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Abstract The objective of this work is to report the improve-
ments obtained in the discrimination of complex aroma sam-
ples with subtle differences in odor pattern, by the use of a fast
procedure suitable for the cases of measurements in the field
demanding decision-making in real time using a portable
electronic nose. This device consists of a sensor array which
records changes in conductivity as a function of time when
aroma molecules reach the sensors. The core of the method
consists of applying unfolded cluster analysis to selected time
windows (UCATW) within the temporal evolution of the
aroma profile recorded by the gas sensors, yielding an effi-
cient, fast, and reliable data analysis tool that is easy to
perform for electronic nose users. The performance of this
data handling was tested in two case studies of food adulter-
ation. The results demonstrated that this methodology enables
to discriminate highly similar samples, herewith reducing the
probability of achieving a wrong grouping due to the use of
flawed data. The automation of this type of analysis is simple
and improves the efficiency of the device significantly, here-
with reducing the time of sensor’s signal recording that is
necessary for a reliable assessment of the studied system.
The results were validated by clustering the sample compo-
nent scores that are obtained by applying parallel factor anal-
ysis (PARAFAC) to the original three-dimensional data array.
An additional validation was obtained by means of a leave-
one-out resampling procedure.

Keywords Food quality assessment . Unfolded cluster
analysis . Time-window selection . Electronic nose . Aroma
discrimination

Introduction

The use of gas sensor arrays, known as electronic noses (ENs),
has been steadily increasing since the 1990s. In the last de-
cade, their efficiency has been significantly improved because
important developments took place in the area of data han-
dling and multivariate data analysis methods. Promoted by the
advances in sensor technology, the use of ENs, both in the
market research and development, has risen in fields such as
food and pharmaceutics technology, process engineering, and
medicine, in which noninvasive and nondestructive data han-
dling techniques are necessary for the analysis of complex
systems (Mahmoudi 2009; Peris and Escuder-Gilabert 2009;
Pennazza et al. 2013; Versari et al. 2013). ENs also offer a
particularly valuable feature that is being increasingly
exploited: Its size, shape, and complexity can be tailored for
specific applications, being one of them is the design of
portable miniaturized devices. In many cases, companies
and safety control offices are interested in verifying the quality
consistency or the proper preservation of different batches of a
product.When the differences between samples’ odor patterns
are expected to be very subtle, it is advantageous to run the
measurements in real time, since formerly stored databases
can yield inconsistent results due to sensor drifts. Thus, the
availability of a user-friendly and reliable methodology of
data mining is of critical importance. For instance, in the
import-export commerce, controls must be applied by means
of real-time monitoring procedures. To this end, a portable EN
can be used to control the quality of the shipments, with the
additional demand of performing a fast screening to detect any
possible spoilage or adulteration as quickly as possible. This
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challenging task requires minimal operation time with only a
limited number of samples to be examined and compared,
herewith asking the operator to optimize data acquisition and
analysis in order to obtain successful results.

The literature describes several different methods of pattern
recognition for analyzing the data recorded with ENs (Skov
and Bro 2005; Scott et al. 2006; Wang et al. 2009; Fu et al.
2012), but none of them focus on the needs and requirements
arising from having to quickly detect a change in aroma
pattern with only a few samples. Therefore, we present in this
paper a new procedure of data analysis that relies on unfolding
the “sample by sensor by time” three-way EN data together
with selecting appropriate time windows within the registered
sensors curves. To perform the analysis, a well-known unsu-
pervised clustering algorithm such as k-means cluster analysis
is used. The whole procedure will be abbreviated by the
acronym UCATW. Its usefulness was evaluated by applying
UCATW to two case studies that were selected to demonstrate
the efficacy of UCATW for detecting subtle changes in aroma
patterns: the adulteration of green coffee beans and cayenne
pure samples, which in both cases is caused by incorporating a
small percentage of another variety of coffee or spice,
respectively.

In order to validate the new approach, a subsequent parallel
factor analysis (PARAFAC) was performed, using the impor-
tant time windows as identified by UCATW. PARAFAC is a
data analysis technique which was used in previous EN stud-
ies (Skov and Bro 2005; Calderisi et al. 2006; Padilla et al.
2006; Chu and Ghahramani 2009); the aim of the validation is
to compare the UCATW and PARAFAC results with respect
to discriminating the different types of samples. In addition,
the results of both methodologies were further validated by a
leave-one-out resampling (LOOR) method, in order to con-
firm the effectiveness of the methodology and the reliability of
the results.

Materials and Methods

Materials and Devices

Materials

For the coffee analysis, two green coffee bean varieties were
chosen, which were kindly provided by Sibarita S.A.
(Argentina): (1) Tristao Curitiva Parana and (2) Tristao
Curitiva Bourbon. For the spices, cayenne and bell pepper
powders were provided by Katerine S.R.L. (Argentina). Pure
air (quality 4.7) was used as a baseline and for cleaning the
sensors’ compartment in between measurements. Headspace
crimp caps with PTFE/silicone septa were provided by
Agilent Technologies.

Devices

The EN prototypes that were used in our study were described
in detail in previous works (Monge et al. 2004; Lovino et al.
2005; Rodríguez et al. 2010); to illustrate, a basic diagram is
presented in Fig. 1a. During the measurements, the headspace
aroma of the samples under study remains in the sensor’s
chamber for someminutes in order to allow the sensor’s signal
to evolve over time; this is shown in Fig. 1b, in which, for a
representative sample, a plot of a typical sensor response (i.e.,
conductance) over time is presented. Before and after each
measurement, the sensor’s chamber was swept with pure air
until a constant and repeatable baseline was achieved. For
each sample, each 5 s, the raw sensor readings were collected
and used as the input data for the analysis.

Methods

Acquisition of Data with Portable EN: Two Case Studies

Adulteration of a pure variety of green coffee beans Six grams
of each sample were placed in chromatography vials sealed
with crimp caps and polytetrafluoroethylene (PTFE)/silicone
septa, and the odor was aspirated from the sample’s headspace
by a minipump (miniature diaphragm, Thomas Inc.), bringing
the odor to a sensor chamber equipped with six conductimet-
ric sensors. Three types of samples were studied. The first two
types pertain to different varieties of green coffee beans:
Tristao Curitiba Parana and Tristao Curitiba Bourbon, which
will be denoted by C1 and C2, respectively. The third type is a
mixture composed of 90 % of C1 and 10 % of C2 and will
therefore be denoted by C1-2.

Adulteration of pure cayenne with bell pepper powder About
0.1 g of each sample were placed in the sensor chamber of an
EN device, which was especially designed for analyzing
powders, with seven sensors. Cayenne samples will be denot-
ed by S1, bell pepper samples by S2, and the mixture com-
posed of 80% of S1 and 20% of S2 by S1-2. Note that, because
cayenne spice has a much stronger odor than coffee beans,
much smaller amounts of cayenne spice need to be used to get
detected by the sensors.

Data Dimension and Data Handling

Data The obtained raw data matrix with the recorded sensor’s
signals over time is three-dimensional: X (sample × sensor ×
time). In order to apply the UCATW methodology, we first
unfolded the three-way matrix X into a two-way I×JKmatrix
Xunfold by concatenating the different (time) slices of X hori-
zontally. Next, a k-means cluster analysis (MacQueen 1967;
Kiers 2000) was applied to Xunfold.
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Identifying the appropriate time window The goal of this
study is to show that when an appropriate time window is
selected, performing a k-means analysis on Xunfold allows for
a perfect separation of the different types of samples (also in
the presence of adulterated samples). To determine the optimal
time interval, we will try different time windows, which
implies that only parts of Xunfold are used and perform
unfolded-CA on each time window (i.e., on the selected part
of Xunfold).

Validation of the UCATW methodology We will validate the
UCATWmethod in two different ways. The first way consists
of applying three-way methods. In particular, we will perform
a PARAFAC analysis with Q components to the three-way
data matrix X. Next, the sample scores on the Q components
are subjected to a k-means analysis. This two-step procedure
will be denoted by the acronym PARAFAC-CA. The second
way to validate the UCATW method is to demonstrate its
stability by performing a LOOR method. In this method, each
sample in turn is excluded from the data set, and the UCATW
procedure is applied to the reduced data. Next, for each
(reduced) data set, the correctness of the resulting clustering
is evaluated.

Results and Discussion

We seek a methodology to shorten the time spent for discrim-
inating samples in field measurements, i.e., in those cases in

which there is no possibility of measuring many replicates and
build a database. Thus, with a minimal number of measure-
ments, the EN user should be able to take a decision. To test
this task in such a demanding situation, we have designed two
case studies, choosing two products of great importance in
international trade: (1) green coffee beans (characterized by a
very soft aroma) and (2) cayenne, which is a very expensive
and appreciated spice.

First Case Study: Adulteration of Green Coffee Bean Samples

In order to study the influence of the selected time window on
sample’s discrimination, we systematically seek for the opti-
mal time window which allows for a correct discrimination of
the three types of samples. To this end, first, the number of
selected time points in the unfolded matrices was increased,
starting from the last point of the measurements (i.e., 1,320 s)
and progressively increasing the time window toward the
beginning of the measurements. In particular, different Xi

were constructed by, starting with only the last time point,
each time adding one more period of 5 s (i.e., 1,320, 1,320–
1,315, 1,320–1,310,…, 1,320–0). Each matrix Xi is unfolded
to a two-way matrix Xi

unfold. Note that both Xi and the two-
way matrix Xi

unfold contain information regarding the same
time window. Next, the two-wayXi

unfoldmatrix was analyzed
by k-means analysis with three clusters (i.e., there are two pure
and one adulterated sample types). To validate the UCATW
results on each three-way Xi matrix, a PARAFAC analysis
with one component was performed. Note that the sensor data
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Fig. 1 a Diagram of the main
modules of an electronic nose.
The components/aspects of the
technique which influence the
data acquisition, type of data, and
the associated data analysis are
framed with blue dotted lines. b
Evolution over time of a typical
response of a sensor for an
electronic nose device using the
steady-state sampling
methodology. ΔC represents the
change in conductance of the
sensor when detecting odors
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(and this for all considered time windows) adequately could be
modeled with PARAFAC as more than 90 % of the variance in
the data is explained by a PARAFAC model with a single
component. Next, the obtained sample component scores were
clustered by means of a k-means analysis with three clusters.
Finally, for each obtained clustering (i.e., based on the
PARAFAC sample component scores or on Xi

unfold), the cor-
responding average silhouette width (ASW) value, which indi-
cates how well the different groups/clusters are separated from
each other, was computed (Rousseeuw 1987). The AWS varies
between 0 and 1, the larger ASW the better the split.

In Fig. 2, for the different considered time intervals
(starting with the last time point and each time increasing the
time period with 5 s), the obtained results for UCATW (solid
black line) and PARAFAC-CA (dashed blue line) are present-
ed when performing a K-means analysis with three clusters.
Note that, for the sake of clarity, only a few time intervals are
marked in the figure, and the number between parentheses
indicates the number of time points the time interval in ques-
tion consists of. For example, when using the information
from the time period 1,225–1,320 s and sampling each 5 s,
20 time points are being selected for each sensor for each
sample, yielding a three-way matrix Xi with I=7, J=6, and
K=20. When this matrix is unfolded, a two-way matrix
Xunfold results with I=7 and JK=120.

The results for the UCATWanalysis (solid black line) show
that the ASWvalue, which represents the goodness of grouping,
starting at 0.82 when only the last time point is used, increases
when the time window becomes wider (i.e., more earlier time
points are included in the analysis) until a maximum of almost
0.88 for the time interval 1,320–825. This suggests that increas-
ing the time window starting from the last time point leads to a

better discrimination of the samples. However, when more
(earlier) time points are included (e.g., 1,320–625, 1,320–375),
the ASW steadily decreases until a final value of 0.86 for the
case where all time points are included in the analysis. Although
the grouping of the samples is correct for every time interval and
that all the obtained ASW values are good (considering that the
best possible ASW value is 1), the ASW decreases when early
time points of the sensor curves (below 800 s) are included. This
suggests that, at the beginning of the measurements, the sensor
signals contain information that does not help to discriminate the
three different sample types from each other.

For the procedure that combines PARAFAC with k-means,
the resulting ASW (blue dashed line) yields a very similar
pattern than the UCATW methodology. Note that for the last
time intervals (at the end of the measurements), the pattern of
ASW values for both strategies differs a bit. A possible reason
for this may be that the clustering for these time intervals is
based on a low amount of data points, implying random
sample fluctuations determining the result to a larger extent.

The negative influence of incorporating earlier time points
in the time windows introduces a debate about which would
be the optimal time window of the sensor readings to be used
for data analysis. To explore this, exactly the same analysis
was performed but now starting to build theXunfold and theXi

matrices from the initial time point (i.e., the fifth second) and
each time adding 40 time points (i.e., 200 s).

The results are shown in Table 1, in which the considered
time intervals (expressed in seconds) are presented, along with
the number of time points for the intervals under the study, the
associated ASW values, and whether or not a correct grouping
of the samples was obtained, which is the true indicator for the
goodness of the cluster analysis.

Regarding the UCATW strategy, one can see in Table 1 that
the first three time intervals yield fluctuating ASW values and,
much more important, a wrong grouping of the samples. A
correct grouping of the samples is for the first time found for
the intervals 0–800 and 0–1,000. Because the interval 0–600
resulted in an incorrect grouping of the samples, it was decid-
ed to also consider other time intervals within the curve (see
next rows in Table 1). From this analysis, it appears that the
interval 600–800 is the first interval which, with only 41 time
points, yields a good ASW value and a correct grouping of the
samples. It is clear that the immediately preceding interval
(i.e., 400–600 s), although having the same number of time
points, does not yield a correct clustering of the samples.
Moreover, also the intervals 200–400, 200–600, and 400–
600 caused a wrong grouping, whereas the interval 200–800
gave a correct grouping, which is probably due to the fact that
the interval 600–800 is included in the interval 200–800.
Among the intervals starting at 600 s or later, different inter-
vals are encountered that have the same (or a larger) number of
data points and that also yield a correct clustering of the
samples into the three underlying sample types. The highest

Fig. 2 ASW values for the clustering of coffee samples with three
clusters obtained by (1) UCATW (solid black curve) and (2)
PARAFAC-CA (dashed blue curve) analysis, when only using selected
time intervals, which are obtained by starting from the last time point and
extending the time window each time with 5 s. The number of time points
the time period in question consists of is indicated between parentheses
(Color figure online)
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ASW value (i.e., 0.89) with a minimal number of data points
(i.e., 41) is obtained for the interval 800–1,000 s.

The validation of the UCATW results by using PARAFAC-
CA yielded remarkably similar results, supporting the two-
step strategy. In particular, the interval 800–1,000 s was the
best time window with the same ASW value and a minimal
number of data points, supporting the findings obtained by
using UCATW. The only difference was the result obtained
for the time interval 200–800 s in which no correct grouping
of the samples was encountered. The reason for this may be
that the clustering is based on the sample component scores
instead of the raw (unfolded) data, with the latter containing
more information regarding the clustering than the former.
Moreover, the components are chosen in such a way that they
explain asmuch variance as possible in the data and, therefore,
may not retrieve the most important information regarding the
clustering of the samples (Vichi and Kiers 2001; Wedge et al.
2009; Timmerman et al. 2010).

Second Case Study: Adulteration of Cayenne Samples

A second case of sample adulteration was studied by carrying
out an analogous procedure with samples of pure cayenne,

with bell pepper being the spice acting as the adulterant. In
Fig. 3, one can see that for the cayenne samples, a steady
decrease of the ASW is obtained byUCATW (solid black line)
when increasing the time window from the last time point
through the beginning of the measurements. However, a short
time interval with steady ASW values is found at later time
points (i.e., 620–720 s). Note that the total measurement time
(i.e., 12 min) for the cayenne samples is smaller than for the
coffee samples (i.e., 22 min), which is probably due to the
stronger aroma that is released by the spices, resulting in a
faster increase in the sensor signals than for the green coffee
beans. The strong aroma of the spices is probably also the
reason why a good discrimination of the samples is achieved
at earlier time points (when starting from the initial time
points). In particular, the results indicate that above 200 s,
the discrimination is always correct, with very good ASW
values (i.e., above 0.90) and with only a few data points being
used (Table 2).

Also, in this second case study, the validation of the meth-
odology with PARAFAC-CA yielded a similar pattern,
supporting the obtained UCATW results. PARAFAC-CA
analysis using one component displays slight deviations when
few data points are included in the analysis, although the
ASW remains high and the grouping of the samples is always
correct, like in the first case study (coffee samples). In Table 2,
the results for PARAFAC-CA of the selected time intervals are
in line with those obtained with UCATW. The only exception
is the 0–300-s interval, which shows a wrong clustering of the
samples when using PARAFAC-CA. Note that a similar case
is observed for the interval 200–800 for the coffee samples
(see Table 2 and the “First Case Study: Adulteration of Green
Coffee Bean Samples” section).

Table 1 Average silhouette width (ASW) value and whether or not the
resulting grouping of the coffee samples in three clusters is perfect for
selected time intervals

Time
window

Type of analysis

UCATW PARAFAC-CA

Initial-final
time (s)

Number of
data points

ASW Correct
grouping

ASW Correct
grouping

0–200 41 0.85 No 0.92 No

0–400 81 0.75 No 0.76 No

0–600 121 0.79 No 0.80 No

0–800 161 0.81 Yes 0.81 Yes

0–1,000 201 0.85 Yes 0.84 Yes

200–400 41 0.81 No 0.83 No

200–600 81 0.81 No 0.83 No

200–800 121 0.81 Yes 0.81 No

200–1,000 161 0.85 Yes 0.84 Yes

400–600 41 0.80 No 0.82 No

600–800 41 0.83 Yes 0.83 Yes

600–1,000 81 0.87 Yes 0.86 Yes

800–1,000 41 0.89 Yes 0.89 Yes

800–1,200 81 0.89 Yes 0.88 Yes

800–1,320 105 0.88 Yes 0.87 Yes

The grouping of the samples is obtained by means of UCATW or
PARAFAC-CA, when only considering the time points for the time
intervals under study

UCATW unfolded cluster analysis to selected time windows, PARAFAC-
CA parallel factor analysis and cluster analysis

Time (seconds)
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Fig. 3 ASWvalues for the clustering of spice samples with three clusters
obtained by (1) UCATW (solid black curve) and (2) PARAFAC-CA
(dashed blue curve) analysis, when only using selected time intervals,
which are obtained by starting from the last time point and extending the
time window each time with 5 s. The number of time points the time
period in question consists of is indicated between parentheses (Color
figure online)
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Validation Process by LOOR

In order to add a second test of validation for the UCATW
methodology, a LOOR procedure was carried out for both
data sets (i.e., coffee and spice) for the selected time intervals
listed in Tables 3 and 4. LOOR was also applied when using
PARAFAC-CA using the same time windows (see Tables 3
and 4).

Table 3 shows the results for the validation process of the
coffee samples for both methods. In the case of UCATW, the
ASW values were greater than 0.75 in all the time intervals
used (i.e., 0–1,320, 800–1,320, 800–1,200, 800–1,000, 600–
1,000, and 600–800 s). Note that the time interval of 600–
800 s has two cases which resulted in a wrong assignment of
the samples (i.e., when removing C1a and removing C1b), and
this is both for UCATWand PARAFAC-CA. In particular, one
adulterated sample was wrongly assigned to one of the pure
sample types, suggesting that for this time window, using only
one control sample distorts the results.

In Table 4, in which the results for the spice data set are
displayed, the ASW values are always higher than 0.92 in the
time windows used (i.e., 0–720, 300–720, 450–500, 400–500,
400–450, and 300–500 s), with a correct assignment of the
samples in all cases.

Comparison of the Results Achieved in the Two Case Studies

The two case studies were selected because they involve the
difficult task of discriminating pure and (slightly) adulterated
samples based on their patterns of sensor signals only. Despite

Table 2 Average silhouette width (ASW) value and whether or not the
resulting grouping of the spice samples in three clusters is perfect for
selected time intervals

Time window Type of analysis

UCATW PARAFAC-CA

Initial-final
time (s)

Number of
data points

ASW Correct
grouping

ASW Correct
grouping

0–150 31 0.77 No 0.12 No

0–200 41 0.80 No 0.00 No

0–250 51 0.81 No −0.02 No

0–300 61 0.82 Yes 0.11 No

0–500 101 0.89 Yes 0.80 Yes

50–100 11 0.80 No 0.13 No

50–150 21 0.83 No −0.01 No

100–200 21 0.85 No 0.21 No

200–300 21 0.90 Yes 0.90 Yes

300–400 21 0.93 Yes 0.95 Yes

350–400 11 0.93 Yes 0.96 Yes

300–500 41 0.94 Yes 0.96 Yes

400–450 11 0.94 Yes 0.96 Yes

400–500 21 0.94 Yes 0.96 Yes

450–500 11 0.95 Yes 0.97 Yes

300–720 65 0.95 Yes 0.97 Yes

The grouping of the samples is obtained by means of UCATW or
PARAFAC-CA, when only considering the time points for the time
intervals under study

UCATW unfolded cluster analysis to selected time windows, PARAFAC-
CA parallel factor analysis and cluster analysis

Table 3 Recovered average silhouette width (ASW) values for leave-one-out resampling procedure for selected time windows for the UCATW and
PARAFAC-CA methods for the coffee samples’ data set

Method Time window ASW removing selected samples Correct grouping
(for all the cases)

Initial-final time (s) C1a C1b C2a C2b C1-2a C1-2b C1-2c

UCATW 0–1,320 0.84 0.84 0.84 0.84 0.89 0.98 0.79 Yes

800–1,320 0.85 0.86 0.86 0.86 0.91 0.90 0.82 Yes

800–1,200 0.87 0.87 0.87 0.87 0.92 0.98 0.83 Yes

800–1,000 0.87 0.87 0.87 0.87 0.92 0.98 0.83 Yes

600–1,000 0.84 0.85 0.85 0.85 0.90 0.98 0.80 Yes

600–800 0.75 0.75 0.80 0.80 0.86 0.98 0.75 Noa

PARAFAC-CA 0–1,320 0.84 0.75 0.83 0.83 0.88 0.99 0.78 Yes

800–1,320 0.85 0.84 0.85 0.85 0.90 0.98 0.80 Yes

800–1,200 0.86 0.86 0.86 0.86 0.91 0.99 0.82 Yes

800–1,000 0.87 0.87 0.87 0.87 0.92 0.99 0.83 Yes

600–1,000 0.85 0.83 0.84 0.84 0.89 0.99 0.80 Yes

600–800 0.75 0.78 0.80 0.80 0.86 0.99 0.76 Noa

UCATW unfolded cluster analysis to selected time windows, PARAFAC-CA parallel factor analysis and cluster analysis
a One C1-2 sample was clustered together with the single C1 pure sample
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this challenge, in both cases, discrimination of the samples
using UCATW was highly successful, showing the effective-
ness of the adopted method. In addition, the validation using
PARAFAC-CA and the LOOR procedure supported these
results.

Moreover, the UCATW analysis with varying time win-
dows demonstrated some peculiarities of cayenne and coffee
beans which pertain to the different nature of their aroma
patterns. First, for the cayenne case (see Fig. 3), as compared
to the coffee samples, no initial increase in the ASW value is
observed when increasing the number of data points, starting
from the last time point (see Fig. 2) until the time interval
1,320–825 s. It seems that the positive effect of including
more data points into the analysis is counteracted by the
negative influence of the sensor’s data features at early time
points, which is detected with high sensitivity by UCATW. In
contrast, PARAFAC-CA appears not to be sensitive to the
information given by the earlier time points, at least not until
times shorter than 320 s are included in the analysis.

Additional Results

The application of the UCATWmethodology to different time
regions within the aroma recordings provided additional rele-
vant information for the EN user. Watching the sensor curve
shapes in Fig. 4 and the results depicted in Tables 1 and 2, it is
evident that a correct grouping with good ASW values can be
obtained when using data later than 3 min after the start of the
measurements, even when some signals have not yet reached
their plateau. This is highlighted in Fig. 4 in which the evolu-
tion of the response over time for each sensor is displayed,

which allows a visual inspection of the different timewindows
under study. The areas above 600 s (coffee) and 200 s (spices)
are shadowed to indicate the time region for which the anal-
ysis always retrieved the true clustering. The corresponding
data are also shadowed in Tables 1 and 2.

Two comments can be outlined relating to previous work.
First, our results show a different perspective than the ones
reported by Wedge et al. (2009), in which it is stated that
sensor readings should be considered for data analysis only
when the sensors reached their equilibrium state (i.e., the
plateau region). A practical consequence of our results is a
significant reduction of the measurement time needed, which,
in field applications, constitutes one important limiting factor
in the analysis.

Second, the results confirm that the very first region, in
which there is a steep increase in the response of the sensor
signals, introduces some uncertainty which may impair data
analysis and clustering. This observation is in line with
Vilanova et al. (1996), in which it is mentioned that the first
minutes of the sensor readings are unsuitable for data analysis,
probably due to the inhomogeneity of the gas in the sensor
chamber.

Conclusions

This work demonstrated that the new UCATWmethod is able
to rapidly detect subtle differences between samples using
only the data contained in a selected time window taken from
the sensor curves using the k-means clustering algorithm,
which is available and easy to handle for most users. In

Table 4 Recovered average silhouette width (ASW) values for leave-one-out resampling procedure for selected time window for the UCATW and
PARAFAC-CA methods in the case study of spice samples’ data set

Method Time window ASW removing selected samples Correct grouping
(for all the cases)

Initial-final time (s) S1a S1b S1-2a S1-2b S2a S2b

UCATW 0–720 0.94 0.94 0.94 0.95 0.93 0.92 Yes

300–720 0.97 0.97 0.95 0.96 0.95 0.94 Yes

450–500 0.97 0.97 0.95 0.96 0.95 0.94 Yes

400–500 0.96 0.97 0.95 0.96 0.94 0.94 Yes

400–450 0.96 0.96 0.95 0.96 0.94 0.94 Yes

300–500 0.96 0.96 0.95 0.96 0.94 0.93 Yes

PARAFAC-CA 0–720 0.95 0.95 0.92 0.93 0.95 0.95 Yes

300–720 0.99 0.99 0.96 0.96 0.96 0.97 Yes

450–500 0.99 0.99 0.96 0.96 0.96 0.97 Yes

400–500 0.99 0.99 0.96 0.96 0.96 0.97 Yes

400–450 0.99 0.99 0.96 0.96 0.96 0.97 Yes

300–500 0.99 0.99 0.96 0.96 0.96 0.97 Yes

UCATW unfolded cluster analysis to selected time windows, PARAFAC-CA parallel factor analysis and cluster analysis
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addition, two remarkable features were found which help in
improving the performance of the data analysis when using
ENs. First, UCATW demonstrated that it is not necessary to
wait until the sensor signals reach their plateau, which is an
advantageous feature when fast measurements are needed.
Second, by using the UCATW method, it was clear that the
very first minutes of the measurements are not reliable enough
to be included in the data analysis because they may cause
erroneous groupings.

In summary, this work presents an alternative for the data
analysis associated with ENs, putting the emphasis on the use
of unsupervised methods, and enabling the implementation of
fast and real-time measurements with a portable EN in field
applications that requires an immediate response.
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