of DFT [8]. The HS
(high spin) and BS (broken-symmetry) energies were then com-
bined to estimate the exchange coupling parameter J involved in
the widespread used Heisenberg–Dirac–van Vleck Hamiltonian:

ĤHDvV ¼ �2JŜAŜB ð1Þ

In the case of complexes 2 and 3, we have calculated the three pos-
sible spin topologies of broken symmetry nature while in the case of
the model complex 1 we have calculated seven broken-symmetry
states (Table 1). The exchange coupling constants Ji can be obtained
after considering the individual pair-like components spin interac-
tions involved in the description of the different broken symmetry
states. Three main reported methodologies can be followed: the Is-
ing approach [28], where the broken symmetry states are directly
considered as eigenstates of the HDvV Hamiltonian (Eq. (1)) with
the corresponding equation:

EBS � EHS ¼ 2J12ð2S1S2Þ ð2Þ

the non-projected method proposed by Ruiz and co-workers [19],
where the following equation is applied:

EBS � EHS ¼ 2J12ð2S1S2 þ S2Þ; with S2 < S1 ð3Þ

and finally the generalized multi-spin Yamaguchi method [21],
based in the equation:

EBS � EHS ¼ 2J12ðhS1S2iF � hS1S2iAFÞ ð4Þ

where hS1S2i (F = ferromagnetic, AF = anti-ferromagnetic) are the
spin correlation functions between the interacting spins.

In all cases a set of linear equations must be solved to obtain the
J parameters.

J1:  Fe1-Fe3 

J2:  Fe1-Fe2 

J3:  Fe2-Fe3 

J4:  Fe3-Fe4 

J5:  Fe4-Fe5 

J6:  Fe4-Fe6 

J7:  Fe5-Fe6 
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Fig. 1. Structures 1, 2 and 3 employed in all calculations with the corresponding
exchange coupling patterns adopted.

Table 1
Spin topologies describing all calculated broken symmetry states. + and – signs mean
spin up and spin down, respectively.

Complex BS Fe1 Fe2 Fe3 Fe4 Fe5 Fe6

1 1 � + + + + +
2 + � + + + +
3 + + � + + +
4 + + + � + +
5 + + + + � +
6 + + + + + �
7 + + � � + +
8 + + + � � �

2 1 � + +
2 + � +
3 + + �

3 1 � + +
2 + � +
3 + + �

Table 2
Calculated exchange coupling constants for complexes 1, 2 and 3. All values in cm�1.

Complex Method J1 J2 J3 J4 J5 J6 J7 Exp.a

1b Ruiz �21.5 �36.2 �38.0 �0.07 �24.4 �35.7 �37.4 Ja = �35.3 Jb = �28.3 J0 = �0.6
Yamaguchi �25.8 �43.4 �45.4 -0.08 �29.2 �42.7 �44.8
Ising �25.8 �43.5 �45.6 -0.08 �29.3 �42.8 �44.9

LanL2DZ TZVP

J1 J2 J3 J1 J2 J3

2 Ruiz �32.7 �37.4 �32.8 �35.3 �38.3 �35.3
Yamaguchi �39.1 �44.7 �39.3 �42.3 �45.8 �42.3 Ja = �30.7 Jb = �25.5 or Ja = �27.0 Jb = �33.6
Ising �39.2 �44.8 �39.4 �42.4 �46.0 �42.4

3 Ruiz �36.5 �31.2 �35.4 �38.3 �33.7 �37.4
Yamaguchi �43.7 �38.2 �42.3 �45.9 �40.4 �44.7
Ising �43.8 �38.3 �42.5 �46.0 �40.5 �44.9

a From Ref. [25]
b All with LanL2DZ basis set.
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Further details about these methodologies can be found in Ref.
[28,19,21].

Additionally, we have also employed the BS-type spin unre-
stricted solutions after a corresponding orbital transformation
(COT) to visualize the interacting non-orthogonal magnetic orbitals
[29]. These orbitals do not have a well-defined orbital energy, for
this reason, orbital energies are not given explicitly but just their
overlapping magnitudes as well as the spin-coupling exchange
pathways.

3. Results and discussion

3.1. Trinuclear Fe3O complexes 2 and 3

The calculated J values for the Fe3O units in complexes 2 and 3
(Table 2) are in good agreement with the experimental ones [25].
As expected, two J values are essentially identical reproducing
the usual 2J behavior experimentally observed for this type of tri-
angular Fe3O cores with three high spin (S = 5/2) Fe(III) ions, and
ruled by the following HDvV Hamiltonian (Scheme 1):

Fe1 

Fe2

Ja Ja

Jb
Fe3

Scheme 1. Exchange coupling pattern in the triangular core Fe3O.
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Table 3
Crystallographic Fe-l3-O distances in the Fe3O cores studied.

Complex Distance/Åa

1 Fe2–O, Fe6–O 1.875
Fe1–O, Fe5–O 1.918
Fe3–O, Fe4–O 1.922

2 Fe1–O 1.895
Fe2–O 1.899
Fe3–O 1.914

3 Fe1–O 1.907
Fe2–O 1.909
Fe3–O 1.890

a From Ref. [25].

Fig. 3. (a) Magnetic orbitals arising from BS1 after a COT of complex 2 with their
corresponding overlaps (S). Left: alpha orbitals, right: beta orbitals. (b) Spin density
of BS1 of complex 2, clear and dark regions corresponds to positive and negative
spin densities.
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Fig. 2. vT vs. T plot for the complex [Fe3O(Piv)6(CH3OH)2dca].[Fe3O(Piv)6

(CH3OH)3]dca. (D) Experimental data (Ref. [25]); (- -) Ruiz method (LanL2DZ);
(. . .) Ruiz method (TZVP); (-�-) Yamaguchi method (LanL2DZ);(-��-) Yamaguchi
method (TZVP).
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Ĥ ¼ �2JaðŜ1 � Ŝ2 þ Ŝ1 � Ŝ3Þ � 2JbðŜ2 � Ŝ3Þ ð5Þ

In the case of complex 2, the lower obtained |J| value corre-
sponds to Ja, while in complex 3 it corresponds to Jb. This is com-
patible with experimental data as one short and two long Fe–O–
Fe pathways are observed for 2 while the inverse pattern applies
in the case of complex 3 (Table 3). It can be noticed that the use
of a bigger basis set as TZVP instead of the core effective potential
type LanL2DZ basis sets does not show an improvement in the final
calculated values. It appears also that Ruiz methodology gives the
more accurate results while the multi-spin Yamaguchi approach
does not represent an improvement with respect to the Ising
approximation. The J>/J< ratio is well reproduced with the three
methodologies, most noticeably in the case of the LanL2DZ basis
set, with values of 1.14/1.16, in comparison to the experimental
observed of J>/J< = 1.2. Hence, the S = 1/2 ground state experimen-
tally observed is also reproduced by the calculations. Calculated
vT versus T plots,1 as the 1:1 contribution from complex 2 and 3,
are shown in Fig. 2. It is stressed that an almost identical plot is ob-
tained when using averaged J values for both complexes and a factor
of two is applied to the vT plot. This seems to be the most appropri-
ate method as the former cannot be contrasted with experimental
values because of severe over-parameterization. From the magnetic
orbitals obtained after a COT, it can be observed that the exchange
interactions occurred mainly through the central oxo bridging li-
gand, with two strongly r-type overlapped magnetic orbitals, while
the remaining ones, exhibit a considerably lower overlap, mediated
by acetate ligands (Fig. 3). This characteristic is also found when ana-
lyzing the magnetic orbitals from the remaining BS states, but in
these cases with three oxo mediated strongly overlapped set
(S = 0.258, 0.243 and 0.153) instead of two. This difference between
two or three strongly overlapped magnetic orbitals observed,
depending on the spin topology of the BS state, reveals the existence
of two different strength exchange interactions within the Fe3O core,
which nicely agrees with the 2J model employed.

3.2. Fe3O-dca-Fe3O dimer complex 1 model

The main task in the calculation with the complex 1 model was
to evaluate its ability to reproduce the weak anti-ferromagnetic
coupling (of the order of 1 cm�1) between the Fe3O units along
the chain. Relying on the results obtained for the Fe3O isolated
complexes we used only the less computing demanding LanL2DZ
basis set, as the bigger TZVP basis set did not show a real improve-
ment in the calculated J values of the related complexes 2 and 3.
The calculated value around �0.1 cm�1 (Table 2) is far away in
terms of the relative error (% Rel. error = [|Jcalc � Jexp|]/[(|Jcalc

+ Jexp|)/2]) with respect to �0.6 cm�1, experimentally observed
[25] (extracted employing a mean-field approximation correction,
zJ0, z = 2), however, it should be considered quite reasonable as it is
in the limit of the computation precision. Noteworthy, direct

Fig. 4. (a) Magnetic orbitals of complex 1 arising from BS8 after a COT, with a non-negligible overlap trough the dca bridge. Left: alpha orbital, right: beta orbital. (b) Spin
density of BS8 of complex 1, clear and dark regions corresponds to positive and negative spin densities.
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Fig. 5. vT vs. T plot for the model complex 1. (D) Experimental data of the real
1D chain (Ref. [25]); (. . .) Ruiz method (LanL2DZ); (- -) Yamaguchi method
(LanL2DZ).

1 For details about calculation of simulated v values refer to Ref. [25].
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calculation of this J constant value from the BS8 energy,2 afforded a
positive value close to 1 cm�1, clearly contradicting the experimen-
tal result. Only if all the other, much stronger J values are included by
means of the remaining BS states, the right sign for this weak inter-
action is predicted. In spite of the ferromagnetic interaction obtained
by the direct calculation, inspection of the involved magnetic orbi-
tals after a COT shows that there is at least one small (S = 0.032)
but non-negligible overlap of r-nature between the Fe centers
through the dca bridge (Fig. 4) providing a path for the anti-ferro-
magnetic coupling. As in the case of the Fe3O complexes 2 and 3,
the calculated intra-Fe3O core exchange interactions constants are
in good agreement with the experimental values (Table 2). The al-
most identical values obtained for the pairs J1 � J5, J2 � J6 and
J3 � J7 with the additional matching between the two latter pairs
corroborates that the inclusion of the extra proton in our model sys-
tem does not modify substantially the observed exchange coupling
pattern in the real 1D complex. Concerning the method employed,
a more accurate value for the J1 � J5 pair is obtained with the Yam-
aguchi methodology, while for the remaining J pair values Ruiz
method appears more accurate. The bigger ratio J>/J<, due to an in-
creased asymmetry in the Fe–l3O bonds length (Table 3), in compar-
ison with the Fe3O complexes 2 and 3 is also well reproduced. When
the mean value between the calculated J constants in both Fe3O moi-
eties of complex 1 is considered, the S = 1/2 ground state of the
weakly coupled Fe3O cores in the 1D chain is correctly reproduced
with all methods and basis sets. The simulated vT versus T plots
are shown in Fig. 5.

4. Conclusions

We have employed a DFT broken-symmetry approach to calcu-
late the different exchange coupling constants in two basic carbox-
ylate iron complexes, [Fe3O(Piv)6(CH3OH)2dca] and
[Fe3O(Piv)6(CH3OH)3]+, respectively, as well as in a 1D chain of
dca linked Fe3O units of formula [Fe3O(Piv)6(H2O)1,5-l-dca]n. The
obtained values are in good agreement with experimental quanti-
ties and the weak anti-ferromagnetic exchange coupling constant
between Fe3O cores mediated by the dicyanamide ligand is reason-
ably well reproduced. Also the total ground state spin values are
well reproduced by the theory. In order to tackle the problem of
an infinite chain calculation we adopted a simplified model con-
sisting of only a pair of Fe3O units but preserving all the ingredients
of the repetitive unit in the polymeric structure including the over-
all neutral charge. The successful results obtained suggest that this

tool could be a promising methodology for calculating exchange
coupling constants in 1D infinite systems at a lower computational
cost.
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