
Economic Theory and the

Alternative Set Theory

AFA− + AD + DC
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Abstract

Many authors in the discipline as well as outsiders have claimed that the main results from Math-
ematical Economics are far removed from real world phenomena. A more precise version of this

position is that one of the main reasons for this unrealistic stance is the use of the wrong formal
tools. So, for example, it has been pointed out that the computability of choice functions as well

as the existence of economic equilibria and of states of the world may not be ensured in general
if the assumed set theory is ZFC. We will show that there exists a very natural set theory that

overcomes some formal limitations of contemporary economic theory. A switch to an alternative set
theory helps to obtain in a more natural way results widely accepted by mathematical economists.

Moreover, alternative set-theoretical frameworks convey different intuitions about how agents behave
when solving problems. We claim that AFA−+AD+DC is the adequate alternative set-theoretical

universe for economic theory.

1 Introduction

Economic theory is constituted by an ever-growing body of mathematical formalisms
developed in order to explain both the behavior of economies and of individual agents
in them. In most of those formalisms the key question is to find optimal results.
This is a direct consequence of assuming that the behavior of agents is guided by
the principle of rationality. Moreover, even in the modeling of uncertain situations,
the solutions that provide the explanations sought by economic theorists are those in
which the beliefs and expectations of the agents are consistent with rational behavior
[Kreps 1990].

Even if most economic theorists agree with this point of view, a few economists have
some concerns about the meaning of the theoretical constructions and particularly
about the portion of reality that they represent.1 The question they pose can be
rephrased as: Does the formal apparatus of economic theory impose extra requirements
on the cognitive abilities of agents, other than their rationality? If so, can we be sure
that these extra requirements do not require abilities beyond those that can be deemed
reasonable?

Our focus will be on the computational and set-theoretical requirements for the

1A particularly influential alternative point of view was forcefully advanced by Herbert Simon, who claimed that

human beings are only boundedly rational and that they, instead of optimizing when deciding, just use procedures to

find solutions that satisfy their needs [Simon 1982]. Even this position seems “mechanicist” for more radical critics

[Mirowski 2002].

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–26 0000 c© Oxford University Press
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solutions to both individual and collective decision-making problems. It will be shown
that some usual innocent looking claims follow only if we assume alternative set-
theoretic frameworks (instead of the usual ZFC set theory).

Beyond the question of the problem-solving abilities required by the characteriza-
tion of economic agents, we are also interested in the intrinsic mathematical problems
that arise in the modeling of economic behavior. In that sense, to choose a set-
theoretical framework just to solve an analytical problem may seem an instance of
what Bertrand Russell called the “advantage of theft over honest toil”. Our answer is
that, although this is not entirely a false claim, in the case of the modeling of agents,
the choice of set theory implies the assumption of a given problem-solving ability
that may be absent in another framework. Since one of the main goals of economic
theory is to exhibit the basis on which agents solve their individual and collective
decision-making problems, we may resort to set-theoretic postulates just to represent
some cognitive abilities.

The idea of changing the underlying set-theory just in order to make the mathe-
matical objects and constructions correspond to real-world counterparts is not new.
The entire program of research that Jon Barwise initiated on situation theory and
related formalisms, based on his idea that logic is a branch of applied mathematics, is
clearly an inspiration for the approach we follow here [Barwise-Etchemendy 1987],
[Barwise-Moss 1996],[Barwise-Seligman 1997]. In computer science, the advan-
tages of adopting set theories closer to common sense have been emphasized in
[Pakkan-Akman 1994] [Akman-Pakkan 1996]. More recently, Jan Mycielski has pre-
sented a universal set theory in which the class of mathematical objects can be given
physical interpretations [Mycielski 2006], [Mycielski 2007]. We intend to do some-
thing similar for Economic Theory.

Our goal is to present an approach to economic theory based on choosing as its
foundation a set theory that supports all the results widely accepted. The idea is
that economic entities with their intended properties should be represented in the
underlying set theory. This has consequences beyond the mere rephrasing of previous
results. New entities will have a right to exist in this framework, which lack legitimate
counterparts in ZFC. As said, an important aspect of this is that the alternative set-
theoretical foundation should, on one hand, not give way to undesirable properties or
entities, while on the other it should keep all the desirable results. Even if they are
not presented exactly in these terms, the introduction of O-minimal structures as the
right models for certain results ([Zame-Blume 1992],[Richter-Wong 2000]) points out
the need for new formal alternatives to the usual interpretation of theoretical results.

The approach followed here runs in the opposite direction of a wide ranging
project pushed forward, in a series of papers of the 1980s and 1990s, by Alain Lewis
[Lewis 1985],[Lewis 1990],[Lewis 1991],[Lewis 1992]. The main idea advanced there
was that economic theories should be formulated in an effective framework. That is,
that every entity or property defined in them should be computable. To make his case
Lewis tried to show, in an impressive exhibition of scholarship, that the key notions
in economic theory are not effective and therefore that they should be redefined. We
take issue with this claim and with Lewis’ program in general, and a good deal of
this paper will be devoted to showing how to overcome the limitations denounced by
Lewis.

The set-theoretical framework we think is a better fit for economics is AFA− +
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AD + DC. That is, the theory of sets that can be derived from the axioms of
Zermelo-Frenkel set theory (except the axiom of Regularity, which is replaced by the
Anti-Foundation axiom) as well as from the axiom of Dependent Choices (weaker than
the Axiom Choice) and the Axiom of Determinacy. We claim that a lot of insight
is gained in this switch. We will profit in our discussion from the wealth of results
concerning the mathematical universes built upon AD and AFA. We do not intend
this paper to be seen as a contribution to set theory nor claim that the proposed
mathematical framework is more “real” than more classical ones. We just want to
show how a domain of empirical discussion may be simplified by the choice of an
alternative foundation.

In this paper we will emphasize on several consequences of this change of underlying
set theory:

• Some economical meaningful entities can be more easily shown to be effectively
definable. In particular, individual demands and economic equilibria (Lemmas 3.3
and 4.2, respectively).

• Sequences of economies with shrinking cores are shown to converge to an economy
in which competitive equilibria are socially optimal (Proposition 4.8).

• The distinction between “infinite” and “very large” societies is eliminated (Propo-
sition 4.8 again and Proposition 4.9).

• No matter how beliefs are represented, they can be unfolded in ω steps (Lemma
5.2).

Notice that all these claims do either not follow in ZFC or, if they do, their proofs
are much more complicated than in AFA− + AD + DC.

In section 2 we introduce a brief description of the problems and goals of economic
theory as well as the main difficulties of a logical nature we can find there. One of
the most discussed problems is that of the computability of choice procedures, which
will be analyzed in section 3. In section 4 we consider the problem of existence of
competitive equilibria. In section 5 we analyze the problem of finding a common prior
in situations of asymmetric information. Finally, in section 6 we return to our initial
discussion of the legitimacy of solving analytic problems in economics by means of a
change of the underlying set theory.

2 The Main Problems in Economics

Although it is difficult to summarize the core of a discipline in a few words, the main
questions in economics, leaving all the technicalities aside, may be the following:

• How do agents make choices?
• How does so much order arise from individual choices?

These two simple questions have been analyzed under the assumption that agents
are rational. That is, that they have preferences, face constraints and choose options
in such a form that their elections satisfy the constraints and are consistent with their
preferences. In most models this means that agents maximize their preferences over
their constrained sets of options.

This last line of reasoning serves as the basis for the answer of the first question.
We conclude that the entire schema of choices of the agents may be derived from the
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maximization of preferences varying the constraints (which represent the environment
in which they have to choose). On the other hand, the second question actually asks
for a precise characterization of the environment in which all the agents interact, in
order to make their choices mutually consistent.

As an example of how these general problems have been attacked, let us consider an
economy ε in which a finite number of agents interact. Each agent i (i = 1 . . . n) can
be identified with the triple 〈Xi ,�i, wi〉, where Xi is the set of possible consumptions
of i,2 �i is a preorder on Xi (representing i’s preferences) and wi ∈ Xi are the initial
endowments of the agent [Debreu 1959],[Arrow-Hahn 1971],[MWG 1995].

In words: an agent orders the alternative vectors of consumption. The order is
transitive and each pair of alternative vectors (“consumption baskets”) is compa-
rable. The goal is to choose the most preferred alternative among those that can
be purchased in the market using the proceeds from the sale of an initial vector of
resources.

An additional piece of information about this economy, in which the only allowed
transaction is the exchange of goods, is that the variable representing the environment
is the system of prices, p.3 That is, the only information available to the agents about
the entire economy is encoded in the prices. Moreover, no agent can modify them.

The decision of an agent i is to choose an amount x∗i ∈ Xi that maximizes �i over
B(p, wi) = {x ∈ Xi : p ·x ≤ p ·wi}. That is, i will choose the amount of goods x∗i that
is among the most preferred of the amounts that have the same or less value than the
initial endowments.

If we vary the environmental variable, p, we change x∗i . We obtain then a demand
function, x∗i (p).

4 On the other hand, a market consistency condition is that the actual
prices p∗ should satisfy that

∑n
i=1 x

∗
i (p

∗) =
∑n

i=1 wi, that is, that the economy is in
equilibrium. In other words, at the given equilibrium price, the amounts demanded
by all the agents should be equal to the amounts that are available (the endowments).
Notice that in order to find p∗ we have to know each x∗i (·), i.e. the demand function,
and not only the amount demanded at a given price.

This simple model abstracts the idea that in a perfectly competitive economy in-
dividual agents are not able to modify prices. On the other hand, since we do not
assume the presence of an authority that enforces equilibrium, when the number of
agents is small this creates incentives for strategic behavior. That is, agents may
declare their demands dishonestly, in order to achieve a certain system of prices that
allows them to get to a more preferred amount. This raises the question of what
conditions ensure that the equilibrium outcome cannot be improved by individual or
group deviations.

Finally, one of the more basic considerations in the analysis of economic interactions
is whether agents are fully informed about the characteristics of other agents. If not,
the context is said to consist of incomplete information. The only possibility for agents
to coordinate on an equilibrium arises (otherwise than by sheer luck) if they share a
common prior [Binmore 1990], [Fudenberg-Tirole 1991], [Osborne-Rubinstein 1994].
That is, if all of them initially evaluate the possible situations with the same prob-

2In general Xi is assumed to be a subset of an Euclidean subspace �l
+ . We will follow this convention here.

3If Xi ⊆ �l
+ then p ∈ �l

+ , i.e. there are as many prices as goods in the economy.
4Notice that for a given price p there might exist several maximal elements for �i over B(p, wi). We will not

consider this possibility here and will assume that each x∗
i (p) is a singleton.
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ability distribution over situations. After that, they may update their evaluations
in different ways, according to the information they obtain during their interaction.5

To achieve this, they have to converge to a shared assessment of the environment,
the behavior of other agents and their beliefs. The objective data plus the common
assessment made by the agents is called a state of the world.

We can summarize the previous discussion by saying that the main questions of
economics may be reduced to solving the following formal problems:

1. To compute choice functions (like x∗i (p)).
2. To determine the conditions in which an equilibrium–like p∗– exists.
3. To find conditions for the convergence of the beliefs of the agents to a common

state of the world.

Each of the next three sections is devoted to one of these problems.

3 The Existence of Choice Functions

The hypothesis of rationality of agents allows us to assume that each choice made
by an agent is optimal, according to her preferences. Moreover, we assume that this
is true for any given choice situation. Otherwise we would not be able to solve a
problem like the determination of a market equilibrium. That is, we ask the choice
function to be realizable, i.e. computable [Campbell 1978].

Given the well-known Church’s Thesis, we have that the realizability of a choice
function amounts to the existence of a Turing machine that yields the choice as an
output when the environmental conditions are given as inputs. To make this a bit
more precise, let us introduce some definitions.

Given a set of options X, and F a subset of 2X, a choice function C : F → X is
such that for each B ∈ F , C(B) ∈ B. In words: for each of its feasible subsets B, the
choice function yields only one element in B.

We assume that there exists a preorder over X, denoted �, representing the pref-
erences of the agent. Then, we say that C is realizable if there exists a recursive
function6 f : X → N , such that7

• if x, y ∈ X, x � y if and only if f(x) ≤ f(y)
• for all B ∈ F , C(B)= {x ∈ B: f(y) ≤ f(x), for all y ∈ B}.
C is said to be recursively realizable if given its graph, G = {〈B, C(B)〉}B∈F

there exists a recursive function φ such that

φ(〈B, C(B)〉) =
{

1 if 〈B, C(B)〉 ∈ G
0 otherwise

The difference between the problem of the existence of f and that of the existence of
φ is crucial here. The existence of f ensures that C is recursively enumerable (R.E.)8

5This Bayesian conception can be relaxed, just assuming that agents conceive the same set of possible situations

and may update it afterwards.
6That, is, there exists a Turing machine, that given two natural numbers, x and y, answers yes to the question

“is f(x) equal to y?” if y = f(x), and no otherwise.
7f is an equivalent representation of the preference ordering of an agent, while C yields the chosen alternative

on any subset of consumption baskets.
8This means, that there exists a Turing machine that can generate each and all the elements of the image of C.
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while the existence of φ yields the recursivity of C. That is, if C is R.E. we know that
given a set B the chosen option may be found, while if it is recursive we know which
option is chosen in each B.

In the context of our market example, if a demand function x∗i (·) is R.E. we may
determine, given a price p, the chosen consumption. If we know more, namely that
x∗i (·) is recursive, we are able to find the price system p∗ that yields the market
equilibrium (

∑n
i=1 x

∗
i (p

∗) =
∑n

i=1wi).
The problem of whether C is recursive or not, leads to another, more general prob-

lem, which is to find to which class in the Arithmetic Hierarchy it corresponds. This
hierarchy, which constitutes a form of classifying degrees of uncomputability, is de-
fined as follows: given a set of natural numbers A, consider a first-order formula
in the language of the theory of numbers ψ(x) such that A= {x : ψ(x)}. Then
[Putnam 1973]:

• A is in Σ0
0 and in Π0

0 if ψ(·) is a recursive predicate.

• A is in Σ0
n if ψ(x) ≡ ∃y1, ∀y2∃y3 · · ·Ψ(y1, . . . , yn; x) where Ψ(· · ·) is a recursive

predicate.

• A is in Π0
n if ψ(x) ≡ ∀y1, ∃y2∀y3 · · ·Ψ(y1, . . . , yn; x) where Ψ(· · ·) is a recursive

predicate.

A set A is said recursive if its decision problem (“does x belong to A?”) which has
a yes answer if x ∈ A and a no answer if x /∈ A, has its answer provided by a Turing
machine, which computes the recursive characteristic function of A. By definition,
each recursive set is in Σ0

0 and in Π0
0.

A is R.E. if its characteristic function is R.E., i.e., its elements can be generated
(enumerated) by a Turing machine. It follows that if A and its complement Ac are
both R.E., A is recursive. A well-known result in Recursion Theory shows that any
R.E. set A is in Σ0

1, while Ac is in Π0
1 [Ash-Knight 2000].

This correspondence between degrees of recursion and classes in the Arithmetic
Hierarchy can be extended beyond Σ0

1 and Π0
1. A set A is said n-enumerable if it

is in Σ0
n. That is, it is such that its elements can be enumerated provided that

the other elements in the corresponding n-ary relation that defines A have been
enumerated. To see this, suppose A is a Σ0

n set. Then, x ∈ A if and only if
∃y1, ∀y2∃y3 · · ·Ψ(y1 , . . . , yn; x). A similar characterization indicates when A is in Π0

n

(the complement of Σ0
n) [Kleene 1943]. A straightforward property of this hierarchy

is that if A is in Σ0
n (Π0

n), it is also in Σ0
n+1 (Π0

n+1), for all n.
Given two sets A and B we say that A is Turing reducible to B if there exists a

Turing machine that translates the problem of enumerating A into a decision problem
for B. That is, if B were recursive, then A would be recursively enumerable. If B is
in either Σ0

n or Π0
n, A will be in Π0

n+1 or in Σ0
n+1, respectively. Then, if A is reducible

to B, it is at least as complex as B.
With all these notions at hand, we can present the following negative result:9

9The tools of Constructive Analysis have been also applied to the analysis of the computability of choice functions

and equilibria. This variant of Analysis has been characterized as the result of applying Intuitionistic Logic to clas-

sical mathematics [Bridges 1994]. In this sense, every entity to be defined must be constructed (not just shown to be

contradiction-free). Using this approach, a negative result for economic theory has been found [Richter-Wong 1999].

On the other hand, alternative definitions of convexity allow to obtain positive results [Bridges 1992]. Also see

[Velupillai 2004] for a relativization of the importance of this approach for Economic Theory.
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Theorem 3.1
[Lewis 1985] In the case that X is the recursive representation of a compact and
convex subset of �l

+ (see [Moschovakis 1964]), the graph of C (G) is not a recursive
set.

Sketch of Lewis’ argument: If we assume that the graph of C is recursive, its
image, Im(C) should also be recursive. On the other hand, Im(C) ⊆ [α−, α+], where
α−, α+ are Gödel numbers corresponding to recursively defined real numbers. But
[α−, α+] can be Turing reduced to the decision problem of ALG([α−, α+]), the set of
Gödel codes of algebraic numbers corresponding to elements in [α−, α+]. If so, the
complexity of Im(C) must be at least the same as that of ALG([α−, α+]). According
to a result in [Shapiro 1956], ALG([α−, α+]) is in Σ0

2. Since Im(C) is the projection
of the graph G and is Σ0

2, G must also be at least in Σ0
2, and therefore it cannot be a

recursive set.

The key tool in the Lewis’ “proof” is Shapiro’s Theorem II.15, which states that
the characteristic function of an interval of algebraic real numbers is not computable
[Shapiro 1956]. He uses it after the quite suspicious claim that the computability
of C is the same as that of the characteristic function of [α−, α+]. There is, to our
knowledge, no justification for this claim, but if we accept it, Theorem 3.1 shows a
serious limitation to the ideal of the realizability of economic theory. In fact, Lewis
claims that Theorem 3.1 is similar to a celebrated result in game theory, namely that
not every winning strategy is computable. Consider a two-person, zero-sum, perfect
information game Γ, defined in terms of a total recursive function h : N → N:

• Player I chooses i ∈ N.
• Player II, knowing i chooses j ∈ N.
• Player I, knowing i and j, chooses k ∈ N.

Γ ends there. If h(k) = i+ j, I wins, otherwise, II wins.
Now assume that h enumerates a simple set S ⊂ N , i.e.:

• S is infinite and R.E.,
• N− S is infinite and there does not exist a R.E. infinite set W ⊆ N − S.

Then we have:
Theorem 3.2
[Rabin 1957] Γ has no computable winning strategy.

Proof: Assume that II has a computable winning strategy. Given i, II chooses j
such that i+ j /∈ S. That is, II’s strategy can be described by a function τ : N → N
such that i + τ (i) /∈ S, for all i ∈ N. It follows that for every choice k of I, since
h(k) ∈ S and i+j = i+τ (i) /∈ S, II wins. But then, since w(i) = i+τ (i) is R.E., we
have that its image, W, is a R.E. set such that W ⊆ N−S. Absurd, since S is simple.

This result indicates that even if it is possible to describe the game for each possible
sequence of plays and determine its winner (by means of h), there is no recursive
function that yields 1 if the choice of II leads her to win and 0 otherwise.

The point here is that the failure of recursivity depends critically on the charac-
terization of Γ. In Lewis’ claim, the problem is due to the representation of G. The
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difference between both cases is critical, despite Lewis’ claim that they are analogous.
In fact, in the latter case, the choice function C is represented by means of natural
numbers (the codomain of f). Then, its recursivity is an absolute property, i.e. true
in every extension of ZF.10 So, if its recursivity can be proven by other means, Lewis’
Theorem 3.1 is false. The rest of this section will be devoted to present an alternative
set-theoretical framework in which the recursivity of C becomes easy to prove.

As a first step, let us consider, as in Theorem 3.2, a Gale-Stewart game, i.e. a
zero-sum, perfect information game in which two players choose natural numbers and
one wins if she can lead the sequence to be in a certain set and looses otherwise. To
define this game, ΓC , we will consider the same prerequisites as those for Theorem
3.1: we have the recursive presentation of C over X, f and a recursive presentation
of the domain of C, F , i.e. a recursive function F such that F (B)= 1 if B ∈ F .

In ΓC, Agent I (the spoiler) chooses a subset B ∈ F . II replies with an element
xII

0 ∈ B, and player I chooses xI
0 ∈ B such that f(xI

0) > f(xII
0 ). II selects xII

1 ∈ B
such that f(xII

1 ) > f(xI
0). In turn I will try to find xI

1 ∈ B such that f(xI
1) > f(xII

1 ),
etc. The game finishes at any stage when either one of the players fails to find the
response to the previous move. If II has a winning strategy it must consist in choosing
x∗ = C(B), for any B ∈ F . Furthermore, if a winning strategy for II exists and is
recursively defined, C will be computable.

Therefore, the first step towards ensuring the computability of C(·) is to force the
existence of a recursively defined winning strategy for II. One method to achieve
this is by including in our set theory the Axiom of Determinacy(AD). AD states
that each Gale-Stewart game is determined, i.e. there exists a winning strategy for
it.11 On the other hand, the addition of AD to our underlying set theory forces us
to drop the Axiom of Choice, although in ZF it is consistent with the weaker DC
(Axiom of Dependent Choices).12 That is, we can assume that for any binary relation
R ⊆ X×X (for any X �= ∅), if for any x ∈ X there exists y ∈ X such that 〈x, y〉 ∈ R,
then there exists a countable sequence (xn)n∈N ⊆ X such that 〈xn, xn+1〉 ∈ R for
every n. DC is, in ZF, equivalent to the Principle of Recursive Constructions, i.e.,
given X �= ∅ and the set of all finite sequences in X, denoted <ωX, if we have a
function G : <ωX → 2X \ {∅}, where 2X is the class of subsets of X, then there exists
fG : N → X such that fG(0) ∈ G(∅) and fG(n) ∈ G(fG(0), . . . , fG(n − 1)), for all
n > 0 [Just-Weese 1996].

Consider now the properties of ultrafilters over the set of natural numbers, ω. A
family of sets U ⊆ 2S is said an ultrafilter over a set S if: (i) S ∈ U ; (ii) A∩B ∈ U , if
A,B ∈ U ; (iii) if A ∈ U , and A ⊆ B, then B ∈ U ; (iv) if each A ⊆ S satisfies either
A ∈ U or A ∈ 2S \ U . A ultrafilter U is said to be free if ∩A∈FA = ∅. Otherwise
it is called principal: there exists a singleton {a} such that U = {A :{a} ⊆ A}. To
ensure the computability of C we can profit from the fact that in ZF + AD every
ultrafilter over ω is principal [Just-Weese 1996].

We have that:13

10Jan Mycielski, personal communication.
11AD was introduced in [Mycielski-Steinhaus 1962]. There exists an already huge and growing literature

on this axiom. Very readable presentations, which show how the topic evolved in time, can be found in

[Fenstad 1971],[Jech 1973],[Mycielski 1992], [Marek-Mycielski 2001].
12The incorporation of AD and the loss of AC has important consequences, one of them being that every set of

real numbers becomes Lebesgue-measurable [Jech 1973].
13Related arguments, in rather different contexts, lead to similar conclusions [Canning 1992], [Mihara 1997].
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Lemma 3.3
In ZF + DC + AD, C is recursive.

Proof: If there exists a winning strategy σ for II in ΓC, we can ensure that for each
B ∈ F , C(B) �= ∅. We expect σ(B) (the consequence of playing σ from the initial
choice B made by I) to yield the element x∗ = C(B). If σ can be recursively given,
then, a Turing machine can be defined such that for every pair 〈B, C(B)〉 yields a
Y ES answer if σ(B) = C(B) and a NO otherwise. Let us show how to construct
such σ. Consider a family of sets drawn from Im(f(B)), the range of f restricted to
B. This class O ⊆ 2Im(f(B)) satisfies that Ax ∈ O iff Ax= {f(y) : there exists x ∈
B, f(x) ≤ f(y), and f(y) ∈ Im(f(B))}. Consider now the class OC, consisting of
sets of the form An= {f(xn), f(xn+1), . . .} where xn is a choice that can be made at
the n-th stage of ΓC by either I or II and xn+1, . . . is a possible ensuing sequence of
choices in the play. We have that

• f(B) ∈ OC, since all the elements in B can be played out in a play of ΓC .
• A∩A

′ ∈ OC, if A,A
′ ∈ OC , since the common elements in two different sequences

are ordered (since they arise in plays of ΓC) and therefore constitute a sequence
in itself

• if A ∈ OC , and A ⊆ A
′
(A

′ ∈ O), then A
′ ∈ OC, since A

′
= Ax for a given x,

and therefore can be seen as arising in the play of ΓC .
• each A ∈ O verifies that A ∈ OC.

It follows that OC is trivially an ultrafilter over f(B)⊆ ω since each element in
f(B) is represented by a natural number. If the cardinality of Im(f(B)) is finite,
OC is principal. Otherwise, since we are assuming that the underlying set theory is
ZF + AD, OC cannot be free. That is, there exists a singleton {f(x∗)} such that
OC = {A :{f(x∗)} ⊆ A}. This means that f(x∗) ≥ f(y) for every y ∈ B. That
is, x∗ = C(B). Since f(x∗) belongs to all sequences played out in ΓC, II can always
win. Let us see how to define the corresponding σ(B). First of all, notice that for
any sequence of values in f(B) that may arise from a play of ΓC , we have a set
An⊆f(B) that includes the sequence. Then, there exists, according to the Principle
of Recursive Constructions(equivalent to DC in ZF), a function hB : N→ f(B)
such that hB(0) ∈ f(B), hB(1) ∈ A0, . . ., hB(n) ∈ An-1, for all n > 0, where
An= {f(x) : hB(n) ≤ f(x)} ⊆ f(B). Since this is a primitive recursive function,
there exists a Turing machine that, given as an input B, it produces the course of
values of hB. The machine can be so defined as to have on its initial tape the code
number of B and by a process of writing and erasing, at the end of each stage n to
have on the tape the number corresponding to hB(n). The machine will always stop
with the value of f(x∗) written on the tape. Since f is recursive, another Turing
machine can read f(x∗) and output x∗. The combined action of these two Turing
machines is independent of the particular hB. So, we can define σ(B) as x∗. It
follows that C is recursive.

Lemma 3.3 reveals that Lewis’ Theorem 3.1 is mistaken. In fact, the absoluteness of
the recursivity of C means that, in ZF, given any B we will always obtain x∗ = C(B)
by using the same Turing machines described in the proof of Lemma 3.3. Besides
this important consequence, the construction used in the proof reveals how powerful
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becomes the adoption of AD as an axiom of the alternative set theory. The principal
ultrafilter result, one of its main derivations, is the basis of the simple construction
that yields a mechanical procedure of economic choice with ensured termination.
Furthermore, this argument indicates that the change from ZFC to ZF + DC+ AD
provides a formal playground in which the main results of Economic Theory may be
recasted in simpler terms.

Of course, the whole exercise would be trivial if ZF+AD+DC were not consistent.
But consistency proofs have not been found even for ZF within itself. In fact, set
theorists use normally large cardinals just to build inner models of ZF as well as of
some other set theories, as a mechanism to evaluate the consistency of the theory up to
a very large cardinal. It has been shown that ZF+AD+DC is satisfiable by the inner
model L[R], given certain additional axioms of large cardinals ([Martin-Steel 1989])
and, moreover, it has been shown by Woodin that it is equiconsistent with ZF +
“There are infinite Woodin cardinals” [Jech 2003].14 For our purposes it suffices to
know that these results led set-theoreticians to believe that ZF + AD + DC is not
inconsistent.

To switch to this set theory could mean, in the context of choice functions in
economics, that we assume that the internal deliberation process that leads to a
choice reaches a result, and moreover, that under the same conditions the result must
also be the same. A trivial form in which this could happen is if agents compute
their choices with a certain bound in precision. Once an outcome has that degree of
precision (say in solving a maximization problem using an approximation method),
it is considered the chosen option.15

We cannot leave the topic of the computability of choice functions without a brief
analysis of another kind of complexity. On one hand, in ZF+AD+DC the complexity
of C equals that of a Turing machine. Another kind of complexity is defined in terms
of the number of steps needed to get to a result. Given a finite choice set B, if the
number of bits in its description is m, we say that it is polynomial if the number of
steps needed to calculate its Gödel number is O(tm), i.e. a polynomial of the type
αmt

m +αm−1t
m−1 + · · ·+ α1t+α0. It would be highly desirable that if C(B) can be

described with, say, r bits, the number of steps to compute its Gödel number were
also polynomial, i.e. its complexity were O(tr). The condition that allows this is
characterized by:

Theorem 3.4
[Friedman 1984] The outcome of an optimization problem over polynomial inputs is
polynomial if and only if P = NP.

That is, the encoding of the outcome of a finite optimization over a polynomial
input is polynomial only in case that all the problems that have solutions that can
be checked out in a polynomial number of steps can also be solved in a polynomial
number of steps.16 As it is well known, whether P is equal or not to NP is an

14The “large cardinals” axioms postulate the existence of cardinals that cannot be proven to exist in ZF. Each

of such axioms implies that for every definable property of sets, there must exist very large sets satisfying them.

[Marek-Mycielski 2001]
15This may be a formal form to present Norbert Wiener’s quip that arithmetic in economics does not require more

than two decimal digits [Wiener 1964]. Of course, in this case the range of values is discrete, requiring therefore

only a rather simple set theory.
16The intuition is that, while the actual solution may be easily describable, its computation–as the result of the

process of maximization–may require a high number of steps.
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open problem, but there is a consensus among experts that the answer is for the
negative. If so, according to Friedman’s result, we should expect that the solution
to an optimization problem over polynomial inputs will not be polynomial. In other
words, the optimization may be intractable, being practically feasible only for small
inputs. If we recall that C(B) is the solution to a maximization problem we can see
the relevance of this problem for economic theory. But the change of set theory to
ZF + AD + DC does not facilitate the solution of the P �= NP question.17

4 Existence of Equilibria

Market equilibria are fundamental entities in economic theory. If an economy is not
in equilibrium, there are few characteristics of that economy that can be ascertained.
On the other hand, the mere existence of an equilibrium does not ensure that the
economy will end up there. But, in any case, to prove their existence is the first step
towards the development of a more general model of economic interactions.

Kenneth Arrow and Gerard Debreu, applying the notion of Nash equilibrium found
the first general proof of existence of equilibria. Further work by those authors led
to a refinement of the proof. They got rid of the need of specifying a fictitious
game (in order to find a Nash equilibrium) by using the main formal tool behind
Nash’s Theorem. That is, they used Kakutani’s fixed-point theorem to determine the
conditions that ensure the existence of a fixed point. The key to the proof is to define
an excess demand function. In our leading example, z(p) =

∑n
i=1 x

∗
i (p) −

∑n
i=1 wi.

Since z(p) ∈ �l
+, if the price of good j is such that its corresponding entry in the

excess demand vector is zj(p) > 0, it is increased from pj to p
′
j > pj . If instead

zj(p) < 0 then p
′
j < pj, while if zj(p) = 0, pj remains unchanged. Therefore, we have a

correspondence F that takes p as an argument and yields p
′
(given p it determines z(p)

and then changes the prices according to the signs of its coordinates). An equilibrium
is just a p∗ such that p∗ ∈ F (p∗). Standard properties of preferences, which translate
into the functional form of F (·), ensure the existence of such p∗. Variants of this
argument, involving all the available fixed-point theorems, have been applied to prove
the existence of equilibria in different market structures.18

If we consider E, the class of economies with a finite number of agents and en-
dowments in a finite-dimensional Euclidean space, we can distinguish the corre-
sponding space of prices ΔE. Then, the existence of an equilibrium amounts to
the claim that there exists a well defined correspondence EQ : E → ΔE, such that for
ε = {〈Xi,�i,wi, 〉}n

i=1, if p∗ ∈ EQ(ε), then
∑n

i=1 x
∗
i (p

∗) − ∑n
i=1 wi = 0. Nice as this

sounds, the following result casts doubt on its meaningfulness:

Proposition 4.1
[Lewis 1992] The graph of EQ is not recursive.

Sketch of Lewis’ argument:Since each equilibrium is found by considering the
individual demand functions, x∗i (·), EQ is Turing-reducible to their sum. But each
demand function is a choice function. Then, the complexity of EQ is at least that of

17Unless P = NP is shown undecidable [Tsuji-Da Costa-Doria 1998]. If so, there might be models of our set-

theory in which it is true and others in which not. Extra axioms may make the claim decidable. But this is not an

alternative that theoretical computer scientists consider seriously [Pudlák 1996].
18Even the topology-free Fixed-Point Theorem of Tarski has been shown useful [Tohmé 2003].
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a C (as discussed in section 3). According to Theorem 3.1, a C is in the class Σ0
2.

Therefore, EQ cannot be either in Σ0
0 or Π0

0, i.e. recursive.

This result, obviously true if we accept Theorem 3.1, can be disposed again by
means of AD:

Lemma 4.2
In ZF + DC + AD, EQ is recursive.

Proof Consider a game between “the economy” and a fictitious player, usually
known in the literature as the “Walrasian auctioneer”. For each economy ε, in
which the commodity space is the recursive representation of �l

+, denoted �̂l
+, the

auctioneer begins by announcing a price system p ∈ Δ̂E ⊂ �̂l
+. p determines the

corresponding choice sets of each agent i: Bi(p) = {x : p · x ≤ p · ωi} ⊂ �̂l
+.

Each agent responds with the choice (recursively defined, according to Lemma 3.3)
x∗i (p). That is, the economy responds with the vector of demands (x∗1(p), . . . , x∗n(p)).
If z(p) =

∑n
i=1 x

∗
i (p

∗) − ∑n
i=1 wi = 0 the auctioneer wins, otherwise he proposes

another system of prices p
′ ∈ �̂l

+ and the economy responds with the corresponding
demands, etc. The game ends if a p∗ is reached such that z(p∗) = 0. Otherwise,
the game goes on forever. To show that the auctioneer has a winning strategy,
just notice that in Z(p) = {z(p) : p ∈ Δ̂E} we can distinguish a family of sets
Ap ={z(p′

) : there exists p
′ ∈ Δ̂E, |z(p)| ≥ |z(p′

)|}. Over this class we can define
trivially, as in the proof of Lemma 3.3, an ultrafilter based on the sets ApW, where

pW is any price that can be announced by the (Walrasian) auctioneer in any play of
her game with the economy. In ZF+DC+AD this ultrafilter is principal, and there
exists p∗ such that {z(p∗)} ⊆ Ap for any p ∈ Δ̂E. By definition, z(p∗) = 0. That is,
there exists a winning strategy for the auctioneer and it can be recursively defined as
in the proof of Lemma 3.3.

Another line of attack on the problem of existence of equilibria has also a long
tradition in economics. Francis Y. Edgeworth initiated this approach to the analysis
of exchange economies by introducing the notion of the core of an economy, that is,
the set of resource allocations that cannot be improved upon for at least one agent
without impoverishing the others. Edgeworth advanced the idea, later known as
the Core Equivalence Conjecture, that the core of a competitive economy with a large
number of traders is identical to the set of equilibrium allocations. The various proofs
of this conjecture have been frequently cast as limit results. The key idea in those
proofs is to make the relative importance of each agent decrease when the number of
agents increases. One of the approaches consisted in assuming that in the limit there
exists a continuum of agents, for example indexing them with the real numbers in the
closed interval [0, 1], a setting in which measure theory can be applied [Aumann 1966].

In the case in which the number of agents is uncountable, the economy is seen as the
limit of sequences of economies in which the measure of non-competitiveness converges
to zero. In terms of the cores of those economies it means that they become “smaller”
until, in the limit economy, the core has measure zero and coincides with the set of
equilibria in the economy [Hildenbrand 1974]. A closely related approach consisted in
assuming that in the limit economy each agent is indexed by an infinitesimal number.
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In that setting the tools of non-standard analysis were applied to find an analogous
result [Brown-Robinson 1975].

Besides measure theory and non-standard analysis other mathematical tools have
been applied to proving versions of the Core Equivalence Theorem. This includes
proofs using only elementary arguments. They begin by defining an economy like the
one we presented in section 2. That is, a n-agent economy εn is:

εn = {〈Xi ,�i, wi〉}n
i=1

An allocation is defined as x ∈ X, where X = X1 × . . .×Xn . An allocation x
is said feasible if

∑n
i=1 xi =

∑n
i=1 wi. Then, the core of εn is defined as:

COR(εn) = {x̄ ∈ X : there is no S ⊆ {1, . . . , n} and x ∈ X such that∑
i∈S xi =

∑
i∈S wi and x̄i �i xi for all i ∈ S},

that is, x̄ is in the core only if there is no other allocation, feasible for at least one
group of agents, that makes them better off.

As the number of agents in εn is finite, we do not expect the core to coincide with
an equilibrium allocation. But, if we consider a sequence of economies that converges
in the sense that their cores shrink19, then the result is that in the limit, the core has
a single allocation x̄, which coincides with the equilibrium allocation, x∗(p∗).

The interest in elementary proofs resides in that they can be developed, in principle
at least, without the aid of advanced mathematical tools. Even so, they have been
subjected to a certain amount of criticism. As briefly noted in the Introduction, Alain
Lewis pushed for the exclusive use of effective methods in economic theory. A first
step in that direction was for him to restrict the mathematical arguments to be part
of only ordinary mathematics, meaning the fragment of absolute first-order logic
formulas in the language of set theory. That is, formulas of the form ψ(x1, . . . , xn),
with free variables x1, . . . , xm such that for any model of ZF, M, for all constants
a1, . . . , am ∈ M, M |=ψ(a1, . . . , am) if and only M |=ψ|M(a1, . . . , am), where ψ|M is
ψ with its bounded (i.e. in the scope of a quantifier) variables also restricted to be in
M [Just-Weese 1996].20

Lewis’ concern was that the proofs and arguments should be effective, that is, that
they must only involve recursively defined steps. Since ordinary mathematics does
not use the non-effective AC he found that ZF was the right setting for his program.
In the cases in which a direct proof of non-recursiveness was not available he tried
to show that there exists a model of ZF in which the involved notions are not true
(indicating that they are not part of ordinary mathematics) and therefore that they
could not be effective.

Using this kind of argument, Lewis made the claim that even the elementary core
equivalence results were not effective [Lewis 1991]. Let us analyze this claim. If
Mεn = max

S⊆{1 ,...,n}
max

j=1 ,...,l {
∑

i∈Sw
j
i } we have that:

Lemma 4.3
[Anderson 1978] If x̄ ∈ COR(εn) there exists a system of prices p∗ such that:

19In the sense that the difference between the class of equilibria (which remains fixed in all the sequence) and

that of allocations in the core becomes progressively reduced [Hildenbrand-Kirman 1988].
20A whole research program, known as Reverse Mathematics consists in searching for a set-theoretical foundation,

less general than ZF, for ordinary mathematics [Friedman 1981].
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• ∑n
i=1 |p∗ · (x̄i −wi)| ≤ 2Mεn .

• ∑n
i=1 | inf{p∗ · (xi −wi) : x̄i �i xi}| ≤ 2Mεn .

Of course, if x̄ ∈ COR(ε) already coincides with an equilibrium allocation
〈x∗1(p∗), . . . , x∗n(p∗)〉 corresponding to the system of prices p∗ this lemma follows im-
mediately. More generally, if we have a sequence of economies {εn}n>1 such that:

• Mεn

n → 0.

• supn

max
k=1···l{

∑n

i=1
wk

i }
n

<∞.

with a few additional technical conditions, including Lemma 4.3, we have the following
result:
Theorem 4.4
[Anderson 1981] There exists a sequence of prices {p∗n}n>1 such that for all S⊆
{1, . . . , n} we have that:

max
k=1,...,l{|

∑
i∈S x̄

j
i − xj

i (p
∗
n)|}

n
→ 0.

That is, when n grows, the number of goods for which the core allocation differs
from the equilibrium allocation decreases. In the limit the core coincides with the
equilibrium allocation. But we have that:

Proposition 4.5
[Lewis 1992] There exists a model of ZF, M, in which, given the conditions of The-
orem 4.4, every sequence {εn}n>1 is such that for each n, COR(εn) is either ∅ or
includes at most one allocation.

The argument given by Lewis is that if at least for one n, |COR(εn)| > 1 , then
there must exist a choice function g : ω → ∪nCOR(εn), such that g(n) ∈ COR(εn).
Since this, according to Lewis, requires the application of the full Axiom of Choice
(AC), and this axiom is independent of ZF, there exists a model of ZF in which g
cannot be defined.

This argument can be criticized on several grounds, but let us concentrate on Lewis’
ultimate goal of showing that the Core Equivalence cannot be proven effectively. In
this sense, if a non-effective axiom is required then we cannot expect the outcome to
be effective. But, in fact, the existence of g does not require the full AC but only a
much weaker form, called Axiom of Countable Choice (CC) that allows to select an
element from a each set in a countable class.

CC can be derived from DC [Just-Weese 1996]. Therefore, if we assume DC it
is enough to ensure the existence of g. Of course DC is independent of ZF and
Proposition 4.5 will still stand. But as remarked above, DC is equivalent in ZF
to the Principle of Recursive Constructions. That is, it is effective. And therefore,
non-trivial sequences of prices {p∗n}n>1 fulfilling the conditions of Theorem 4.4 can
be effectively defined in ZF + DC.

Interestingly enough, Lewis overlooks a more interesting source of possible problems
for the validity of Theorem 4.4. The proof of Lemma 4.3 uses a variant of the Hahn-
Banach theorem, Minkowski’s theorem, that ensures that two disjoint convex sets can
be separated by a hyperplane. Only one variant of the Hahn-Banach theorem can
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be proved in ZF, the so-called Finite Extension Lemma (FEL) [Schechter 1997].21

But FEL is too weak to imply Minkowski’s Theorem (�l is not a convex hull of the
union of any of its hyperspaces and a finite number of points). Therefore Lemma
4.3 requires more than ZF to be true. But then, it is known that DC implies the
Hahn-Banach theorem in separable spaces [Bridges 1994]. Since Euclidean spaces like
�l are separable, in ZF + DC Lemma 4.3 can be effectively established.

Another form of the Core Equivalence result can be obtained considering market
games. This approach permits us to translate the structure of an economy into a
coalitional game form. Let us consider an economy

εn = {〈Xi , ui ,wi〉}n
i=1

where each ui : Xi → � is a representation of the preferences �i, i.e., for x, y ∈ Xi ,
ui(x) ≤ ui(y) if and only if x �i y.

Then, a market game is a cooperative (or coalitional) game Γ = 〈I,A(I), μ〉, where
I= {1, . . . , n} is the set of agents, A(I)⊆ 2I the class of coalitions of agents and
μ: A(I) → � is the payoff function. Given εn , a game Γ can be defined such that
for each coalition S ⊆ I, μ(S)= max

xS

∑
i∈Sui(xS

i ), where xS=
∑

i∈S x
S
i such that∑

i∈Sx
S
i =

∑
i∈Swi. In words, the payoff to a coalition S is the best sum of utilities

that the members of the coalition can achieve in a redistribution of their endowments.
The core of the market game Γ is

COR(Γ) = {(μ̄1 , . . . , μ̄n) : for all S ∈ A(I),
∑
i∈S

μ̄i ≥ μ(S)}

That is, the core consists of the vector of individual payoffs that cannot be improved
upon by any coalition. Given the endowments associated to Γ, {wi}i∈I, the core
corresponds to their redistribution among the agents in I such that no individual
nor coalition could get a higher payoff in another distribution without reducing the
payoffs corresponding to other agents. In ZFC we have that:

Theorem 4.6
[Shapley-Shubik 1969] Every market game has a non-empty core.

A proof of this result is based on the simple fact that if x∗ is an equilibrium
allocation in the economy εn , then if for each i, μ̄i= ui(x∗i ), then (μ̄1 , . . . , μ̄n)∈
COR(Γn). And this can be proven entirely in ZF. Of course, this last proof assumes
that a market game is associated with an economy. When this connection is not
assumed a proof can be given using again a form of Minkowski’s Theorem. We
already discussed that this obtains in ZF + DC.

A Core Equivalence result requires to consider a countable sequence of market
games, {Γk}k<ω, in which each Γk is 〈Ik ,A(Ik ),μk〉, where Ik⊆I, A(Ik )⊆ 2Ik the class
of coalitions of agents and μk : A(Ik ) → � is the payoff function. Furthermore the
cores shrink with k. The limit of this sequence must be a game Γ∗ such that COR(Γ∗)
is a singleton (corresponding to the equilibrium allocation). In ZF this sequence may
not exist:

21The version of FEL that is of interest for us is as follows: Suppose that over a linear subspace H ⊆ �l, a linear

map f0 : H → �l is such that f0 ≤ p, where p is a convex map p : �l → �l. Suppose furthermore that there exists

S= {s1, . . . , sm} ⊂ �l such that �l is the convex hull of H ∪ S. Then, f0 can be extended to f : �l → �l, such that

f ≤ p over �l.
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Proposition 4.7
[Lewis 1990] There exists a model M of ZF in which there exists an infinite class of
market games {Γk}k<ω all of which satisfy the property that COR(Γk) = ∅.
Proof (Sketch): Consider a model of ZF, M such that a measure Υ is defined
satisfying that Υ(S) is either 1 or 0, for each S ⊆ ω. Furthermore, we can assume
Υ(S) = 0 for every finite set S. Then, for each Ik define a game 〈Ik ,A(Ik ),μk 〉,
where μk is the restriction of Υ on 2Ik . In each of these games all the coalitions can
be improved upon. That is, the core is empty, because all redistributions are feasible.

A model of ZF with this property was originally obtained by Paul Cohen, using
his method of forcing. Cohen produced a model in which every Boolean Algebra 2ω

admits a real measure Υ :2ω → � which is either 0 or 1, that vanishes over all the
finite subsets of ω [Jech 1973].22

In turn, the existence of a bi-valued measure Υ over the Boolean Algebra 2ω that
vanishes over all the finite sets implies in ZF that there exists a non-measurable subset
of ω [Sikorski 1969]. On the other hand, in ZF+AD+DC every set of real numbers
is measurable. 23 In fact, we have that

Proposition 4.8
In ZF + AD + DC, given a sequence of economies {εn}n∈ω, with each εn =
{〈Xi , ui, wi〉}n

i=1 such that:

• ∑n
i=1 wi →n→∞ w < ∞ (i.e. the available endowments are bounded for every

economy in the sequence).
• For each pair of economies εn and εn+1 and for each i ≤ n, the corresponding

endowments wn
i and wn+1

i satisfy that wn+1
i �> wn

i (with more agents, no one gets
a larger individual endowment).

• Υ(COR(εn)) →n0 in any suitable notion of measure Υ over Euclidean spaces.

Then, to each εn there corresponds a market game Γn, with a non-empty core,
such that the sequence of market games 〈Γn〉n< ω, converges to a limit game
Γ∗ = 〈ω,A(ω), μ〉 in which COR(Γ∗) is a singleton {(μ̄i)i∈ω} and there exists an
allocation x∗ that satisfies for each i, ui(x∗i ) = μ̄i, which is an equilibrium allocation
in a competitive economy ε∗, the limit of {εn}n∈ω.

Proof: Let us consider a sequence of market games 〈Γn〉n<ω, where each Γn obtains
from the economy εn. Notice that each Γn has an associated payoff function μn that
satisfies that for every pair of finite sets S,T∈ 2ω such that S ⊆ T, μn(S) ≤ μn(T).
This follows from the definition:

μn(T) = max
xT

∑
i∈Tui(xT

i ) such that
∑

i∈Tx
T
i =

∑
i∈Twi.

22The forcing conditions that yield M are the finite functions f : ω × ω→ {0, 1}. Then, real numbers are defined

as αn = {m ∈ ω: there exists f, f(n, m) = 1}. M is the submodel of Cohen’s that contains all the sets αn , but

not the collection of all of them Ā= {αn : n ∈ ω} [Pincus 1973],[Jech 1973].
23Alternatively, it has been shown that ZF + “existence of large cardinals”, also supports the conclusion that

every reasonably definable set of real numbers is measurable [Shelah-Woodin 1990]. But each finite coalition in our

market games– in which each agent is identified by a natural (therefore real) number–constitutes a “reasonably

definable” set of real numbers (it can be defined by simple enumeration).



Economic Theory and the Alternative Set Theory AFA− + AD + DC 17

But then we have that
∑

i∈Tui(xT
i )=

∑
i∈Sui(xS

i )+
∑

i∈T\Sui(x
T\S
i ) while∑

i∈Sx
S
i +

∑
i∈T\Sx

T\S
i =

∑
i∈Swi +

∑
i∈T\Swi. It follows that μn(S) + μn(T \ S)≤

μn(T). On the other hand, consider any finite coalition S which is in both Γn and
Γn+1. Then μn+1 (S) ≤ μn(S). We know that

μn+1 (S) = max
(n+1)xS

∑
i∈Sui((n+1)xS

i )

such that
∑

i∈S
(n+1)xS

i =
∑

i∈Sw
n+1
i , where each wn+1

i is the initial endowment of
agent i in the economy εn+1 while (n+1 )xi is a possible allocation to i in that economy.
But since total endowments remain bounded from above we have that

∑
i∈Sw

n+1
i �>∑

i∈Sw
n
i . Otherwise, there would be a redistribution of resources in the economy. It

follows then that

μn+1 (S) = max
n+1xS

∑
i∈Sui(n+1xS

i ) ≤ max
nxS

∑
i∈Sui(nxS

i ) = μn(S).

Consider now the limit game Γ∗ with payoff μ. This payoff function must satisfy
that for each finite S, μn(S)→ μ(S). It could be that μ(S)= 0, but then, this is
not possible, because it leads to contradiction in the presence of AD.24 Therefore,
there must exist a finite S such that μ(S) �=0. In particular, it must exist an agent
i such that μ({i})�= 0. That means that i’s endowment in ε∗ is w∗

i > 0. By the
usual Archimedean property,25 there must exist only a finite number of agents with
this property, say n∗. That means that COR(Γ∗) must coincide with COR(Γn∗) (up
to a renaming of the agents). To see this suppose that ( ¯μi)i∈ω ∈ COR(Γ∗) is such
that μ̄j > 0, for j with w∗

j = 0. This would mean that there is at least one agent k
with w∗

k > 0 receiving μk such that μ({k}) > μ̄k . Contradiction.
So we have that the sequence of market games converges to a finite market game,

which we know has a non-empty core. Now suppose that |COR(Γ∗)| > 1. Say that
μ̄ = (μ̄i)i∈ω and μ̄

′
= (μ̄

′
i)i∈ω are both in COR(Γ∗). Since for each S,

∑
i∈S μ̄i≥ μ(S)

as well as
∑

i∈S μ̄
′
i≥ μ(S), we have that for any 0 ≤ α ≤ 1, there exists the convex

combination αμ̄+(1 − α)μ̄
′
. Then, there exists a homeomorphism between [0, 1]

and COR(Γ∗). But, for every μ̄ ∈ COR(Γ∗) there exists x ∈ ∏
i∈ωXi such that

μ̄i= ui(xi) if w∗
i > 0 and μ̄i= 0 otherwise. But then x is in COR(ε∗). But this

means that Υ(COR(εn)) > 0. Contradiction. Therefore, there is only one allocation
μ̄ ∈ COR(Γ∗). Finally, notice that for every εn , its equilibrium allocation nx∗ verifies
that μ̄ such that μ̄i= ui(nx∗i ) is in COR(Γn). Therefore, COR(Γ∗), being equivalent
to COR(Γn∗), includes the allocation corresponding to the equilibrium allocation n∗

x∗.

This result shows that in ZF + AD + DC every economy with an infinite
number of agents is actually equivalent to a finite one. That is, only a finite number
of agents determine the final outcome. It is interesting to note that in another
collective-decision making context (the theory of Social Choice) we have a similar
result:

24The existence of a measure that vanishes over all finite subsets of natural numbers implies that some subsets

of real numbers do not verify the Baire property (which we do not define here). But AD implies that every set of

real numbers verifies this property [Jech 2003].
25The construction of a non-Archimedean field (the hyperreal line) obtains as a non-standard model of the real

numbers. But Robinson’s construction requires the existence of a non-principal ultrafilter over ω [Goldblatt 1998].

As we already mentioned in Section 3, in ZF + AD every ultrafilter over ω is principal.
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Proposition 4.9
In ZF + AD + DC, consider a society S = 〈S,X, {�i}i∈S〉, where S is the set
of agents, X the set of options and each �i is a reflexive, antisymmetric, transitive
and complete ordering for X. Assume that S is countable. Then, let �S be a social
preference that verifies the conditions of Arrow’s Theorem (see [Arrow 1951]). Then,
there exist an i ∈ S (the dictator) such that �i≡�S.

A well-known result in social choice theory is that the set of decisive agents (the
coalitions that can impose their preferences over the society) constitutes an ultrafilter
[Kirman-Sondermann 1972]. If S is finite, every ultrafilter in 2S is principal. There-
fore, since this is true for the class of decisive sets there exists an agent i that is in
each decisive set and moreover, is decisive by himself. This i is the dictator. As said,
in ZF+AD every ultrafilter over ω is principal. Therefore, there exists also a dictator
in the case that S = ω. That is, in the context of AD, the society S behaves like a
finite society.

5 Existence of States of the World

The dynamics of beliefs has been always part of the explanatory mechanisms of
economists. No sound analysis of complex situations, both in macro and microe-
conomics, can disregard the importance of the beliefs held by agents, and moreover,
how they evolve in time. Despite this fact, these considerations were always used as
additions to the actual theoretical constructions, merely as parts of their intended
interpretations. Even John von Neumann shied away from beliefs and deemed the
games of incomplete information as ill-defined.

It was not until John Harsanyi postulated that agents interact in an implicitly
agreed-on environment (a common prior), that beliefs became legitimate part of the
modeling toolbox of economists [Harsanyi 1967]. In fact, he advanced the idea that
agents in an interaction build their beliefs incorporating the possible beliefs of the
others.

The entire description of the physical resources and the possible beliefs of the agents
in an interaction is called the state of the world, α. The description of the physical
aspects of the context is summarized by the state of the nature of the situation, s,
while the beliefs that are held in α can be represented as B(α). Then, we have that
a state of the world is a fixed point in a description operator:

α = 〈s,B(α)〉

To see whether this α exists, the usual procedure is to unfold it, beginning with
the state of nature and then adding the beliefs of the agents:

B0(α) = s

B1(α) = B0(α) × bel(B0(α))

B2(α) = B1(α) × bel(B1(α))

. . .
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Then, the conjecture is that B(α) is the limit of this sequence,26 i.e.:

B(α) = Bω(α) = lim
n<ω

Bn(α)

This construction has been shown to be sound, usually by means of topo-
logical assumptions about the space of states of nature [Mertens-Zamir 1984],
[Brandenburger-Dekel 1993], [Dekel-Gul 1997]. But a critical assumption that is al-
ways included in the proofs of the conjecture, is that agents have consistent beliefs.
That is, that the belief operator verifies that, if β is a limit ordinal:

lim
β

Bβ(α) = B(lim
β
αβ)

This consistency requirement arises naturally in any Bayesian model. Such a prob-
abilistic structure generates a potential tree, where the probability of an outcome is
identified with the measure of the entire branch that ends in that outcome. This
measure, in turn, allows to reconstruct, via backtracking, the probabilities at each
intermediate node [Chuaqui 1991]. That is, the sequence of probabilities at nodes
along a branch is consistent. Therefore, consistency constitutes a necessary condition
of Bayesian belief updating.

While Bayesian reasoning, and therefore the consistency of beliefs in a sequence,
can be considered a reasonable condition to ask of rational agents, it is easy to imagine
situations where consistency leads to absurd results. In fact, a number of examples ex-
hibit that agents may form their beliefs discontinuously, but even so end up converging
to a single state of world. The most interesting for the foundations of economic theory
is known as Newcomb’s paradox [Dekel-Gul 1997]. Let us assume a human agent who
has to play against a Genie who claims she can predict the human’s choices. There
are two boxes A and B, the first translucent, the second opaque. The Genie offers
the human to take either both boxes or only box B. The agent can see that box A
has $1000 inside, but the Genie tells him that if he chooses B he will leave $1000000
instead. Otherwise, if he predicts that the agent will grab both boxes, he will leave B
empty. The final decision made by the agent depends on what he believes about the
powers of the Genie. A possibility is to think that the Genie may be able to predict
correctly the agent’s choice. According to that, the agent should choose only box B
and, if so, the Genie should leave the million dollars inside the box. But then, at the
moment of grabbing only box B the agent reflects that either his belief was right and
therefore there is $ 1000000 inside the box or he was wrong and therefore the box is
empty. Then, he looses nothing grabbing both boxes. In other words, the belief that
constitutes part of the state of the world (i.e. that both boxes have money inside) is
inconsistent with the beliefs he held in the process.

While examples like this seem far from real-world decision-making situations, just
consider that for many authors, the well-known Prisoner’s Dilemma can be seen as
a two-sided version of Newcomb’s problem (i.e. each player conceives the other as
making decisions based on a prediction about her own decision) [Sobel 1991]. In fact,
many situations in which strategic uncertainty plays a role can be seen as variants of
this same phenomenon.

26If bel(·) yields probability distributions, the limit may arise as described by Kolmogorov’s Extension Theorem on

sequences of distributions [Halmos 1974]. Otherwise, in the case that bel(·) yields families of propositional formulas,

the limit obtains as the class of formulas representing all the possible beliefs of the agents [Fagin et al. 1999]. A

similar limit construction on classes of formulas allows to rationalize decision procedures [Lipman 1991].
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Notice that various forms of non-monotonic reasoning processes can be represented
as a discontinuous sequences of intermediate beliefs, that is sequences in which an
iterated limit is the initial state for a new round of iterations. Therefore, in the case
that neither the number of possible intermediate beliefs nor that of steps is bounded,
no proofs of termination of the reasoning process can be given, at least in ZFC. Even
so, since obviously the agents reach some state of the world, we have to explain the
convergence to it, without the assumption of consistency of B. One way of handling
the problem is by assuming that agents are able to handle non-well founded objects
like α when B does not warrant the convergence of the iterative construction.

This assumption amounts to dropping from ZF the Regularity Axiom,

∃xF (x) → ∃y
[
F (y) ∧ ∀z¬(

z ∈ y ∧ F (z)
)]

and replacing it with the so-called Solution Lemma, that states that every general
system of equations ε has a unique solution s̄ol:

• A general system of equations is a ε = 〈X,A, e〉, where X is a set of indeterminates,
A a set of “constants”, X∩A = ∅ and e : X → V(X∪A), provides the equations
(where V(X∩A) is the class of sets build up from elements in A). Equations have
the following form: x = e(x) ∈ V(X ∩A).

• A solution to ε is a function s̄ol on X, such that s̄ol(x) = s̄ol(e(x)). This s̄ol is a
substitution function, which assigns to each indeterminate a set in V(A) (i.e. the
class of sets without indeterminates and constructed entirely of elements in A).

The new set theory that obtains, ZFC − Regularity + Solution Lemma, is called
AFA (for antifoundation)[Aczel 1988], [Devlin 1993] [Barwise-Moss 1996].

In the case of states of the world, we take α ∈ X and s ∈ A, i.e. our indeterminates
are states of the world, and the constants are states of nature. Then we can prove
the following result:

Theorem 5.1
[Tohmé 2005] In AFA, a state of the world α, given its underlying state of nature s,
obtains as a fixed point of the belief formation operator B(·).

The key of the proof is just to show that α is either a fixed point or the process of
belief formation is endless. Since every general system of equations has a solution (a
bounded sequence), it cannot be endless. Therefore α has to be a fixed point.

This is different from the fixed point theorems we briefly mentioned in section 4,
since in all those cases we had either continuity of the operators (like in Kakutani’s
theorem) or at least the property of being increasing in a structure in which each set
has a unique maximal element (like in Tarski’s fixed point theorem). Here we can
ensure almost nothing about the state of the world, but at least we want to know
whether it exists, which in this case means just that it can be described as a set.

Notice that the change from ZFC to AFA is not as radical as the one from ZFC
to ZF + AD + DC. In fact, every object that can be defined in AFA ends up being
isomorphic to an element in the universe of ZFC. The only advantage in this change is
that it simplifies the treatment of circularities, in particular those that arise in the use
of information and knowledge [Akman-Pakkan 1996]. Using coalgebraic methods–i.e.
characterizations of the “solutions of equations”, particularly in the case of circular
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definitions–we could achieve similar results.27 In any case, AFA seems to be the most
intuitive form of ensuring the existence of states of the world.

For an alternative approach to the characterization of states of the world, consider
the space of possible belief structures that can be constructed over a fixed space
of states of nature S. It is easy to conceive a game in which player I chooses a
state of nature s ∈ S, II replies with a belief φ1 ∈ B(s) to which I responds with
φ2 ∈ B(〈s,B(s)〉), to which II answer is φ3 ∈ B(〈s,B2(s)〉) etc. II wins if it can lead
the sequence to fixed-point, otherwise I wins. Notice that this game is isomorphic
to a Gale-Stewart game, except for the fact that since we do not assume continuity,
the number of steps in the game could be transfinite, unless we can again apply the
AD. But to do this, each belief structure must be codified (at least in principle) by a
natural number. This depends, of course, on the language in which these beliefs are
expressed.

Consider the class BORD(S) = ∪β∈ORDBβ(S), where Bβ(S) is the class of belief
structures constructed over S for an ordinal level β. Let LBORD(S) be a language such
that for each φ ∈ BORD(S) there exists a formula Φ expressed in LBORD(S) such that
�Φ� = φ, that is, the interpretation of Φ is the belief structure φ.

It has been shown that not every φ ∈ BORD(S) can be defined in a language that
does not permit inconsistencies [Brandenburger-Keisler 1999], [Tohmé 2005]. This
indicates that completeness of states of the world is somehow hard to achieve, if we
do not restrict the class of admissible beliefs. For our purposes it is enough for each
belief structure φ to be such that the corresponding formula Φ has a finite Gödel
code. That is, the belief structure φ must be represented by a formula in LBORD(S)

that can be coded by a natural number. Let us call a belief structure φ ∈ BORD(S)
finitely representable if it has this property. Then we have this trivial result:

Lemma 5.2
In ZF + AD + DC, if a possible belief structure B̄ in an incomplete information
context with underlying state of the world s ∈ S is finitely representable, there exists
a state of the world α = 〈s,B(α)〉 such that B(α) = B̄. Moreover, even if B̄ is not
continuous, it can be unfolded in ω steps.

Admittedly, this sounds very restrictive, but on the other hand, there are no natural
examples in economics in which beliefs cannot be represented by a finite expression.
Since the usual form of representing beliefs is by means of probability distributions, if
no finite expression were to exist for a given distribution or hierarchy of distributions,
it would mean that it is not possible to compress its informational content in order
to obtain a manageable form. While it is easy to infer that most possible probability
structures cannot be represented by an expression shorter than its full extent (an
almost immediate consequence of Chaitin’s theorem [Chaitin 1974]), it is also true
that it is quite unlikely that they could represent the beliefs held by any rational
agent.

6 Discussion

In the previous sections we presented a variety of limitations to the theoretical answers
that have been given to the main problems in economics. It is not clear that they

27But this requires to use category-theoretical methods instead of set-theoretical ones [Moss-Viglizzo 2004].
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will (or should) affect the work of most economists. Although the existence of holes
in the edifice of economic theory is somewhat worrisome, it is also true that none of
the problems discussed here amounts to its demolition. In fact, most economists use
the existence of choice functions, equilibria and states of the world as just metaphors
and build models in which the difficulties discussed here are disregarded.28

On the other hand, even if the problems discussed here may have small impact in
the practice of economics, they ask for more refined tools in the analysis of economic
phenomena. In fact, Lewis, in his analysis of economic theory concludes, rather
inconclusively, that the set-theoretical principles required by contemporary economic
theory are far more demanding than what is needed in physics, both classic and
quantum [Lewis 1990].29 If this is true, this would mean that the search for the
right set-theoretical foundations for economic theory should be pursued more actively.
At least, it should be advisable for economists to know that the validity of their
conclusions depends on very deep properties of the formal tools they use.

In this sense, we have shown that a change in the underlying set theory allows,
at the very least, to simplify some proofs (in particular of recursivity) that are not
easy to obtain in ZFC. In any case, if economic theory represents something, it
must be the problem solving ability of decision-making agents. Our claim is that this
ability may correspond to certain properties of the set-theoretic universe in which our
models are represented. It is interesting, in this light, to discuss what abilities do our
alternative set theories imply.

Let us consider ZF + DC + AD. In this framework we can still use our finite
mathematics and much of elementary calculus. What we add here is that agents
can always find winning strategies in Gale-Stewart games. This means that we are
assuming a very simplified universe of sets, that satisfies our intuition that economic
theories describe “tame” environments, and therefore degenerate cases do not have
place in them.

Moreover, in these mild environments we do not admit something like a finite
coalition in a market game without a payoff. In fact, in ZF + DC + AD every set of
reals is measurable. Therefore, if we increase the number of agents we will always have
a sequence of games that ends up converging to a game Γ such that the allocations
supported in its core are the equilibria of the economy. In fact, every use we made
of this particular system of axioms ends up showing some sort of “finitization” of the
theory, making the problems more tractable, at least in principle.30

In the case in which problems arise with the information held by the agents, we
saw that AFA allows us to ensure the convergence of beliefs, even if the process is
discontinuous. An additional interest we may have in using AFA in economics is
that it can be interpreted as indicating that agents are able to conceive states of the
world as integral constructions instead of just processes that converge to them. This
legitimates the methodology of applied economists, that just take states of the world
(or equivalently, the types of agents in them) as data and not as objects that are to
be derived.

In a few words, we think that AFA− + DC + AD (where AFA− is AFA without

28A clear exception is the complexity of computations (of the NP sort).
29According to Lewis, all the principles of physics are derivable in ZF.
30ZF+“large cardinals” is more difficult to interpret in terms of cognitive abilities, although it can be speculated

that agents able to conceive inaccessible cardinals may also be able to handle discontinuous processes, which seems

interesting for the problem of the existence of states of the world.
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AC) is a intuitively good arena for economic theory. Furthermore, it is equiconsistent
with ZF + DC + AD.31

We conclude by noting that this procedure of choosing the right set theory for
economic theory has still to be checked out, to see whether these ideas are sound
enough. In any case, the study of this possibility as well as its extension to other
economic problems (e.g. the treatment of economies with an infinite number of goods
or with other types of dynamical structures) is matter of further work.
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