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Abstract This paper studies the strategic foundation of the Representative Voter
Theorem (Rothstein in: Pub Choice 72:193–212, 1991), also called the “second
version” of the Median Voter Theorem. As a by-product, it also considers the exis-
tence of strategy-proof social choice functions over the domain of single-cross-
ing preferences. The main result shows that single-crossing constitutes a domain
restriction over the real line that allows not only majority voting equilibria, but
also non-manipulable choice rules. In particular, this is true for the median rule,
which is found to be group strategic-proof over the full set of alternatives and over
every nonempty subset. In addition, the paper also examines the relation between
single-crossing and order-restriction. And it uses this relation together with the
strategy-proofness of the median rule to prove that the outcome predicted by the
Representative Voter Theorem can be implemented in dominant strategies through
a simple mechanism. This mechanism is a two-stage voting procedure in which,
first, individuals select a representative among themselves, and then the winner
chooses a policy to be implemented by the planner.

1 Introduction

In the last 25 years, single-crossing has become a “popular” feature of preferences
within the field of Political Economy.1 From the seminal works of Roberts (1977)
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and Grandmont (1978) and, more recently, due to the theoretical contributions of
Rothstein (1990, 1991), Gans and Smart (1996), and Austen-Smith and Banks
(1999), it is now well known that this domain restriction is sufficient to guarantee
the existence of equilibria in one-dimensional models of majority voting, especially
in situations where single-peakedness does not hold.

This restriction is not only technically convenient, but it also makes sense in
many political settings. In few words, the single-crossing property used in the con-
text of voting, which is similar to that used in the principal-agent literature, says
that, given any two policies, one of them more to the right than the other, the more
rightist an individual is (with respect to another individual) the more he will “tend
to prefer” the right-wing policy over the left-wing one.2

Thus, unlike single-peakedness, single-crossing is a restriction across individ-
ual preferences, on the character of the voters’ heterogeneity, rather than on the
shape of individual preferences. The main idea behind it is that, in many circum-
stances, ordering people according to a single parameter (like income, productiv-
ity, intertemporal preferences, ideological position, etc.) may be more natural than
ordering alternatives. This condition projects the conflict of interests among indi-
viduals over a one-dimensional space, and then the type of each agent is located
along this left–right scale in such a way that, for any pair of alternatives, the set of
types preferring one of the alternatives all lie to one side of those who prefer the
other.

It turns out that single-crossing not only guarantees the existence of majority
voting equilibria but also provides a simple characterization of the core of the
majority rule. In effect, under this condition the core is simply the ideal point of
the median type agent, where the latter is defined over the ordering of individual
types for which the preference profile is single-crossing.3 This result is sometimes
referred to in the literature as the Representative Voter Theorem (Rothstein 1991)
(henceforth RVT) or, alternatively, as “the second version” of the Median Voter
Theorem (Myerson 1996; Gans and Smart 1996).

The main problem is that, unlike the original Median Voter Theorem over sin-
gle-peaked preferences, whose noncooperative foundation was provided by Black
(1948), first, and then by Moulin (1980), the RVT is based on the assumption that
individuals honestly reveal their preferences. That is, it is derived assuming sincere
voting. Clearly, this assumption is difficult to maintain in applications that focus
on policy choices made in strategic frameworks. Hence, a natural question arises
with respect to its applicability in those models.

This paper studies the strategic foundation of the RVT. As a by-product, it also
considers the existence of nontrivial strategy-proof social choice functions on the
domain of single-crossing preferences. There are several reasons that justify car-
rying out this analysis. But the first and more important one is that, even though
single-crossing is now largely used in models of collective decision-making, noth-
ing has been said in the literature about the possibility of manipulation over this
domain. In particular, the “single-crossing version” of the Median Voter Theorem
is used without caring much about its strategic foundation. So, one of the main
purposes here is filling out this gap.

2 The formal definition is given in Sect 2, Definition 2.
3 In contrast, under single-peaked preferences, the core of the majority rule is given by the

median ideal point over the ordering of alternatives with respect to which the profile is single
peaked.
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In addition, the study is also motivated by a more technical fact, though not
less important. Single-crossing assumes the existence of a specific kind of cor-
relation or interdependence among individual preferences. As a result, the set of
single-crossing preference profiles, i.e., the domain of the social choice function,
cannot be expressed as a product set. However, this contrasts with much of the
work on strategy-proofness, which usually focuses on social choice rules defined
over Cartesian preference domains.4

The main result of the paper is that single-crossing constitutes a domain restric-
tion over the real line that allows not only majority voting equilibria, but also non-
manipulable choice rules. In particular, this is true for the median rule, which is
found to be strategy-proof and group strategic-proof over the full set of alternatives
and over every nonempty subset.

In addition, the paper also analyzes the relation between single-crossing and
order-restriction (Rothstein 1990, 1991). And it extends the former, by introducing
the domain of broad single-crossing preferences, to make both concepts equiva-
lent. Finally, it uses this relation together with the strategy-proofness of the median
choice rule to prove that the outcome predicted by the RVT can be implemented in
dominant strategies. This is carried out through a simple mechanism, in which first
individuals select a representative among themselves, and then the winner chooses
a policy to be implemented by the planner.

The paper is organized as follows. Section 2 presents the model, the nota-
tion, and definitions. Section 3 exhibits the equivalence between single-crossing
and order-restriction for preferences indexed by the types of the agents. Section
4 presents the nonstrategic version of the RVT. Results related to strategy-proof-
ness are discussed in Sect 5. Section 6 provides the indirect implementation of
the median rule and the game-theoretic counterpart of the RVT. Final remarks are
made in Sect 7.

2 Preliminaries

Consider a society with a finite number of agents, represented by the elements of
the set I = {1, . . . , n}, where |I | = n is odd and n > 2. These agents face a
collective choice problem, which consists in choosing an alternative (for example,
the level of a public good) from a finite subset of the real line. They make this
choice by voting.

The set of all possible outcomes is X = {x1, . . . , xl}, |X | > 2, where X is
a finite subset of the non-negative real line �+. The set of feasible alternatives
may be either the entire X or just one of its nonempty subsets. We denote X̃ a
generic subset of X and A(X) = {X̃ : X̃ ∈ 2X\∅}. In words, X is the universal
set of outcomes, whereas a particular situation, or agenda, involves a X̃ ∈ A(X).
Following the standard notation, for a vector (x1, . . . , xn) ∈ �n+, we let x−i =
(x1, . . . , xi−1, xi+1, . . . , xn) and (x̂i , x−i ) = (x1, . . . , xi−1, x̂i , xi+1, . . . , xn),
where x̂i ∈ �+. In addition, for any group of agents S ⊆ I , we denote (xS, xS̄) =
((xi )i∈S, (x j ) j∈S̄), where S̄ = I\S.

4 An exception is Campbell and Kelly (2003a,b), who characterize the family of strategy-proof
social choice rules on the domain where a Condorcet winner always exists.
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Let P(X) be the set of all complete, transitive, and antisymmetric binary order-
ings of X . We say P(X) is the universal domain of individual preferences.5 We
assume agent i’s preferences over X are completely characterized by a single
parameter θi ∈ � ⊂ �. As usual, we interpret θi as being agent i’s type. That is,
we assume there exists a function � : � → P(X) that assigns a unique binary
relation �(θ) ∈ P(X) to each type θ ∈ �. Then, we say that �i represents the
preferences of an agent i of type θi if,

∀x, y ∈ X, x �i y ⇔ x �(θi ) y.

The following example, taken from Persson and Tabellini (2000), illustrates
how these preferences can arise naturally in political-economic models:

Example 1 Consider the following simplified version of the redistributive distor-
tionary taxation model of Roberts (1977). Suppose individual i ∈ I has prefer-
ences u(ci , li ) = ci +v(li ), where ci denotes individual consumption, li leisure and
vl > 0 and vll ≤ 0.6 The individual’s budget constraint is ci ≤ (1−t)hi + f , where
t ∈ (0, 1) is an income tax rate, f ∈ �+ a lump-sum transfer and hi the individual
labor supply. The real wage is exogenous and normalized at unity. Individuals are
heterogenous in a productivity parameter θi ∈ � ⊂ �, which is distributed in
the population with mean θ̄ . Given these different productivities, each individual i
faces an “effective” time constraint 1 − θi ≥ li + hi . Finally, the government runs
a balanced budget, so that n f ≤ t

∑
i∈I hi .

Solving the model and substituting the solution into the individual utility func-
tion, the induced preferences of i over different tax rates can be expressed as
wi (t) = h(t)+v[1−h(t)− θ̄]− (1− t)(θi − θ̄ ), where h(t) = 1− θ̄ −v−1

l (1− t)
is the average labor supply. Thus, for each individual i ∈ I , wi (t) is completely
determined by θi .

Given a preference �i , we define agent i’s preferences over the agenda X̃ ∈
A(X), noted �̃i , as follows: ∀x, y ∈ X̃ , x �̃i y if and only if x �i y. The maximal
set associated with the pair (X̃ , �̃i ) is M(X̃ , �̃i ) = {x ∈ X̃: ∀ y ∈ X̃\{x}, x �̃i y}.
Notice that since preferences are strict, maximal sets are singletons. That is,
M(X̃ , �̃i ) = {τ(�̃i )}, where τ(�̃i ) is agent i’s most preferred alternative in X̃
according to his preference relation �̃i .

A preference profile on X̃ ∈ A(X), associated to a profile of types θ =
(θ1, . . . , θn) ∈ �n , is an n-tuple (�̃1, . . . , �̃n) = (�̃(θ1), . . . , �̃(θn)) in P(X̃)n ,
where �̃ represents the restriction of � over X̃ . We assume each agent observes
θ , so there is complete information among agents about their preferences over
X̃ . Extending our earlier conventions to preference profiles, we have that �̃−i =
(�̃1, . . . , �̃i−1, �̃i+1, . . . , �̃n). Similarly, the profile obtained by changing agent
i’s preferences for �̂i ∈ P(X̃) is (�̂i , �̃−i )= (�̃1, . . . , �̃i−1, �̂i , �̃i+1, . . . , �̃n).
And, for any group of agents S ⊆ I , (�̃S, �̃S̄) = ((�̃i )i∈S, (�̃ j ) j∈S̄). Finally,

5 Indifference between alternatives is not allowed. This is a quite common assumption when
the set of alternatives is finite. In this paper, it is also adopted to simplify the proofs of our main
results.

6 As usual, vl and vll denote, respectively, the first and the second derivate of the function
v(li ).
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given a profile �̃ = (�̃1, . . . , �̃n) ∈ P(X̃)n , we denote �I (�̃) = {θ ∈ �: ∃ i ∈
I such that �̃i = �̃(θ)} the set of actual types.

These preferences can be aggregated. The input for this aggregation process
is the set of individuals’ declarations. These declarations are intended to provide
information about their true types, although their sincerity may not be ensured.

The aggregation process is represented by a social choice function. For any
X̃ ∈ A(X), a social choice function f on P(X̃)n is a single-valued mapping
f : P(X̃)n → X̃ that associates to each preference profile �̃ = (�̃1, . . . , �̃n) ∈
P(X̃)n a unique outcome f (�̃) ∈ X̃ .

We are primarily interested in aggregation procedures conducted by pairwise
majority voting. Then, we focus the analysis on a particular social choice func-
tion: the median choice rule. Let m : �n+ → �+ be the median function on �n+.
Then, for all x ∈ �n+, m(x) is said the median of x = (x1, . . . , xn) if and only if
|{xi ∈ �+: xi ≤ m(x)}| ≥ (n + 1)/2 and |{x j ∈ �+ : m(x) ≤ x j }| ≥ (n + 1)/2.
Since n is odd, this function is always well defined.

Definition 1 The social choice function f m on P(X̃)n is called the median choice
rule if for each (�̃1, . . . , �̃n)∈ P(X̃)n, f m(�̃1, . . . , �̃n)=m(τ (�̃1), . . . , τ (�̃n)).

In the following sections, we study the incentive compatibility properties of
the median choice rule over the domain of single-crossing preference profiles. So
let us introduce now the formal definition of this condition.

Definition 2 A preference profile (�(θ1), . . . , �(θn)) is single-crossing on X if
for all {x, y} ⊂ X, i, j ∈ I ,

[y > x, θ j > θi , and y �(θi ) x] ⇒ [y �(θ j ) x]. (SC)

We denote SC(X) the set of all single-crossing preference profiles on X (with
respect to the linear order ≥).7 Notice that the property of being single-crossing
is preserved in the induced preferences. That is, if (�1, . . . , �n) ∈ SC(X), then
(�̃1, . . . , �̃n) ∈ SC(X̃) for all X̃ ∈ A(X), where SC(X̃) is the set of all single-
crossing preference profiles on X̃ .

In the political arena, single-crossing makes sense if, for example, individual
types are interpreted as being different ideological characters, arranged in a left–
right scale, and alternatives are policies or candidates to be chosen by the society.
Put in this way, it says that, given any two policies, one of them more to the right
than the other, the more rightist a type the more will he tend to prefer the right-wing
policy over the left-wing one.

The recent interest on this preference domain is due to the fact that, like sin-
gle-peakedness, single-crossing has been shown to be sufficient to guarantee the
existence of majority voting equilibria. However, apart from this fact, it should
be clear that both conditions are independent, in the sense that neither property is
logically implied by the other.

7 Other restrictions related to single-crossing are hierarchical adherence, intermediateness,
order-restriction and unidimensional alignment. For more on them, see Roberts (1977), Grand-
mont (1978), Rothstein (1990, 1991), Gans and Smart (1996), Myerson (1996), Austen-Smith
and Banks (1999), and List (2001).
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To see this more formally, let us define the single peaked condition in the fol-
lowing two alternative ways. For a set A, let Q(A) denote the set of all linear orders
on A.8 For example, if A ⊆ �, then the usual order on the real line ≥ ∈ Q(A). For
each ordering q ∈ Q(A), define the antisymmetric part of q , noted ∼q , as follows:
a ∼q b if and only if a q b and ¬[b q a]. For instance, the antisymmetric part of
the “greater than or equal to” relation over the real numbers is the “strictly greater
than” relationship >.

Definition 3 A profile (�1, . . . , �n) ∈ P(X)n is single-peaked on X if there exists
a linear order q ∈ Q(X) such that ∀i ∈ I , {x, y, z} ⊆ X,

[x �i y and x ∼q y ∼q z] ⇒ [y �i z]. (SP1)

We denote SP(X, q) the set of all single-peaked (with respect to q) preference
profiles on X . Since q is common to all these profiles, we can omit it and sim-
ply write SP(X). Clearly, given that individual preferences are strict, � ∈ SP(X)

implies �̃ ∈ SP(X̃), for all X̃ ∈ A(X).
Alternatively, as long as we may be interested in neutral social choice rules

(like f m), we can allow q to change from one profile to another. This produces a
second definition of single -peakedness:

Definition 4 A profile �= (�1, . . . ,�n) ∈ P(X)n is single peaked on X if there
exists a linear order q(�) ∈ Q(X), associated to �, such that ∀i ∈ I , {x, y, z} ⊆
X,

[x �i y and x ∼q(�) y ∼q(�) z] ⇒ [y �i z]. (SP2)

We denote SP(X, {q(�)}) the set of all preference profiles � on X for which
there exists an ordering q(�) ∈ Q(X) such that Definition 4 is satisfied. Example
2 below shows that SP(X) ⊂ SP(X, {q(�)}).
Example 2 Consider the preference profiles of Tables 1 and 2 over the set of
alternatives X = {x, y, z}.

It is easy to see that there is no q ∈ Q(X) such that (�1, �2, �3) and
(�̂1, �̂2, �̂3) simultaneously belong to S P(X, q). However, both profiles are in
SP(X, {q(�)}), since (�1, �2, �3) is single peaked with respect to the linear order
y < z < x and (�̂1, �̂2, �̂3) with respect to z < y < x .

In words, a single-peaked profile (in both versions) is one in which the set of
alternatives can be linearly ordered in such a way that, each agent has a unique
most preferred alternative (or ideal point) over this common ordering, and the
individual’s ranking of other alternatives falls as one moves away from his ideal
point. Such profiles capture the fact that, for example, an individual may have a
most preferred ideological position on some left–right political scale, and the more
distant is a candidate’s ideological position from his most preferred alternative the
more the individual may dislike the candidate.

Going back again to the relation between single-crossing and single-peaked-
ness, it is clear for instance in Example 1 that the profile of induced policy pref-
erences (w1, . . . , wn) satisfies single-crossing on the interval (0, 1). However, for

8 A linear order over A is a complete, transitive, and antisymmetric binary relation between
the elements of A.
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Table 1

�1 �2 �3

x z y
z y z
y x x

Table 2

�̂1 �̂2 �̂3

x z y
y y z
z x x

h(t) sufficiently convex, it could violate single-peakedness. Examples 3 and 4
below also illustrate this point.

Example 3 Suppose three agents, with types θ1 < θ2 < θ3. Let X = {x, y, z} ⊂
�+, where x < y < z. Assume preferences are as in Table 3. It is easy to see
that this profile is single-crossing on {x, y, z}. However, for any ordering of the
alternatives, the profile violates single-peakedness.9

Example 4 Suppose three individuals, 1, 2, and 3, who choose an alternative from
{a, b, c, d} ⊂ �+. Assume their preferences are as in Table 4. Then, the profile
(�1, �2, �3) is single peaked with respect to the linear order c < a < b < d .
However, if each preference ordering is associated with a different type and each
agent is identified with its corresponding type, then for every ordering of the types
the profile of Table 4 violates single-crossing.10

From the perspective of the analysis of strategy-proofness, there is also a
substantial difference between these two preference domains. Considering

Table 3 Single-crossing

�(θ1) �(θ2) �(θ3)

x x z
y z y
z y x

Table 4 Single-peakedness

�1 �2 �3

a d b
b b a
d a c
c c d

9 Notice that every alternative appears in the bottom row of Table 3.
10 Notice that it violates single-crossing not only for the ordering of alternatives c < a < b < d ,

but also for every ordering of them.
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Definition 3, which is the standard definition of single-peakedness used in the
literature of strategy-proofness,11 it is clear that SP(X̃) is a Cartesian subset of
P(X̃)n .12 Instead, the set of all single-crossing profiles over X̃ , SC(X̃), is not a
Cartesian preference domain. The reason is each individual ordering (or type) in a
profile (�̃1, . . . , �̃n) ∈ SC(X̃) may depend on other orderings, in the way specified
in Definition 2.

This has two important implications. First of all, strategy-proofness (yet to be
defined) becomes a conditional property of a social choice function (see Definitions
5 and 6 below). Second, the revelation principle does not apply on this domain.
That is, even if a social choice function were found to be (conditional) strategy
proof on SC(X̃), the mechanism implementing it cannot be a direct one.13 We will
return to this point in Sect. 6.

Now we define the two incentive compatibility properties we seek in a social
choice function on SC(X̃). These properties are called conditional strategy-proof-
ness and conditional group strategy-proofness. They guarantee that agents, acting
individually or in groups, never have incentives to misrepresent their preferences,
at least if they have the opportunity to tell the true.

Definition 5 A social choice function f is conditional strategy-proof on SC(X̃)

if for all i ∈ I , all (�̃i , �̃−i ) ∈ SC(X̃), and any deviation �̂i ∈ P(X̃), either
f (�̃i , �̃−i ) �̃i f (�̂i , �̃−i ) or f (�̃i , �̃−i ) = f (�̂i , �̃−i ).

If a social choice function f is not conditional strategy-proof on SC(X̃), then
there exist i ∈ I and �̂i ∈ P(X̃), such that for some �̃−i ∈ P(X̃)n−1 and i’s true
preferences �̃i , f (�̂i , �̃−i ) �̃i f (�̃i , �̃−i ), where (�̃i , �̃−i ) ∈ SC(X̃). Then, f
is said manipulable at (�̃i , �̃−i ), by i , via �̂i .

As usual, Definition 5 says that a social choice function f is strategy-proof on
SC(X̃) if for any preference declaration �̃−i the rest of the agents could make, each
individual i ∈ I considers the outcome generated by declaring his true preferences
�̃i , f (�̃i , �̃−i ), at least as good as f (�̂i , �̃−i ), where f (�̂i , �̃−i ) is generated
by i’s deviation to any other ordering �̂i ∈ P(X̃). However, since SC(X̃) is a non-
Cartesian domain, the declarations of the other agents �̃−i that can be considered
are only those that are compatible with the fact that i reports his true binary relation
�̃i and the profile remains in the admissible domain.

That is, the conditional extension of strategy-proofness we introduce for non-
Cartesian preference domains requires that agents have incentives to report their
true preferences only in those cases (profiles) where they have the opportunity to
do so. But it puts no restrictions on the individual’s declaration in the other pro-
files. Proceeding in a similar way, we can also define conditional group strategy-
proofness.

Definition 6 A social choice function f is conditional group strategy-proof on
SC(X̃) if for every coalition S ⊆ I , and all (�̃S, �̃S̄) ∈ SC(X̃), there does not

11 See, for example, Moulin (1980, 1988), Barberà and Jackson (1994), Sprumont (1995),
Ching (1997), Berga and Serizawa (2000), and Barberà (2001), among others.

12 Of course, the second definition of single-peakedness, i.e., Definition 4, does not generate a
product set.

13 Remember that a direct mechanism is a game form in which the strategy space of each agent
is the set of all possible individual characteristics.
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exist a joint deviation �̂S ∈ P(X̃)S such that f (�̂S, �̃S̄) �̃i f (�̃S, �̃S̄) for all
i ∈ S.

In the following sections, we study how well the median choice rule performs,
according to these manipulation criteria, on the domain of single-crossing pref-
erences. But, since the main motivation to do this is to study the strategic foun-
dation of the RVT, let us discuss first the connection between single-crossing and
order-restriction, which is the original domain where this Theorem was formulated.

3 Single-crossing and order-restriction

Order-restriction, first formally introduced by Rothstein (1990, 1991), is a prefer-
ence restriction that has been shown to be closely related to single-crossing (Gans
and Smart 1996). Next we provide its definition and an equivalence theorem (up
to renaming of types and alternatives) that parallels that result, but that emphasizes
at the same time the differences between these two domains.14

For any two sets A and B of real numbers, let A � B, read “A is higher than
B”, if for every a ∈ A and b ∈ B, a > b, where > is the antisymmetric part of the
“greater than or equal to” relation over the real line.

Definition 7 A preference profile �(θ) = (�(θ1), . . . , �(θn)) ∈ P(X)n is order-
restricted on X if there exists a permutation γθ: � → � such that, ∀ {x, y} ⊂ X,
x �= y, either

{γθ (θi ) ∈ �I (θ) : x �(θi ) y} � {γθ (θ j ) ∈ �I (θ) : y �(θ j ) x}, OR-1

or

{γθ (θ j ) ∈ �I (θ) : y �(θ j ) x} � {γθ (θi ) ∈ �I (θ) : x �(θi ) y}. OR-2

We denote OR(X, {γθ }) the set of all profiles �(θ) = (�(θ1), . . . , �(θn)) on
X for which there exists a permutation γθ : � → � such that Definition 7 is
satisfied. In words, a preference profile is order-restricted on X if we can order the
types of the agents in such a way that for any pair of alternatives the set of types
preferring one of the alternatives all lie to one side of those who prefer the other. It
is important to emphasize that the ordering of types is not conditional on the pair of
alternatives under consideration, while the “cut-off" types may depend on the pair.
Example 5, taken from Austen-Smith and Banks (1999), illustrates the concept.

Example 5 Consider the preferences displayed in Table 5, over the set X =
{x, y, z} ⊂ �+. Assume x < y < z and θ1 < θ2 < θ3. Then, the profile is
order-restricted over X , since there exists a permutation γ , defined by γ (θ1) = θ2,
γ (θ2) = θ1 and γ (θ3) = θ3, such that under this renaming of types:

– {γ (θi ) : y �(θi ) x} = {θ3} � {θ1, θ2} = {γ (θ j ) : x �(θ j ) y};
– {γ (θi ) : z �(θi ) x} = {θ3} � {θ1, θ2} = {γ (θ j ) : x �(θ j ) z};
– {γ (θi ) : z �(θi ) y} = {θ2, θ3} � {θ1} = {γ (θ j ) : y �(θ j ) z}.

14 In this section, we make definitions and proofs over X , but everything is equally valid for
any X̃ ∈ A(X).
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Table 5 Order restriction

�(θ1) �(θ2) �(θ3)

x x z
z y y
y z x

The following results exhibit the closed relationship between order-restriction
and single-crossing:

Lemma 1 If a preference profile (�(θ1), . . . , �(θn)), is single-crossing on X, then
it satisfies order-restriction on X. That is, SC(X) ⊆ OR(X, {γθ }).
Proof Consider a profile � = (�1, . . . , �n) ∈ SC(X), derived from � : � →
P(X). Take any pair of distinct alternatives {x, y} ⊂ X and, without loss of gen-
erality, assume y > x . Let θ̄ be the smallest type in the set �I (�), with respect to
the linear order >, such that y �(θ̄) x . If such type does not exist, then x �(θi ) y
for all θi ∈ �I and order-restriction follows immediately. Otherwise, define the
sets �x,y = {θ j ∈ �I (�) : θ̄ > θ j } and �

x,y = {θi ∈ �I (�) : θi ≥ θ̄}. Clearly,
by definition, �

x,y � �x,y . On the other hand, by SC, �
x,y = {θi ∈ �I (�) :

y �(θi ) x} and �x,y = {θ j ∈ �I (�): x �(θ j ) y}, being the last equality a con-
sequence of the completeness of the orders �(·). Therefore, taken the invariant
permutation γθ , (such that γθ (θi ) = θi for each θi ∈ �), it follows that {γθ (θi ) ∈
�I (�) : y �(θi ) x} � {γθ (θ j ) ∈ �I (�): x �(θ j ) y}. But, since the pair x and y
was arbitrary chosen, by OR − 2, we have that (�1, . . . , �n) ∈ OR(X, {γθ }). ��

It is easy to see that the converse of Lemma 1 is not true. That is, OR(X, {γθ }) �
SC(X). In effect, consider for instance the original profile in Example 5. As we
showed, it is in OR(X, {γθ }). However, it is not in SC(X) as, for example, z �(θ1) y
while y �(θ2) z, being z > y and θ2 > θ1. Nevertheless, the equivalence between
single-crossing and order-restriction is obtained if we enlarge the domain of sin-
gle-crossing preferences in a way analogous to Definition 4, by allowing the order
over X and � to change from one profile to another.

Definition 8 A profile �(θ) = (�(θ1), . . . , �(θn)) is broad single-crossing over
X if there exist q(θ) ∈ Q(X) and p(θ) ∈ Q(�) such that ∀{x, y} ⊂ X, i, j ∈ I ,

[y ∼q(θ) x, θ j ∼ p(θ) θi , and y �(θi ) x] ⇒ [y �(θ j ) x]. (BSC)

We denote BSC(X, {q(θ), p(θ)}) the set of all preference profiles �(θ) =
(�(θ1), . . . , �(θn)) on X for which there exist q(θ) ∈ Q(X) and p(θ) ∈ Q(�)

such that Definition 8 is satisfied. Example 6 below shows that SC(X̃) ⊂ BSC(X̃ ,
{q(θ), p(θ)}), meaning that broad single-crossing is a larger preference domain.

Example 6 Consider three individuals and the profiles of Tables 6 and 7, over
the set of alternatives X = {x, y, z} ⊂ �+. Then, (�(θ1), �(θ2), �(θ3)) ∈
BSC(X, {q(θ), p(θ)}) for x < z < y and θ1 < θ3 < θ2. On the other hand,
(�(θ̂1), �(θ̂2), �(θ̂3)) ∈ BSC(X, {q(θ), p(θ)}) for x < y < z and θ̂1 < θ̂2 < θ̂3.
However, it is clear that (�(θ1), �(θ2), �(θ3)) and (�(θ̂1), �(θ̂2), �(θ̂3)) can-
not simultaneously belong to SC(X).
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Table 6

�(θ1) �(θ2) �(θ3)

x y z
z z y
y x x

Table 7

�(θ̂1) �(θ̂2) �(θ̂3)

x x z
y z y
z y x

Lemma 2 For any profile �∗ ∈ OR(X, {γθ }) there exists a profile � ∈
BSC(X, {q(θ), p(θ)}) such that �∗ and � are equivalent up to two permuta-
tions g∗ : � → � and h∗ : X → X. Conversely, for each profile � ∈
BSC(X, {q(θ), p(θ)}) there exists a profile �∗ ∈ OR(X, {γθ }) such that � and
�∗ are equivalent up to two permutations g: � → � and h: X → X.

Proof (1) Suppose � ∈ BSC(X, {q(θ), p(θ)}). Then, (X, q(θ)) is isomorphic to
X under the natural order ≥. That is, there exists h : X → X such that, if x q(θ) y,
then h(x) ≥ h(y), for any x, y ∈ X . On the other hand, (�, p(θ)) is isomor-
phic to � under ≥ i.e., there exists g : � → � such that, if θ

′
p(θ) θ

′ ′
, then

g(θ
′
) ≥ g(θ

′ ′
), for any pair θ

′
, θ

′ ′
in �. Therefore, since � verifies BSC we have

that, for all x, y ∈ X , i, j ∈ I ,

[h(y)>h(x), g(θ j )>g(θi ), and h(y)�(g(θi ))h(x)] ⇒ [h(y)�(g(θ j )) h(x)].

That is, (�(g(θ1)), . . . , �(g(θn))) is single-crossing over h(X) = X under ≥,
for the family of types g(�) = � with the corresponding natural order. Then,
if we denote g(θi ) ≡ θ∗

i and �(θ∗
i ) ≡ �∗

i , we have, by Lemma 1, that �∗ =
(�∗

1, . . . , �∗
n) ∈ OR(X, {γθ }).

(2) Consider a profile �∗= (�∗
1, . . . , �∗

n) ∈ OR(X, {γθ }), associated to a pro-
file of types θ∗ = (θ∗

1 , . . . , θ∗
n ). By definition, there exists γθ∗ : � → � such that,

for any two distinct alternatives x, y ∈ X , either OR − 1 or OR − 2 holds. Define
a binary relation q∗ on X in the following way. For any pair x, y ∈ X , x �= y, set
x q∗ y and ¬[y q∗ x] if and only if OR−1 holds for {x, y}. Otherwise, fix y q∗ x
and ¬[x q∗ y]. On the other hand, for any pair x, y ∈ X such that x = y, just set
x q∗ y and y q∗ x .

It is immediate to note that q∗ is complete and antisymmetric. It is also easy
to prove that q∗ is transitive. By contradiction, assume there exists {x, y, z} ⊆ X
such that x q∗ y and y q∗ z, but z q∗ x and ¬[x q∗ z]. Then, x �= z. Let θ̄ =
max {γθ∗(θ∗

i ) ∈ ��∗ : z �(θ∗
i ) x}. Notice that, by hypothesis, this set is non-

empty.15. Therefore, θ̄ is well defined. Furthermore, according to OR − 1, θ̄ =
max γθ∗(��∗). Then, we have three cases to consider:

15 If it were empty, then x �(θ∗
i ) z for all θ∗

i . Therefore, it would follow x q∗ z
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1. If x = y and y �= z, then x q∗ y and y q∗ x , while ¬[z q∗ y]. Again, {γθ∗(θ∗
i ) :

y �(θ∗
i ) z} �= ∅. Hence, y �(θ̄) z; and, by the transitivity of �(·), y �(θ̄) x .

Contradiction.
2. If y = z, then y �(θ̄) x . Thus, by definition of θ̄ , y q∗ x and ¬[x q∗ y]. Con-

tradiction.
3. Finally, if x �= y and y �= z, then x �(θ̄) y and y �(θ̄) z. Thus, by the transi-

tivity of �(·), it follows that x �(θ̄) z. Contradiction.

Therefore, by (1)–(3), q∗ ∈ Q(X). Now consider the linear order p∗ over �

induced by γθ∗ . That is, for any two types θ
′
, θ

′ ′ ∈ �, set θ
′

p∗ θ
′ ′

and ¬[θ ′ ′
p∗ θ

′ ]
if γθ∗(θ

′
) > γθ∗(θ

′ ′
); and θ

′
p∗ θ

′ ′
and θ

′ ′
p∗ θ

′
if γθ∗(θ

′
) = γθ∗(θ

′ ′
). Then, for any

pair of distinct alternatives x, y ∈ X , if y ∼q∗ x and y �∗
i x for some i ∈ I , it fol-

lows that y �∗
j x for all j ∈ I such that θ j ∼ p∗ θi . Hence, the profile (�∗

1, . . . , �∗
n)

is broad single-crossing over X with respect to q∗ and p∗. ��

4 Representative Voter Theorem

The domain of order-restricted (broad single-crossing) preferences has two prop-
erties that are extremely important for collective decision-making analysis. First,
as it was already mentioned in other parts of the paper, it guarantees the existence
of majority voting equilibria. Second, it offers a simple characterization of the core
of the majority rule. In effect, when preferences are order-restricted, the median
type agent over the order of �, which is unique in our framework, is decisive in
all pairwise majority contests between alternatives in X̃ , for all X̃ ∈ A(X). This
result is sometimes referred to as the RVT or, alternatively, as the “second version”
of the Median Voter Theorem.

In this section we formally derive the RVT, leaving for Sect. 6 its game-theoretic
counterpart.16 In order to do that, let f m : OR(X̃ , {γθ }) → X̃ be the median choice
rule on the domain of order-restricted preferences. The non-strategic version of the
Theorem is as follows:

Theorem 1 For every agenda X̃ ∈ A(X) and each preference profile �̃(θ) =
(�̃(θ1), . . . , �̃(θn)) ∈ O R(X̃ , {γθ }), f m(�̃(θ1), . . . , �̃(θn))= M

(
X̃ , �̃(γθ (θr ))

)
,

where γθ (θr ) = m (γθ (θ1), γθ (θ2), . . . , γθ (θn)).

Proof Consider a profile � ∈ OR(X, {γθ }). By Lemma 2, there exists a pair of
permutations γ : � → � and ρ : X → X such that �γ ∈ SC(ρ(X)), where
�γ = (�γ

1 , . . . , �γ
n ) is generated by � : γ (�) → P(ρ(X)). Take the agenda

ρ(X̃), corresponding to X̃ ∈ A(X), and the restriction of �γ to ρ(X̃), noted �̃γ .
Let T

(
ρ(X̃), �̃γ

) = {τ(�̃γ
1 ), . . . , τ (�̃γ

i ), . . . , τ (�̃γ
n )} be the set of individuals’

top-ranked alternatives in ρ(X̃) according to �̃γ . Then, for all i, j ∈ I, θγ

i <

θ
γ

j implies τ(�̃γ

i ) ≤ τ(�̃γ

j ), where θ
γ

i , θ
γ

j ∈ γ (�). Suppose not. That is, as-

sume there exist i, j ∈ I such that θ
γ

i < θ
γ

j while τ(�̃γ

i ) > τ(�̃γ

j ). Since

16 Notice that we present a simplified version of the RVT, since neither individual indifference
nor an even number of voters is considered. For a complementary analysis, see Rothstein (1991),
Myerson (1996), Gans and Smart (1996), and Austen-Smith and Banks (1999).
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τ(�̃γ

i ) �̃γ

i τ(�̃γ

j ) and θ
γ

i < θ
γ

j , by single-crossing, we have that τ(�̃γ

i ) �̃γ

j τ(�̃γ

j ).

Contradiction. Therefore, f m(�̃γ
1 , . . . , �̃γ

n ) = τ(�̃γ
r ) = M(ρ(X̃), �̃(θ

γ
r )), where

θ
γ
r = m

(
θ

γ
1 , θ

γ
2 , . . . , θ

γ
n
)
. Moreover, since �̃γ is equivalent to �̃ under γ and ρ, it

follows that f m(�̃1, . . . , �̃n) = M(ρ(X̃), �̃(θ
γ
r )). But, according to part (2) in the

Proof of Lemma 2, the order over � induced by γ coincides with the order induced
by γθ .17 Thus, θ

γ
r = m(θ

γ
1 , . . . , θ

γ
n ) = m(γθ (θ1), . . . , γθ (θn)) = γθ (θr ), imply-

ing that M(ρ(X̃), �̃(θ
γ
r )) = M(ρ(X̃), �̃(γθ (θr ))). Finally, since ρ(X̃) = X̃ , we

have M(ρ(X̃), �̃(γθ (θr ))) = M(X̃ , �̃(γθ (θr ))). ��
In words, Theorem 1 says that, given any subset of policies X̃ ∈ A(X), the

alternative chosen by a society with order-restricted preferences coincides with the
most preferred alternative of the median type agent.18 This result also holds under
single-peakedness if individual preferences are symmetric, but not in other cases.
Lemma 3 and Fig. 1 below illustrate this point.

Lemma 3 If �i is single peaked on X and symmetric around τ(�i ) for all i ∈ I ,
then (�̃1, . . . , �̃n) ∈ O R(X̃ , {γθ }), for all X̃ ∈ A(X).

Proof Consider a preference profile �= (�1, . . . , �n) ∈ P(X)n that satisfies the
hypothesis of Lemma 3. Define a permutation γ : � → � in the following way.
Consider the order (over X ) of the sequence {τ(�i )}i∈I . Suppose the j-th element
in that sequence is τ(�i ), where �(θi ) =�i . Then, set γ (θi ) = θ j . Since τ(�i ) is
unique for each i ∈ I , γ is always well defined. Take an agenda X̃ ∈ A(X) and
the restriction of � to X̃ , noted (�̃1, . . . , �̃n). Without loss of generality, consider
an arbitrary pair of distinct alternatives {x, y} ⊆ X̃ , say x < y, and define the
“cut point” α = (y − x)/2 and the sets T x,y = {τ(� j ) ∈ T (X, �): α > τ(� j )}
and T

x,y = {τ(�i ) ∈ T (X, �): τ(�i ) ≥ α}. Suppose T
x,y

and T x,y are non-
empty. Then, by the construction of γ , it is clear that {γ (θi ) ∈ �I (�): τ(�i ) ∈
T

x,y} � {γ (θ j ) ∈ �I (�) : τ(� j ) ∈ T x,y}. Furthermore, by symmetry and sin-
gle-peakedness, {γ (θi ) ∈ �I (�): τ(�i ) ∈ T

x,y} = {γ (θi ) ∈ �I (�): y �(θi ) x}
and {γ (θ j ) ∈ �I (�): τ(� j ) ∈ T x,y} = {γ (θ j ) ∈ �I (�): x �(θ j ) y}. Therefore,
{γ (θi ) ∈ �I (�̃) : y �̃(θi ) x} � {γ (θ j ) ∈ �I (�̃): x �̃(θ j ) y}. That is, OR − 2
holds. But, since {x, y} was arbitrary chosen, it follows that �̃ ∈ OR(X̃ , {γθ }). On
the other hand, if either T

x,y
or T x,y is empty, then order-restriction follows imme-

diately, since either x �̃(θ) y for all θ ∈ �I (�̃) or y �̃(θ) x for all θ ∈ �I (�̃).

17 Remember that γθ is the permutation that makes the original profile �̃ order-restricted on X̃ .
18 Rothstein (1991) has also shown that, when preferences are strict and the number of voters

is odd, as in our case, the preference ordering generated by the majority rule coincides with the
preference relation associated to the median type agent. This implies that the majority preference
relation inherits all the properties of the median type agent’s preference ordering, in particu-
lar, transitivity. Gans and Smart (1996) have proved a similar result for nonstrict preference
orderings, but under strict single-crossing.
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2 3 1 

yw xt 

Fig. 1 Median voter identity

Figure 1 exhibits a case where individual preferences are single peaked, but
not symmetric for all individuals. The picture shows that the decisive agent de-
pends then on the particular agenda analyzed. In effect, consider first the set
X = {t, w, x, y, z}. Since preferences are single peaked and |I | is odd, the Median
Voter Theorem says agent 3’s unrestricted top, y, is the unique Condorcet winner
in X . Now take the subset X̃ = {t, w, z}. The induced profile is still single-peaked.
However, agent 3’s most preferred alternative in X̃ , w, is defeated by z, which is
the restricted top of agents 1 and 2, and the Condorcet winner in X̃ .

As we have seen, this change in the identity of the median voter for different
subsets of policies does not occur under order-restriction and broad single-cross-
ing. In that case, Theorem 1 ensures that the individual who has the median type is
decisive over any nonempty subset. However, is this result robust to individual and
group manipulation? That is, can we expect that the society will end up choosing
in the way predicted by the RVT when individuals behave strategically?

The RVT is a result derived under the assumption that individuals honestly
reveal their preferences. This is obviously very restricted. In the next sections we
show, however, that even if we allow strategic voting the RVT still holds. As we
argue, the reason for this is that the median choice rule is conditional strategy-proof
over single-crossing domains.

5 Conditional strategy-proofness

The manipulation of the median rule has been studied for a long time in the litera-
ture of social choice. The earliest reference goes back to the seminal paper of Black
(1948). Since then, a lot of progress has been made towards the understanding of
its properties. For instance, it is well known today that there exists a preference
domain where this voting procedure performs quite well, in terms of its capacity
to extract truthful information about the preferences of the agents. This domain is
of course single-peakedness.

In this section, we analyze whether the median choice rule can be manipulated
on a different preference domain, namely over single-crossing preferences. Even
though this family of preferences is now employed in many models of collective
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decision-making, nothing has been said in the literature about the possibility of
manipulation over this domain. The main purpose here is therefore to fill out this
gap.

Our main result is the following:

Proposition 1 The median choice rule f m is conditional strategy-proof over
SC(X̃), for any X̃ ∈ A(X).

Proof Consider a profile (�̃i , �̃−i ) ∈ SC(X̃), where agent i , of type θi , has pref-
erences �̃i . Suppose that there exists another type θ̂i such that f m(�̂i , �̃−i ) �̃i

f m(�̃i , �̃−i ), where �̂i = �̃(θ̂i ). Furthermore, without loss of generality, assume
τ(�̃i ) < f m(�̃i , �̃−i ). We have two cases to consider:

1. τ(�̂i ) ≤ f m(�̃i , �̃−i ). Then f m(�̂i , �̃−i ) = f m(�̃i , �̃−i ). Contradiction;
2. τ(�̂i ) > f m(�̃i , �̃−i ). Then f m(�̂i , �̃−i ) > f m(�̃i , �̃−i ). Denote τ̃ =

f m(�̃i , �̃−i ) and τ̂ = f m(�̂i , �̃−i ). Since we assume (�̃i , �̃−i ) verifies
the single-crossing property, we have that τ̂ �̃(θ) τ̃ for all θ ≥ θi . On the
other hand, since τ̃ is top-ranked in at least one ordering, say �̃ j , in the pro-
file (�̃1, . . . , �̃n), it must be that the type corresponding to �̃ j , θ j , is such
that θ j < θi . But then, since τ(�̃i ) < τ̃ , by single-crossing we have that
τ̃ �̃(θ) τ (�̃i ) for every θ ≥ θ j . In particular for θi . Contradiction. ��
Proposition 1 proves that, in addition to single-peakedness, there exists another

meaningful domain over the real line that ensures the existence of non manipula-
ble choice rules. That is, it shows that single-crossing constitutes a restriction that
guarantees not only majority voting equilibria, but also nontrivial (conditional)
strategy-proof social choice functions. In particular, this is true for the median
choice rule.19

Now we extend the result of Proposition 1 by showing that in fact these condi-
tions, i.e., single-crossing and broad single-crossing, assure strategy proofness not
only at the individual level but also at the group level.

Proposition 2 The median choice rule f m is conditional group strategy-proof over
SC(X̃), for any X̃ ∈ A(X).

Proof Consider a profile (�̃1, . . . , �̃n) ∈ SC(X̃), with associated types
(θ1, . . . , θn). Suppose there exists a coalition S ⊆ I and a list of alternative types for
members of S, (θ̂i )i∈S , such that f m(�̂S, �̃S̄) �̃i f m(�̃S, �̃S̄) for all i ∈ S, where
�̂S = (�̃(θ̂i ))i∈S . For simplicity, denote τ̃ = f m(�̃S, �̃S̄) and τ̂ = f m(�̂S, �̃S̄).
Notice that, by the definition of f m , τ̃ and τ̂ coincide with the tops corresponding
to the orderings reported by some voters. Denote these agents j and j

′
and their

19 Saporiti and Tohmé (2004) show that the whole family of anonymous, tops-only and domi-
nant strategy implementable social choice functions over single-crossing preferences is given by
a subclass of the extended median rule, obtained by distributing n−1 fixed parameters (also called
phantom voters) at the extremes of the real line. This subclass, where each phantom is either a
leftist or a rightist, is sometimes referred to as positional dictator choice rules (Moulin 1988).
They select the kth ranked peak among the tops of reported orderings, for some k = 1, . . . , n.
For example, if k = 1, we have the leftist rule, which always chooses the smallest reported peak.
Of course, the median choice rule is also a particular case.
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types θ j and θ j ′ , respectively. Since τ̃ �= τ̂ , assume τ̃ < τ̂ . Then, for all i ∈ S,
τ(�̃i ) > τ̃ . Suppose not. That is, assume τ(�̃i ) ≤ τ̃ for some agent i ∈ S. If
τ(�̃i ) = τ̃ , then τ̃ �̃i τ̂ , which contradicts our initial hypothesis. Consider, in-
stead, that τ(�̃i ) < τ̃ . Since τ̂ �̃i τ̃ , by single-crossing we have that for all θ ≥ θi ,
τ̂ �̃(θ) τ̃ . Then, θ j has to verify θ j < θi ; and, by single-crossing, τ̃ �̃(θ j ) τ (�̃i )

implies τ̃ �̃(θi ) τ (�̃i ). Contradiction. Then, τ(�̃i ) > τ̃ for all i ∈ S. The rest of
the proof is as follows. By definition,

f m(�̃S, �̃S̄) = m(τ (�̃1), . . . , τ (�̃n)) = τ̃ ,

while

f m(�̂S, �̃S̄) = m({τ(�̂i )}i∈S, {τ(�̃ j )} j∈S̄) = τ̂ .

Two cases are possible:

1. For each i ∈ S, τ(�̂i ) > τ̃ . Then τ̂ = τ̃ . Contradiction.
2. For some i ∈ S, τ(�̂i ) ≤ τ̃ . Then, by rewritten ({τ(�̂i )}i∈S, {τ(�̃ j )} j∈S̄) as

(y1, . . . , yn), we have that

∣
∣
∣
{

j ∈ {1, . . . , n}: y j ≤ τ̃
} ∣
∣
∣ ≥ (n + 1)

2
.

But this implies that m(y1, . . . , yn) ≤ τ̃ . That is, f m(�̂S, �̃S̄) ≤ f m(�̃S, �̃S̄).
Contradiction. ��

Corollary 1 The median choice rule f m is conditional group strategy-proof over
BSC(X̃ , {q(θ), p(θ)}), for any X̃ ∈ A(X).20

Proof Assume, by contradiction, that f m is manipulable at some profile (�̃1, . . . ,

�̃n) ∈ BSC(X̃ , {q(θ), p(θ)}). By the same argument applied in part (1) of the
Proof of Lemma 2, the profile (�̃1, . . . , �̃n) is equivalent, up to permutations
h: X̃ → X̃ and g: � → �, to a profile (�̃′

1, . . . , �̃
′
n) which is also single-crossing

over h(X̃) = X̃ under ≥, for the family of types g(�) = � with the corresponding
natural order. Then,

f m(�̃′
) = m≥(τ (�̃′

1), . . . , τ (�̃′
n)) = m≥(h ◦ τ(�̃g(1)), . . . , h ◦ τ(�̃g(n))),

where m≥(·) is the median under the order ≥. Notice that by the properties of
both the median and the permutation g, we have that m≥(h ◦ τ(�̃g(1)), . . . , h ◦
τ(�̃g(n))) = m≥(h◦τ(�̃1), . . . , h◦τ(�̃n)). Then, we can apply the proof of Propo-
sition 2, to show that no group S ⊆ I can manipulate m≥(h◦τ(�̃1), . . . , h◦τ(�̃n))

over (X̃ , ≥). Contradiction. ��
Corollary 2 The median choice rule f m is conditional group strategy-proof over
O R(X̃ , {γθ }), for any X̃ ∈ A(X).

20 The definition of conditional group strategy-proofness over BSC(X̃ , {q(θ), p(θ)}) follows
from Definition 6, by changing in the appropriate way the domain of the choice rule. The same
applies in Corollary 2 for OR(X̃ , {γθ }).
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Proof Immediate from Lemma 2 and Corollary 1. ��
Summarizing, the results of this section show that the median rule is non manip-

ulable (both at the individual and group level) neither over single-crossing nor
order-restricted preferences. However, does it imply that it can be implemented
in dominant strategies? According to the revelation principle, strategy-proofness
is a necessary condition for truthful or direct implementation. However, it is not
sufficient. It is sufficient when the preference domain is a product set. Otherwise,
the direct mechanism is not well defined, in the sense that the set of strategies
of each agent, i.e., the set of admissible individual preferences, depends on the
strategies used by the others. In the next section, we analyze this problem.

6 Implementation

In this section, we propose an extensive game form that can be used to indirectly
implement f m in dominant strategies. We show that this game form is equivalent
to a mechanism in normal form, and we prove that the latter succeeds in imple-
menting the median rule. We also briefly discuss why the extensive game form
and its associated reduced form work, but not a direct mechanism in which each
individual simply declares his top. Finally, we derive the game-theoretic equivalent
of Theorem 1.

Suppose individuals have preferences (�1, . . . , �n) ∈ SC(X). Assume the
election of an outcome in X̃ ∈ A(X), which is the planner’s problem, is indirectly
performed by the following two-stage voting procedure. In the first stage, individ-
uals select by pairwise majority voting a representative individual from the set I .
Then, in the second stage, the winner chooses an alternative in X̃ , which is then
the policy implemented by the planner.

Clearly, in the last stage each individual has a dominant strategy, which is sim-
ply to choose his most preferred alternative in X̃ . Therefore, it is immediate to
see that the extensive game form is equivalent to a strategic game form in which
individuals choose by pairwise majority comparisons an alternative from the set
of actual ideal points T (X̃ , �̃) = {τ(�̃1), . . . , τ (�̃n)}. Next we prove this mech-
anism can be used to implement f m in dominant strategies.

Definition 9 A mechanism � with consequences in X̃ is a strategic game form
〈I, (Si ), φ〉, where Si is the set of actions for each agent i ∈ I and φ: ∏

i∈I Si → X̃
an outcome function that associates an alternative with every action profile.

We say that � implements a social choice function f : P(X̃)n → X̃ in domi-
nant strategies if there exists a dominant strategy equilibrium for the mechanism,
yielding the same outcome as f for each possible preference profile.

Definition 10 The mechanism� = 〈I, (Si ), φ〉 implements the social choice func-
tion f : P(X̃)n → X̃ in dominant strategies if there exists a dominant strategy
equilibrium of �, noted s∗(·) = (s∗

1 (·), . . . , s∗
n (·)), such that φ(s∗(�̃)) = f (�̃)

for all �̃ ∈ P(X̃)n.

Proposition 3 For any X̃ ∈ A(X), there exists a mechanism that implements
f m : SC(X̃) → X̃ in dominant strategies over X̃ .
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Proof Consider a preference profile �̃ ∈ SC(X̃) and the mechanism � = 〈I, (Si ),

φ〉, where an action for agent i ∈ I is simply to choose an element in Si = T (X̃ , �̃),
and the outcome function φ(s1, . . . , sn) = m(s1, . . . , sn). We show that the action
profile (τ (�̃1), . . . , τ (�̃n)) constitutes a dominant strategy equilibrium of the game
induced by �. That is,

φ(s1, . . . , τ (�̃i ), . . . , sn) �̃i φ(s1, . . . , ŝi , . . . , sn)

for all i ∈ I , ŝi �= τ(�̃i ), s−i ∈ ∏
j �=i S j . Since, by definition, φ(·) = m(·),

we can easily recast the proof of Proposition 1 to fit in this scheme. Suppose that
there exists such ŝi . Call s̃ = φ(τ(�̃i ), s−i ) and ŝ = φ(ŝi , s−i ). Without loss of
generality, assume τ(�̃i ) < s̃. We have two cases to consider:

1. ŝi ≤ s̃. Then m(τ (�̃i ), s−i ) = m(ŝi , s−i ). Therefore, φ(τ(�̃i ), s−i ) = φ(ŝi ,
s−i ). Contradiction.

2. ŝi > s̃. Then the new median ŝ belongs to the interval (s̃, ŝi ]. By hypothesis,
ŝ �̃i s̃. Furthermore, since the preferences are single-crossing on T (X̃ , �̃) and
ŝ > s̃, for every θ ≥ θi we have that ŝ �̃(θ) s̃. On the other hand, notice
that, since each S j = T (X̃ , �̃), there must exist θ j ∈ �I (�̃) such that s̃ =
τ(�̃(θ j )). Moreover, θ j must be such that θ j < θi . But then, since τ(�̃i ) < s̃
and s̃ �̃(θ j ) τ (�̃i ), by single-crossing, we have that s̃ �̃(θi ) τ (�̃i ). Contradic-
tion.

Therefore, (τ (�̃1), . . . , τ (�̃n)) is a dominant strategy equilibrium. ��
Interestingly the fact that the alternative declared by each agent is restricted to

be in the set T (X̃ , �̃) is crucial for the proof of Proposition 3. It is easy to see that a
mechanism based on direct declarations of most preferred alternatives in X̃ cannot
be used to implement f m . For instance, in Example 3, if each agent has to announce
his most preferred alternative in X̃ = {x, y, z} and the collective decision is taken
by the median function m(·), then manipulation cannot be avoided: If agent 1 and
agent 3 declare y and z, respectively, then player 2 would prefer to announce z
instead of his true top x .21

Instead, our indirect mechanism works because the induced preferences over
the set T (X̃ , �̃) are single peaked:

Lemma 4 If a profile �̃ = (�̃1, . . . , �̃n) is single-crossing over X̃ , then the restric-
tion of �̃ over the set T (X̃ , �̃) is single peaked.

Proof Given a profile (�̃1, . . . , �̃n) ∈ SC(X̃) and the associated set T (X̃ , �̃),
consider the restriction of �̃ to T (X̃ , �̃), denoted �̃T = (�̃T

1 , . . . , �̃T
n ). By con-

tradiction, suppose �̃T �∈ SP(T ), where SP(T ) is the set of all single-peaked
preference profiles over T (X̃ , �̃) (with respect to the linear order ≤). Then, there
exist an individual i ∈ I , with type θi ∈ �, and x, y, τ (�̃i ) ∈ T (X̃ , �̃) such that
x < y ≤ τ(�̃i ), but x �̃T

i y.22

21 Remember that Proposition 1 shows that individual manipulation is ruled out when agents
declare a complete preference ordering, and not just the top alternative.

22 The same argument applies if τ(�̃i ) ≤ y < x and x �̃T
i y.
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Table 8 Counterexample

�1 �2 �3 �4

w x y z
x y x y
y z w x
z w z w

Thus, y �= τ(�̃i ). Moreover, since �̃T ∈ SC(T ), x �̃T
j y for all θ j ≤ θi . This

means y �= τ(�̃ j ) for all θ j ≤ θi . However, since we assume y ∈ T (X̃ , �̃),
then y = τ(�̃k) for some individual k ∈ I , with type θk > θi . Then, y �̃k τ(�̃i )
implies y �̃ j τ(�̃i ) for all θ j ≤ θk . In particular, for θi . Contradiction. Hence,
�̃T ∈ SP(T ). ��

It is easy to show that the converse of Lemma 4 does not hold. That is, pref-
erences can be single peaked over T (X̃ , �̃), but not necessarily single-crossing.
The profile of Table 8 illustrates this.

Finally, we derive the following corollaries from Proposition 3.

Corollary 3 For any X̃ ∈ A(X), there exists a mechanism that implements f m :
OR(X̃ , {γθ }) → X̃ in dominant strategies over X̃ .

Proof Consider any preference profile �̃ ∈ O R(X̃ , {γθ }). By Lemma 2, there exist
γ : � → � and ρ : X → X such that �̃γ ∈ SC(ρ(X̃)), where �γ is generated by
� : γ (�) → P(ρ(X)). Hence, the mechanism defined in Proposition 3 yields, as
the outcome of its dominant strategy equilibrium, the median value of the maximal
alternatives over ρ(X̃); i.e., φ(�̃γ ) = m(τ (�̃γ

1 ), . . . , τ (�̃γ
n )) = τ(�̃(θ

γ
r )). But

then, applying the reasoning of the Proof of Theorem 1, it follows that f m(�̃) =
φ(�̃γ ); and, by the equivalence between �̃γ and �̃, we have f m(�̃) = φ(�̃). ��
Corollary 4 For any X̃ ∈ A(X), there exists a mechanism that implements f m :
BSC(X̃ , {q(θ), p(θ)}) → X̃ in dominant strategies over X̃ .

Proof Immediate from Lemma 2 and Corollary 3. ��
Corollary 3 provides the strategic counterpart of Theorem 1. That is, it shows

that, when preferences are order restricted, the outcome predicted by the RVT, i.e.,
the most preferred alternative of the median type agent, can be attained by a mecha-
nism in which each agent is allowed to choose an alternative among the top-ranked
alternatives in the feasible set of policies. Or, equivalently, it can be achieved by
following a two-stage voting procedure in which, first, individuals select a repre-
sentative among themselves, and then the representative voter chooses a policy to
be implemented by the planner.

7 Final remarks

In this paper we present several results. First of all, we prove that, in addition
to single-peakedness, there exist other meaningful domains over the real line that
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ensures the existence of nonmanipulable social choice rules. These are the domain
of single-crossing and broad single-crossing (order-restricted) preferences, over
which the median choice rule is shown to be not only strategy proof, but also group
strategy proof.

The main feature to remark of this result is that single-crossing does not neces-
sarily satisfy single-peakedness, and vice versa. But, in one-dimensional models of
voting, the latter is usually invoked to guarantee strategy-proofness. Thus, our result
shows that, at least for the median rule, certain amount of correlation or interde-
pendence between individuals’ preferences is also sufficient to prevent individual
and group manipulation.

In addition, the paper explores the relation between single-crossing and order-
restriction. A previous work in the same direction is Gans and Smart (1996),
in which these preference domains are shown to be essentially equivalent. Our
results differ from theirs in two ways. First, ours seem to be more consistent with
Rothstein’s original characterization of order-restriction. Second, particular atten-
tion is devoted here to the fact that these conditions may not be directly equiva-
lent. The crucial point to understand this difference is that, unlike single-crossing,
order-restriction does not assume any ordering on the set of possible alternatives.
Furthermore, it is precisely this feature that make order-restriction interesting for
multi-dimensional analysis.

Finally, the paper shows that the RVT has a well-defined strategic foundation.
That is, it proves that the outcome predicted by the RVT can be implemented in
dominant strategies through a simple mechanism. This mechanism is a two-stage
voting procedure in which, first, individuals select a representative among them-
selves, and then the representative voter chooses a policy to be implemented by
the planner. Given that the structure of this mechanism presents some features that
we observe frequently in “real” voting processes, the analysis carried out here may
also provide insights for the rationale of these “real” voting situations.

At the same time, there are significant issues that this paper does not cover. The
most important one is the characterization of the whole family of strategy proof
social choice functions over single-crossing preferences. Of course, the set that also
satisfies other requirements, like tops-onliness, Pareto efficiency or combinations
of them, should also be determined.

Another relevant question that we do not address is how sensitive are our results
to the assumption that individual preferences are antisymmetric. In our model, this
simplification is partially justified by the fact that the set of alternatives is finite.
However, it is clear that a complete analysis requires to study what happens when
indifference is admitted.

Finally, another interesting avenue for further research is to explore how single-
crossing and order-restriction can be extended to multidimensional settings; i.e.,
to models with multidimensional choice sets and with conflicts of interests that
cannot be projected over a one-dimensional space.
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