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NOTE ON THE AUTOREGRESIVE SPECTRAL ESTIMATOR

1. Introduction

    Given a time series (or stochastic process) yt , t=0, ±1, ±2, etc. with the property of

being stationary, we define its autocovariance function as the set of expected values
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where µ  is the expected value of the process.

    These expectations are assumed to exist, in the sense that the defining series or integrals

converge, and be positive semidefinite, in the sense that a matrix of arbitrary size formed

with them should possess this property.

We also define its autocorrelation function
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   It is often convenient to consider transforming these  parametric functions by defining the

spectral density function of the process, namely
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This will exist provided the series converges. If the series of absolute values of  the

covariances converges, then (3) converges uniformly; see, for example, Anderson (1971).
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   An important example of  time series is that corresponding to an autoregressive model of

order p, that we identify by AR(p), with coefficients α1, α2, ...,αp and  variance σ2 ; it

satisfies the (stochastic) finite difference equation
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where we define α0=1, and the εt constitute a stochastic process of uncorrelated (or

independent) random variables with 0 expected value and constant variance σ2.  The αj

satisfy the condition that the associated polynomial equation, ∑ = 0
j

z
j

α    has  all  of  its

roots, real or complex, larger than 1 in absolute value. Under the stated condition yt can be

“inverted”, i.e., expressed as an infinite linear combination of the εt’s, current and past, and

further, yt is independent of εt for s>t, i.e., independent of future values of the εt ‘s.

   Under these conditions, it can shown that the spectral density function of the AR(p)

process is
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so that if, for example, p=1, defining α=α1 we find that the spectral density function of the

AR(1) model is
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The condition on the roots now implies that α is less than 1 in absolute value.

The  autoregressive estimator of the spectral density function of a given (stationary) time

series is defined as follows: (1) The series is approximated by an AR )( p  model, whose
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order p   is suitably chosen; (2) The p  + 1 parameters of this model are estimated; (3)

With the estimates we form a function similar to (5), and we take this function (of

frequency λ) as the sample estimator of the spectral density.

    This procedure is related to that of  Maximum Entropy. Priestley (1981, page 604) states:
The method of maximum entropy is based on choosing a spectral estimate )(ωh  which is
such that the entropy

{ }∫−=
π
π ωω dhE )(log  is maximized subject to the constraints (in our notation)
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eh  Akaike showed that the resulting form  of

)(ωh  us exactly the same as for the AR spectral estimate, where the cr satisfy the Yule-
Walker equations.

     Newton and Pagano (1984) considered the problem of computing simultaneous

confidence bands for the spectral density function. The problem arises because the

estimator consists of a set of values (in general it is computed at frequencies λj =  2πj/T,

j=0,1,2,…,T/2, where T is sample size), each one having sampling variability.

   In this note we analyze through simulated examples, the behavior of the proposed

confidence band. We want to compare results with those in Newton and Pagano (1984) and

with those in Mentz et al (2003). In the former no logarithmic transformation is introduced,

so that we follow this option. Logarithms are used in the second reference.

   Newton and Pagano (1984) approached the problem by considering that the reciprocal of

the spectral density function of an AR(p) model, has the form of the spectral density

function of a moving average model of the same order, with the same coefficients and with

the variance of the error term equal to 4π2/σ2 ; we denote this model by MA(p).

2. The AR(1) Model

    With sample values y1,...,yT, parameters µ, α and σ2 are estimated by one of the known

methods of parametric estimation: Yule-Walker, least squares, what is known as Burg’s
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algorithm, or maximum likelihood under the assumption that the errors in the models have

a normal distribution.. We can also estimate the autocovariances of the process, which

means that the output of the estimation stage is, in the case of an AR(1) model, the

following:
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With these sample values we define a set of autocovariances corresponding to an MA(p)

model namely,
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and the empirical spectral density function of the MA(1) model is
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We next define two matrices as follows:
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where Γ is the matrix of variances and covariances of the process; in the special case of  an

AR(1) model this is σ0 , and is estimated by the sample value c0. The other matrix is
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These two matrices lead to estimates of C  and  B by substituting sample values for α and

σ2  and further estimate γ using definitions  (8). Defining
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the confidence band for the spectral density function is
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χ is the percentile of the chi-square distribution with p+1=2 degrees of freedom, and

we introduce the two-dimensional vector x = (1/π)(1/2  cos(ω))’.

   If it happens that 0)()( ≤− ωω sh , the upper bound of the confidence band is taken to

be infinite.
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    Under these conditions, the (simultaneous) confidence bands have confidence coefficient

approximately equal to δ. The statistical argument is based on projections proposed by

Scheffé (1959, page 407), as cited by Newton and Pagano (1984).

3. The AR(5) Model

    As a more general example we consider the AR(5) model, one that is studied by Newton

and  Pagano (1984). Observations yt , t=1,2,...,T  come from the model
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where the εt are independent with expected value 0 and constant variance σ2>0. The output

of the computer program includes the estimates
2

, σα
j

and ),1 )(()/1( ∑ −
= −

+
−=

jT
t y

jt
yytyT

j
c where ∑ ===

T
t Ttyy 1 /µ

   The MA(5) used to approximate the autoregression has autocovariances estimated by
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and by 0 for all other values of j. The spectral density of the MA(5)model is estimated by
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This matrix contains those of smaller order. For example, in the case of the AR(4) model,

we omit the last row and the fifth column, and set α 5 = 0, since α5=0.

    With these matrices we form
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and
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    Finally, the confidence bands for the spectral density can be written as

.
)()(

1
)(

)()(

1
)25(

ωω

ω

ωω sh
f

sh −

≤≤

+

This band has, approximately, level δ. Again, this is the key result in Newton and Pagano’s

main theorem.

   As indicated, Newton and Pagano’s approach is to set a band to )(/1)( ωω fh = . The

band is ),()()()()( ωωωωω shhsh +≤≤−  and has no problem even if the left hand

side is negative for some frequency. When deriving the band for )(ωf they write: ”It could

happen that 0)()( <− ωω sh  for some ω  in which case infinity for the upper limit

which does not diminish the probability contents of the band.” One could solve this

problem by letting this band to be { }dsh ),()(max ωω −  where d is some constant, for

example, d = 0.001. This procedure could alter the probability contents of the band or, to
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say it in other words, the level α  will be only approximately met. In our rather extensive

simulations with the  given models, we found no cases of negative estimates.

4. Numerical Examples

   In this section we present and analyze some numerical examples. Observations were

generated by Monte Carlo simulations, taking some values for the parameters and taking

the error variance equal to 1. This choice coincides with that of Newton and Pagano, which

means that the variance is treated as a scaling factor, the main interest being in estimating

the spectral density. In all cases δ=0.05, which means that the confidence bands have

(approximately) simultaneous 95% confidence level.

    We use the S-PLUS package. The functions we use are: “arima.sim” to simulate the

errors; “ar.burg” to fit AR models using Burg’s algorithm; “arima.mle” to fit AR models

via maximum likelihood estimation under the Gaussian distribution.

4.1. Models

    Observations were generated by four models, namely:

I. AR(1) with α1 = -0.60

II. AR(2) with α1 = -0.40 and α2 = -0.45.

III. AR(4) with α1 = -2.760, α2 = 3.8106, α3 = -2.6536 and α4 = 0.9238.

IV. AR(5) with α1 = 1.7, α2 = 2.4, α3 = 1.634, α4 = 0.872 and α5 = 0.168.

    In the use of models II, III and IV we follow Beamish and Priestley (1981), also used by

Newton and Pagano (1984) and elsewhere. The argument is that they are “easy, moderately

easy and very difficult to fit, respectively”. These models have roots (1.11, 2.00), (1.12,

1.12, 1.19, 1.19, 3.33), and (1.02, 1.02, 1.02, 1.02), respectively, so that the roots of model

IV are all close to 1 in absolute value. Model I with parameter 0.60 is expected to behave

like model II.
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4.2. Dealing with p and parameter estimation.

4.2.1.  Dealing with p.

    The autoregressive model has known order p, since this is the model generating the

simulated observations. In the computer program used to estimate the parameters, this value

of p can be forced, which implies that exactly as many αj’s as is the value of p are

estimated. In our case, parameter estimation is done by maximum likelihood using the

normal distribution; if observations have only approximately a normal distribution,

asymptotic theory shows that use of this procedure provides a valid approximation; see, for

example, Brockwell and Davis, 1987, Section 10.8..

   With the observations generated by a model with known p, they can be used to estimate

the order p  of the AR model that provides the best fit to the data. In the S-PLUS program,

this is done by Burg’s algorithm for parameter estimation, and  the AIC procedure to

estimate the order. In Newton and Pagano, Parzen’s CAT procedure is used together with

Burg’s algorithm. Our choice of AIC come from the program we use, namely, S-PLUS.

One of our objectives is to explore the behavior of the computer programs in this package.

     Table 1 shows the results of applying the indicated procedure to the 1000 Monte Carlo

replications. Values concentrate for pp = , but we also observe an important number of

cases in which pp > . In Table 1a) the estimated p   is restricted to be 5≤ while in

Table 1b) it is restricted to be 10≤ .

   Shibata (1976) derived the explicit asymptotic distribution of  the estimated order p . If

this order is selected by means of the AIC criterion in the range from 0 to, say, P, the

probability distribution of p has values from the true order to P. The distribution does not

depend on the αj , and these are estimated by maximum likelihood. In a simulation study

for the AR(1) model with parameter α=0.80, he showed that the frequency of selecting the

order p = 1 is roughly 0.70, and our results in Table 1 agree with this.
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   Since the models proposed as examples have p≤5, the restriction that 10≤p  is

reasonable: larger values of this estimate will introduce further estimates of α parameters

and raise sample variability. Note that in Table 1, p=1 and α=0.60,
1

α  is close to 0.60 and

j
α , j=2,3, 4 and 5 are small. Similar behavior is observed in the case of p=2,

.5≤p Further discussion of the effect of estimating the AR order is presented below.

    For models I and II (p=1 and 2), changing from the restriction 5≤p  to

10≤p alters the selection of order in about  5% of the cases: for model I selecting pp =

reduces from 733 to 699 cases (out of 1000): in the remaining cases some value pp > is

selected.  For models III and IV (p=4 and 5) the effect is larger: for p=4, selecting

4== pp   reduces in about  15% of the cases in favor of choosing values of 4>p ; for

p=5, selecting 5== pp   reduces in about a 30% of  the cases in favor of choosing

values of 5≠p   (for some series the selected order is 4).

4.2.2. Parameter estimation.

   Table 2 shows the average results in the estimation of  parameters. Sample sizes were T=

100, 200 and 400, and 1000 replications (repetitions) were done in each case. Table 2 is

done under the restriction .10≤p  Another table under the restriction 5≤p  is available

from the authors.

    For model AR(1) with parameters α1= -0.60 and σ2 =1, the table contains the averages

of the estimates, and of the corresponding standard deviation. These values must be

compared with α1= -0.60, TVar /)
2

1()
1

( αα −≈ , with numerical values 0.08, 0.056 y

0.04, respectively.

    Next we find the averages corresponding to estimates of the parameters obtained when

the order value p is used, and estimation is done by using Burg’s algorithm. The
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estimation of α1 has improved to some extent,  while the averages for the other parameters

are (comparatively) small. We recall that estimates are based upon the number of series

indicated in tables 1 and 2, except that α1 is always estimated with the 1000 series.

    Similar considerations correspond to the other three models. In the case of model AR(2),

use of the approximation
./)1()( 2 TVar

jj
αα −≈

for the variance appears  valid. This variance corresponds to the asymptotically normal

distribution of the maximum likelihood estimator, see, for example, Brockwell and Davis

(1987, page 252).

   In general, changing the restriction on the chosen order has very little effect on the

estimation of parameters for the chosen parameter values..

4.3. Confidence bands for the spectral density

4.3.1. Graphical Illustration.

   In this section we show some examples of use of the techniques developed for the

construction of simultaneous confidence bands. In all cases the logarithm of the spectral

estimates is presented. The abscissas, which are usually given by T/2+ 1 frequency points

from 0 to π , are presented in a transformed scale from 0 to 50, and labeled “Index” in the

graphs. These graphs were also made by an S-PLUS function.

Figure 1. Observations were generated by simulation with the AR(1) model with

parameter α = -0.60. The graph covers only the frequencies from 0 to π (0 to 50), since the

remaining values, from -π to 0 can be omitted due to symmetry. The central dotted line  is

the theoretical spectral density of the AR(1) model used to generate the data, and hence

corresponds to (6) with σ2 = 1. The solid line is the spectral density coming from the

MA(1) approximation, namely )(
1

λ
−

h  as defined in (9). Broken lines are the
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simultaneous, 95%, confidence bands, defined by (13),  one above and one below. They

were computed with a sample of size T=100.

Figures 2 and 3 .  Observations generated by simulation with the AR(2) model with

parameters -0.40 and -0.45  This model was considered by Newton and Pagano. We

observe the following: (1) There are 4 examples out of the 1000 replicates, (2) The

theoretical spectral density and its MA(1) approximation in some case are parallel and in

other have one or more crossings, (3) The theoretical spectral density in some cases falls

entirely inside the confidence bands, in which case we say that there are 0 points outside

the bands, and in other there 1 or more points outside the bands, (4) Since the bands are

computed at frequencies Tj
j

/2πλ =  for j = 0, 1, 2,…,T/2 if T is even, we compare the

number of points falling out of the bands for 0≥j  with T/2+1, which for T=100 equals

51. (5) The histogram in Figure 3 is an example of the distribution of points falling outside

the 95% confidence bands, for model AR(2) with parameters –0.40 and –0.45, and with

1000 replications. We find a bar of size approximately equal to 300 at 0, and then a

distribution reaching 24. The average is 2.25 (Table 6); its expected number is

0.05x51=2.55. The shape is typical of a mixture of distributions.

Figures 4 and 5 correspond, respectively, to models AR(4) and AR(5) with parameters

defined in Section 4.1. They compare with Figure 1 in Newton and Pagano (op. cit.). In

Figure 4, we find a good agreement between the two spectral densities, except at the peaks;

the true spectral density is seen to lie (approximately) entirely within the confidence bands;

the same occurs in Figure 5  for the AR(5) model: the approximation fails at the peak but

the true AR spectral density falls entirely within the confidence bands. The bands are wide

at the extremes of the range of frequency values, and narrow at the peaks.

4.3.2. Monte Carlo Simulation

    Table 3 presents summaries of the simulations performed with the four models

mentioned at the beginning of Section 4.1.  Table 3 has results corresponding to restricting

5≤p  and also to restricting .10≤p The first three columns of results are the averages
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over the 1000 replications, of the number of points of the theoretical spectral density

function, that occurred outside the 95% (simultaneous) confidence band. The expected

numbers are 2.55 for T=100, 5.05 for T=200 and 10.05 for T=400. We find that for models

I and II the observed  (average) values are in good agreement with these figures. For model

IV the averages are larger than expected, in the order of twice the theoretical figure. For

model III the averages are even larger. One possible explanation for the left hand part of the

tables, is  that for these larger values of the order p (4 and 5), the limitation imposed that

the order of the fitting AR is the same p used to generate the data, results being too

restrictive.

    The importance of order selection is considered in the next three columns. In them the

averages are computed when the order is chosen according to the AIC criterion, but still

maintaining the restriction of its being less than or equal to 5 or to 10, respectively. We find

a sizeable improvement for T=400, for models I and II. Here the improvement occurs

because about ¼ of the series led to changes in the value of the order, which, as indicated in

Table 1, consisted in increasing the value of p. Further, for orders p = 1 or 2, the restriction

on the order is not important. When models III and IV are considered there are more points

(on average) outside the confidence band than expected. This is particularly true of  model

III (AR(4)), confirming the finding of previous authors, Newton and Pagano (1984),

Beamish and Priestley (1981 ).

4.3.2. Comparison with Previous Work

    In a paper by the authors (Mentz, Viollaz and Martínez, 2003, unpublished) , standard,

windowed spectral estimators were studied by Monte Carlo. They were: (1) Confidence

bands available in the S-PLUS package, in which the χ2 approximation is used, with 8.29

degrees of freedom; (2) Similar bands with 9.14 degrees of freedom; (3) Confidence bands

using the normal approximation, and (4) Similar bands with  a correction for asymptotic

bias. A summary of results is Table 4.

It follows that (except for Model III with T=100), the bands based on windowed spectral

estimates, leave, on average, less points outside the bands than the AR spectral estimates.
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One main point is that while the windowed estimates are based on (95%) point-by-point or

marginal analysis, the bands for the AR spectral estimators have 95% joint confidence

coefficient, and we expect the former to leave less points outside of them.

5. Summary and Conclusions

In this paper we analyze the behavior of the AR spectral estimator in simulated time

series. There exist a set of models frequently studied in the literature, namely, models

AR(p) with p=2, 4 and 5. There were considered by the present authors in a previous paper

dealing with standard windowed spectral estimates, that is those coming from smoothing

the periodogram (Mentz, Viollaz and Martínez, 2003). They are confidence intervals

computed separately at each frequency with a common confidence coefficient (e.g. 95%).

Hence, the level of confidence for the whole set of frequencies is considerably low. In the

indicated reference  point-by-point inference is compared with joint inference based on

extreme value distributions (Woodroofe and Van Ness, 1967).

    The bands for the AR spectral estimator developed by Newton and Pagano (op. cit.) are

based on projections proposed by Scheffé (1959), and hence have a joint confidence level

(e.g. 95%). This is an asymptotic approximation.

    The behavior of the AR bands is studied in some detail: (1) The role of selecting the

order of the approximating AR model is studied, and found that for the models considered,

restricting it to be less than or equal to 10 improves over restricting it to be less than or

equal to 5, in particular, for the more complicated models AR(4) and AR(5). However, it

affects little the estimation of parameters. (2) Graphical examples are provided to illustrate

the results. (3) Tabled results show average numbers of sample points falling outside the

bands.

   In summary, the AR spectral simultaneous confidence bands are seen to behave

reasonably well for the models considered.
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    As pointed out by a referee, bootstrap estimation of the standard error of the confidence

bands could be attempted, but we do not include this work in the present paper.

   There has been a good deal of concern about the merits of the AR spectral estimator. See,

for example, Priestley (1981, p. 612) who wrote: “It is seen that the AR estimate is highly

irregular, with quite marked oscillations over the whole frequency range”. Harvey (1994, p.

205) commented on the importance of selecting an adequate (estimated) AR order. See also

Brockwell and Davis (1987, Section 10.6), Koopmans (1974, Section 9.4).

Spectral density function of AR(1) model with parameter -0.60, MA(1)

approximation, and 95% simultaneous confidence bands

Figure 1
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Figure 2

Spectral density function of AR(2) model with parameter -0.40 and -0.45, MA(2)
approximation, and 95% simultaneous confidence bands
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Figure 3

Histogram of points folling outside the 95% simultaneous confidence bands,
AR(2) model, AR spectral estimations
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Figure 4

Spectral density function of AR(4) model with parameter (see text), MA(4)
approximation, and 95% simultaneous confidence bands
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Figure 5

Spectral density function of AR(5) model with parameter (see text), MA(5)
approximation, and 95% simultaneous confidence bands
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Model True order Sample size
p T 1 2 3 4 5

100 733 113 68 46 40
I 1 200 744 121 61 44 30

400 722 146 55 38 39
100 1 745 134 69 51

II 2 200 0 756 133 53 58
400 0 766 109 58 57
100 0 0 0 819 181

III 4 200 0 0 0 836 164
400 0 0 0 850 150
100 0 0 0 428 572

IV 5 200 0 0 0 207 793
400 0 0 0 38 962

Table 1

a) Frequency distributions of autoregressive orders chosen by S-PLUS
using Burg's estimation algorithm, in 1000 replications ( p  5).

Chosen Order

Model True order Sample size
p T 1 2 3 4 5 6 7 8 9 10

100 699 108 63 37 30 18 11 11 11 12

I 1 200 702 115 57 36 21 21 20 12 7 9
400 691 138 49 34 30 19 14 10 8 7
100 1 694 118 57 29 32 25 13 17 14

II 2 200 0 719 118 49 38 26 18 15 8 9
400 0 730 101 53 42 23 14 18 11 8
100 0 0 0 665 135 58 46 44 24 28

III 4 200 0 0 0 712 123 63 34 36 16 16
400 0 0 0 742 107 54 33 25 18 21
100 0 0 0 365 399 105 52 38 26 25

IV 5 200 0 0 0 171 569 113 49 41 32 25
400 0 0 0 33 744 98 46 38 20 21

Chosen Order

b)  Frequency distributions of autoregressive orders chosen by S-PLUS
using Burg's estimation algorithm, in 1000 replications ( p  10).



a) Model I, p = 1, α1 = 0.60, MLE

T α1 Var(α1)
1/2 σ2

100 0.5895 0.0805 0.9818
200 0.5944 0.0568 0.9932
400 0.5971 0.0401 0.9958

b) Model I, p = 1, α1 = 0.60,     pest  Burg's Algorithm

T α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 σ2

100 0.5907 -0.0084 0.0091 -0.0494 -0.0178 0.0296 -0.0117 -0.0545 0.0299 -0.0136 0.9589
200 0.5964 -0.0048 -0.0082 -0.0224 0.0220 -0.0118 -0.0062 -0.0460 0.0422 0.0286 0.9818
400 0.5977 -0.0002 -0.0088 -0.0013 0.0168 -0.0292 -0.0144 0.0038 0.0498 0.0792 0.9899

c) Model II, p = 2, α1 = 0.40, α2 = 0.45, MLE

T α1 α2 Var(α1)1/2 σ2

100 0.3966 0.4255 0.0909 0.9707
200 0.3978 0.4369 0.0637 0.9884
400 0.3986 0.4446 0.0448 0.9934

d) Model II, p = 2, α1 = 0.40, α2 = 0.45,    pest  Burg's Algorithm

T α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 σ2

100 0.3986 0.4287 0.0050 -0.0364 -0.0052 0.0105 -0.0152 -0.0260 0.0695 -0.0465 0.9499
200 0.3991 0.4395 -0.0015 -0.0254 0.0058 -0.0095 -0.0334 -0.0100 0.0445 0.0623 0.9776
400 0.3985 0.4445 -0.0010 -0.0004 0.0071 -0.0042 0.0030 -0.0102 0.0256 -0.0278 0.9881

Table 2

Average estimates in 1000 replications
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e) Model III, p = 4, α1 = 2.760, α2 = -3.8106, α3 = 2.6535, α4 = -0.9238, MLE

T α1 α2 α3 α4 Var(α1)
1/2 σ2

100 2.7370 -3.7478 2.5892 -0.8944 0.0442 0.9493
200 2.7481 -3.7774 2.6190 -0.9077 0.0295 0.9786
400 2.7539 -3.7935 2.6356 -0.9155 0.0201 0.9880

f) Model III, p = 4, α1 = 2.760, α2 = -3.8106, α3 = 2.6535, α4 = -0.9238,    pest  Burg's Algorithm

T α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 σ2

100 2.7397 -3.7579 2.6074 -0.9192 0.0802 -0.1246 0.1192 -0.0932 0.0549 -0.0338 0.9335
200 2.7484 -3.7806 2.6278 -0.9231 0.0617 -0.0990 0.1112 -0.0949 0.0753 -0.0455 0.9711
400 2.7540 -3.7962 2.6420 -0.9237 0.0272 -0.0517 0.0963 -0.1323 0.1048 -0.0483 0.9839

g) Model IV, p = 5, α1 = -1.7, α2 = -2.4, α3 = -1.634, α4 = -0.872, α5 = -0.168, MLE

T α1 α2 α3 α4 α5 Var(α1)
1/2 σ2

100 -1.6802 -2.3508 -1.5788 -0.8355 -0.1558 0.1008 0.9432
200 -1.6906 -2.3763 -1.6061 -0.8537 -0.1606 0.0705 0.9724
400 -1.6957 -2.3879 -1.6208 -0.8626 -0.1650 0.0496 0.9848

h) Model IV, p = 5, α1 = -1.7, α2 = -2.4, α3 = -1.634, α4 = -0.872, α5 = -0.168,    pest  Burg's Algorithm

T α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 σ2

100 -1.6680 -2.3278 -1.5388 -0.8103 -0.2139 -0.0014 0.0319 0.0255 0.0272 -0.0161 0.9308
200 -1.6844 -2.3641 -1.5839 -0.8383 -0.1833 -0.0208 -0.0400 -0.0562 -0.0392 -0.0296 0.9666
400 -1.6948 -2.3860 -1.6174 -0.8604 -0.1696 -0.0076 -0.0146 -0.0230 -0.0203 -0.0103 0.9818

Table 2 (continued)



 ^

     ^      ^
Model True Order

p T = 100 T = 200 T = 400 100 200 400 100 200 400

I 1 2.25 5.46 18.13 3.05 6.54 10.03 7.52 7.15 9.82
(267) (256) (278) (301) (298) (309)

II 2 3.09 6.17 14.49 5.49 6.13 9.42 7.37 7.04 9.37
(255) (244) (224) (306) (281) (270)

III 4 14.73 30.57 65.21 17.87 36.16 74.57 18.16 32.32 64.42
(181) (164) (150) (335) (288) (258)

IV 5 8.99 17.73 38.01 12.47 27.95 64.82 11.87 20.29 32.09
(428) (207) (38) (597) (427) (249)

Bands Computed Using  p  10

Table 3

 Averages of sample points falling outside the 95% simultaneous confidence bands.

(In parenthesis, number of series with     p =  p)

Bands Computed Using p Bands Computed Using p   5

True AR

Order p     ( 1 ) ( 2 ) ( 3 ) (  4 )

II 2 100 3.09 7.37 0.716 1.171 1.962 0.84

200 6.17 7.04 0.471 0.971 2.262 0.739

400 14.49 9.37 0.306 0.773 2.797 0.763

III 4 100 14.73 18.16 14.401 13.954 11.669 11.081

200 30.57 32.32 4.052 3.953 3.579 2.293

400 65.21 20.29 0.693 0.945 2.512 0.657

IV 5 100 8.99 11.87 3.141 3.014 2.66 1.987

200 17.73 20.29 1.451 1.679 2.423 1.2

400 38.01 32.09 0.631 0.934 2.62 0.753

Table 4

Averages of sample points falling outside the 95% simultaneous confidence bands.

Model Sample Size
T

This Study Previous Study

p
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