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We present a new generalization of the standard electrokinetic model based on the assumption that there is
a thin layer surrounding the suspended particle where the equilibrium ion density is not determined by the
Gouy-Chapman distribution, while the standard model applies outside this layer. Our approach differs from
existing models in that we consider that the surface layer is made both of free ions (mostly counterions) and
of the fixed ions that constitute the charge of the particle. Furthermore, the free ion density is determined by
appropriate boundary conditions without considering any adsorption isotherms. Finally, the fluid is allowed
to freely flow inside the layer, only hindered by the presence of the fixed charges and the adhesion condition
on the surface of the particle. We show that this generalization leads to results that qualitatively differ from
those obtained using existing models: instead of always decreasing, the electrophoretic mobility can actually
increase with the anomalous surface conductivity. This could make it possible to use our model for the
interpretation of a broader set of experimental data, including those cases when the measured mobility is
higher than predicted by the standard model.

1. Introduction

According to the classical description of colloidal suspensions,
the main parameter determining their dielectric and electroki-
netic properties is theú potential. This parameter is determined
experimentally by means of electrophoretic mobility measure-
ments and using the so-called standard electrokinetic model.
According to this model, the particles are surrounded by a
uniform surface density of fixed charge, the ions in the
electrolyte solution can be treated as mathematical points, and
macroscopic values of the permittivity and viscosity remain valid
at the microscopic scale up to the very surface of the particle.
Under these assumptions, the equilibrium distribution of ions
around a suspended particle coincides with the Gouy-Chapman
distribution, theú potential coincides with the equilibrium
electric potential at its surface, and the surface conductivity
coincides with the conductivity of its diffuse double layer.

Therefore, the surface conductivity value is a function of the
ú potential and of other known parameters of the model such
as the ion concentrations in the electrolyte solution far from
the particle, their valences, diffusion coefficients, and the fluid
viscosity. This means that all the dielectric and electrokinetic
properties of the system should be functions of a series of known
parameters and of a single variable: theú potential. This result
has been used for many decades to determineú by means of a
single measurement: the electrophoretic mobility. An equally
valid alternative is to determine its value from the conductivity
increment, since both phenomena are described by means of
the same standard model. The problem that arises is that, quite
often, theú potential values obtained using these two techniques
do not coincide with one another.1-3

While the reason for this discrepancy is not known, it seems
that its origin is in a fundamental failure of the standard

electrokinetic model: the surface of a colloidal particle appears
to be more complex than assumed by this model. An often used
generalization is based on the Stern rather than the Gouy-
Chapman distribution of ions around the particle. It is assumed
that the particle surface bearing the fixed charge density is
surrounded by a thin layer of ions (mostly counterions), with a
surface density determined by adsorption isotherms rather than
the Poisson-Boltzmann equation.4-6 Outside this layer, the
system satisfies the Gouy-Chapman distribution. Out of equi-
librium, the properties of this generalized model are determined
by assuming that the liquid in the thin ion layer is not allowed
to move, while the ions are free to move along the surface with
a mobility that is comparable to that in the bulk solution.
Because of this assumption, theú potential coincides now with
the equilibrium electric potential at the outer surface of the thin
ion layer, rather than the particle surface.

This generalization implies that the surface conductivity of
the particle is now made of two terms: the diffuse double layer
part determined by the standard model, and the conductivity of
the inner layer of ions determined by adsorption. Therefore,
the surface properties depend now on two parameters: theú
potential and the surface conductivity of the inner layer, also
known as the anomalous surface conductivity. In view of this
dependence, it is no longer possible to determine theú potential
from a single measurement such as the electrophoretic mobility
or conductivity increment. Both measurements are required.

While this appears to solve the compatibility problem between
the ú potential values deduced from these two individual
measurements,7 a serious problem remains: the presence of the
anomalous surface conductivity always decreases the electro-
phoretic mobility value. Therefore, this generalization of the
standard model does not help and actually worsens the
interpretation in those cases when the measured electrophoretic
mobility is very high, higher than the theoretical maximum.8

Still another difficulty arises when the models are extended into
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the frequency domain9-11 and the low-frequency dielectric
dispersion predictions are compared with experimental data.12-14

It is observed that the measured dispersion amplitude can be
much higher than the theoretical prediction, while the charac-
teristic frequency is much lower. In many cases, no combination
of model parameters can explain the measured permittivity
values, even when the static mobility and conductivity data can
be interpreted.

An interesting example of this situation is presented in refs
15 and 16, where it is shown that after a heating treatment the
latex particles behave almost ideally. This suggests that, in its
original state, polystyrene particles can have a hairy rather than
a flat surface. Actually, this assumption was previously used
as another type of generalization of the standard model. Instead
of considering that the particle surface is perfectly flat and rigid,
it was modeled as a hairy surface17,18or as a thin porous layer.19

Still another generalization of the standard model consists
of taking into account the tiny concentrations of H+ and OH-

ions, always present in aqueous electrolyte solutions, in addition
to the relatively large concentrations of, for example, Cl- and
K+ ions that are usually the only ions considered when the
standard model is used. The inclusion of these additional ions
is formally straightforward, even when it represents a tremen-
dous complication in the calculations. However, if treated just
as the remaining ions, their influence on the dielectric and
electrokinetic properties would remain negligible, despite their
high mobility, in view of their low concentration. But there is
good reason to believe that these ions should be treated
differently: the ú potential of suspended particles usually
depends on the pH value of the suspending medium. This
observation led to different generalizations of the standard model
in which H+ and OH- ions are allowed to adsorb to the surface
of the particle, changing the local value of its formally fixed
surface charge.10,11,20,21

In this work, we present a new generalization of the standard
electrokinetic model that can be regarded as a modification of
the first approach. It is also based on the assumption that there
is a thin layer surrounding the particle where the ion density is
not determined by the Gouy-Chapman distribution. Again, the
standard model applies outside this layer. The difference with
existing generalizations is limited, therefore, to the surface layer
properties. We consider that it is made both of free ions (mostly
counterions) and of the fixed ions that constitute the surface
charge. This makes it possible to model the surface layer as a
thin charged polymer layer surrounding the particle, just as in
the case of soft particles. This representation has two main
consequences. First, there is a finite density of free ions inside
the layer determined by appropriate boundary conditions, even
without considering any adsorption isotherms. Second, it is no
longer obvious that there is no fluid flow inside the surface
layer. On the contrary, the fluid can be allowed to freely flow
along the surface of the particle, only hindered by the presence
of the fixed charges and the adhesion condition valid on its
surface. We show that this generalization can lead to results
that qualitatively differ from those obtained using the existing
approach: instead of always decreasing, the electrophoretic
mobility can actually increase with the anomalous surface
conductivity. This fact extends the range of experimental data
that can be interpreted by the model, including those cases where
the measured mobility is higher than predicted by the standard
model.

2. Model

2.1. Brief Review of the Mangelsdorf and White Model.
Before discussing in detail the proposed model, it is advisable

to review the main features of the model of Mangelsdorf and
White (M-W),6,10 which we will use for comparison. In that
model, it is assumed that a suspended particle is surrounded by
the Stern layer and that its “electrokinetic radius”a includes
that layer, so that standard electrokinetic equations are valid
for r > a. The outer boundary of the Stern layer is located at a
distancex ) â1 + â2, measured from the surface of the particle
core. Therefore, in equilibrium, the Gouy-Chapman ion
distribution applies forx > â1 + â2 and the fixed surface charge
density is located precisely at the core surface:x ) 0. The
adsorbed ions are assumed to lie adjacent to the surface, with
their centers located atx ) â1, so that their charge can be
represented by a surface charge densityσs

0.
The surface charge density in the Stern layer is determined

by means of an adsorption Langevin type isotherm

where the lower indexj refers to the ion type,zje is the ion
charge,nj

∞ its bulk molar density,Kj the dissociation constant,
andNj the maximum surface density allowed atx ) â1 for ions
of type j. Finally, N is the number of ion types present in the
solution,kB represents the Boltzmann constant,T the absolute
temperature, andΨ0 ) Ψ0(x) the equilibrium electric potential.
Actually, two adsorption isotherms are considered: adsorption
onto “underlying area”, eq 1, and adsorption onto “underlying
charge”, expressed by an isotherm identical to eq 1, except that
the summation over all the ion species in the denominator is
replaced just by thej ion type term. However, numerical
calculations are only made by considering the first kind of
adsorption isotherm, so that we shall not consider the second
case in what follows. In these calculations,Nj is deduced from
the maximum surface charge density that is assigned the
values: eNj ) 30 or 80 µC cm-2 while Kj (in mol/L) is
expressed asKj ) 10-pKj, wherepKj is considered to be in the
range from-1 to 2.

In view of the thinness of the Stern layer, the value of the
potential atx ) â1 is related to the corresponding value atx )
â1 + â2 using plane geometry

whereσd
0 is the surface charge of the diffuse double layer and

C2 is the outer Stern layer capacity per unit area. Writing this
capacity as

and substitutingC2 ) 130 µF cm-2, used in ref 10 for all the
numerical calculations, andε ) 78.55× 8.85× 10-12 F m-1,
leads to the valueâ2 ) 5.3× 10-10 m (a different value of the
permittivity in the Stern layer could certainly be considered,
but this would require the incorporation of a Born-type energy
term22 in eq 1). Therefore, the thickness of the Stern layer
considered in the M-W model is on the order ofh ≡ â1 + â2

≈ 10 × 10-10 m. This value is not used in the calculations,
since the layer is treated as if it were infinitely thin.
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It is interesting to compare the total average volume density
of ions inside the Stern layer

with the total ion density in the diffuse double layer at its
boundary

This can be done combining eqs 1 and 2

and using the following expression for the diffuse double layer
surface charge density, which is valid for thin double layers
and binary electrolytes with equal counterion and co-ion
valences23

where

is the reciprocal Debye length,NA is the Avogadro number,
and it was assumed that the electrolyte is univalent.

The obtained results for the total average ion density inside
the Stern layer as a function of the equilibrium dimensionless
surface potential

calculated fora ) 100 nm particles in a binary univalent
electrolyte solution such thatκa ) 30 and considering thateNj

) 80 µC cm-2 are presented in Figure 1. The same values
represented as a function ofκa and calculated fory0(a) ) 4 are
presented in Figure 2. In this last figure, the surface charge of
the diffuse layer was obtained numerically rather than using eq
6, since that expression is only valid for highκa values.

As can be seen, the total average ion concentration inside
the Stern layer generally exceeds the concentration of ions in
the adjacent electrolyte solution. This is particularly true for
low surface potentials when a strong ion adsorption is required
to achieve a high anomalous surface conductivity. ForpK ) 2,
the Stern layer is saturated at practically ally0(a) values, while
for lower pK values, the saturation condition requires increas-
ingly higher surface potentials. It should be noted that the
average ion concentration inside the Stern layer becomes lower
than that of the adjacent solution forpK ) -1 and lowy0(a).
Actually, these two magnitudes become equal for low surface
potential values when the second factor in the right-hand side

of eq 5 becomes equal tozjeh, that is whenpK ≈ -0.9 (foreNj

) 80 µC cm-2).
For high, but still reasonable, surface potential values,y0(a)

> 6 (for eNj ) 80 µC cm-2), the Stern layer becomes fully
saturated for any value ofpK, while the ion density in the diffuse
layer continues to increase. This saturation can be regarded as
a positive feature of the M-W model of the Stern layer, since
it avoids excessively high ion concentrations that are obtained
in the framework of the standard model due to the assumption
that ions can be treated as mathematical points. However, the
M-W model includes both the inner and the outer regions, and
no measures are taken in order to avoid excessive ion concen-
trations in the outer region. Therefore, all the reservations about
the applicability of the standard model at high surface potential
values also apply to the M-W model.

Figures 1 and 2 provide a means to compare the anomalous
surface conductivity with the surface conductivity of the diffuse
double layer, since both values are proportional to the corre-
sponding ion densities. However, it is worth noting that the
proportionality constants are different, mainly because the
thickness of the surface layer is fixed while that of the diffuse
layer depends on the electrolyte concentration: the Debye length
in Figure 2 varies in the range 100 to 0.5 times the thicknessh
of the surface layer. Another important reason is that the fluid
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Figure 1. Total average ion density inside the Stern layer according
the M-W model (eqs 3-5) calculated forκa ) 30 and the indicated
pK values (dotted lines). The dashed line represents the total ion density
in the diffuse layer atr ) a (eq 4), while the solid line corresponds to
the total average ion density inside the surface layer according to our
model.

Figure 2. Same as Figure 1, but calculated for the nondimensional
surface potentialy0(a) ) 4.
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does not move inside the surface layer according to the M-W
model, while it does move in the diffuse layer, enhancing its
surface conductivity value. Finally, the diffusion coefficient
values for ions inside the surface layer need not be equal to
those in the bulk solution (we do not consider this possibility
in the present work).

As a final comment, it is important to note that, while the
M-W model specifies a mechanism for the dependence of the
Stern layer properties on the system parameters, it does not
specify any mechanism that determines the value of the fixed
surface charge on the core of the particle. However, this charge
has an extremely strong dependence ony0(a) andκa, as shown
in Figures 3 and 4, which were obtained using the same choice
of parameters as Figures 1 and 2, respectively. As can be seen,
for low surface potentials and intermediateκa values, the fixed
surface charge can be nearly 2 orders of magnitude higher than
in the bare particle model.

2.2. Proposed Model.Our model can be regarded as an
extension of the M-W model. We also consider that the particle
is made of a rigid core surrounded by a thin surface layer of
thicknessh ≈ 10 × 10-10 m. The radius of the whole system
is a, and forr > a, the standard electrokinetic equations apply.
Any differences with the M-W model correspond, therefore,
to the region 0< x < h.

The first difference is that we consider the fixed charges of
the particle to be distributed inside this region, rather than
forming a surface charge layer precisely on the core surface:x
) 0. This assumption implies that the core is not necessarily a
perfectly smooth sphere, that the fixed charges have a finite
size and need not be completely immersed inside the core, and
that a hairy surface is a possible reality.17,18

The second difference is that we do not require a priori that
the fluid cannot move inside the surface layer. This requirement
is necessary in any treatment of the surface layer in which it is
assumed to be infinitely thin,4,5 since, in this case, it is
impossible to write down the Navier-Stokes equation. However,
when the layer is assumed to have a finite thickness, as in the
M-W and our models, this requirement is no longer necessary.
Besides, if hydrated ions are allowed to move inside the surface
layer, it seems reasonable that water molecules should also be
allowed to move. While the use of macroscopic equations at
length scales on the order of 10× 10-10 m can certainly be
objected, this is done in the M-W model just outside the
hydrodynamic radiusr ) a (and in all the existing treatments
that use the standard model). It is worth noting that, for a
concentrationn∞ ) 0.1 M, a quite usual value, the Debye
screening length is approximately 10× 10-10 m.

The third difference is that we do not use any adsorption
isotherm, at least in this initial formulation of the model. On
the contrary, ions are free to move across the external boundary
driven by the electric potential and concentration gradients, as
well as the fluid flow. Since one of the boundary conditions at
r ) a is the continuity of the ion concentrations, the ion densities
inside the surface layer are close to the densities just outside
the layer: solid lines in Figures 1 and 2. Therefore, our model
predicts lower ion densities at low surface potentials than the
M-W model and higher in the opposite case. However, this
does not mean that the resulting surface conductivity values
are always weaker at low surface potentials, since the fluid flow
inside the surface layer greatly enhances the anomalous surface
conductivity. Furthermore, while the ion density in the diffuse
layer is identical for the three considered models, the corre-
sponding surface conductivity is higher according to our model
because the adhesion boundary condition applies atr ) a - h
rather thanr ) a.

The fourth and final difference is in the value of the fixed
charge. Just as in the M-W model, we do not specify any
mechanism determining the value of this charge as a function
of the system parameters, at least in this initial formulation of
the model. However, the resulting values strongly differ from
those of the M-W model, being generally lower and closer to
the values corresponding to the bare particle model, at least for
low surface potentials or lowκa values (solid lines in Figures
3 and 4).

In view of the assumptions specified above, the mathematical
formulation of the proposed model is identical to that presented
earlier for the description of the dielectric and electrokinetic
properties of dilute suspensions of soft particles.24,25 For this
reason, we do not rewrite here any of the governing equations
and boundary conditions that determine the predicted behavior
of the system. We only note that the soft particle model includes
a parameterλ related to the resistance exerted by the polymer
segments in the permeable membrane to the fluid flow inside
it according to the Debye-Bueche model.26 In order to simplify
the forthcoming discussion and to minimize the number of
parameters, we only consider now the extreme caseλ ) 0: free
fluid flow inside the surface layer. We furthermore assume that
the diffusion coefficients of all the ionic species have the same

Figure 3. Total fixed charge on the surface of the core according the
M-W model, calculated forκa ) 30 and the indicatedpK values
(dotted lines). The dashed line represents the total fixed charge
according to the bare particle model, while the solid line corresponds
to the total fixed charge inside the surface layer according to our model.

Figure 4. Same as Figure 3, but calculated for the dimensionless
surface potentialy0(a) ) 4.
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value inside the surface layer as in the bulk solution, and that
the permittivity inside this layer is the same as in the bulk.

A simple estimate of a physically meaningful value of the
parameterλ can be made, assuming that the drag exerted on
the fluid flow by each fixed charge in the surface layer is the
same as the forceF exerted by the fluid on a moving ion in the
suspending medium

where V is the ion velocity,u its mobility, D its diffusion
coefficient, and the Einstein relation was used in order to write
the second equality.

The drag coefficient in the soft particle model is defined as24

where γ is the force per unit volume and unit velocity.
Combining the above expressions gives

whereQ is the fixed charge of the particle, so that the second
factor in the right-hand side is the number of fixed ions per
unit volume in the surface layer. The value ofQ strongly
depends on the surface potential and onκa, increasing with these
parameters (Figures 3 and 4). Therefore, the assumptionλ ) 0
is acceptable for weakly charged particles in dilute electrolyte
solutions but becomes objectionable in the opposite limit.

3. Results and Discussion

In what follows, we compare our results to those correspond-
ing to bare particles (no surface layer) and to the results of the
M-W model, keeping constant the equilibrium electric potential
value at r ) a. For the bare and the M-W models, this
parameter coincides precisely with theú potential. However,
this is not exactly the case for our model, since as is
well-known,27 theú potential is an ill-defined parameter in the
case of soft particles (the standard definition is only possible
for λ ) 0 or λ f ∞, since in these cases, theú potential would
coincide with the equilibrium surface potential atr ) a - h
and r ) a, respectively). Nevertheless, this fact is of little
importance for the extremely thin membranes considered in this
study. It should be noted that this representation differs from
that used in ref 24, where the comparisons were made by
keeping constant the fixed charge of the particle. The reason
for the change is in the extremely high variability of the particle
charge across the considered models as shown in Figures 3
and 4.

The different parameter values used in the calculations, except
when specified otherwise, are given in Table 1.

Figure 5 represents the conductivity increment∆K defined
as

and calculated as a function of the dimensionless surface
potential for three values ofκa. In the above expression,K is
the conductivity of the suspension,K∞ the conductivity of the
suspending medium,φ the volume fraction of particles, andd
the dipolar coefficient. For very low surface potential values,
the bare particle behaves just as an insulating sphere so that its
dipole coefficient has the value-1/2, irrespective of the value

of κa,28 and the corresponding conductivity increment curves
tend toward-3/2. Our model tends toward a slightly higher value
because the radius of the core (a - h) is smaller than the radius
(a) of the bare particle. Therefore, the limiting conductivity
increment value is-(3/2)[(a - h)/a]3 ≈ -1.45.

A totally different behavior is observed for the M-W
model: the conductivity increment values are much higher and
strongly depend on the electrolyte concentration, decreasing with

F ) V
u

) VkT
D

λ2 ) γ
η

λ2 ) kT
Dη

Q/e

4πa2h
(8)

K ) K∞(1 + φ∆K) ) K∞(1 + 3φd) (9)

TABLE 1: Parameter Values Used in Figures 5-8, except
When Specified Otherwise

radius of the core and
surface layer

a ) 100× 10-9 m

thickness of the surface
layer

h ) 1 × 10-9 m

absolute permittivity outside
the core

ε ) 78.55× 8.85× 10-12 F m-1

viscosity of the suspending
medium

η ) 0.89× 10-3 poise

temperature T ) 298 K
number of ionic species in

the solution
N ) 2

ion valences z1 ) -z2 ) 1
ion diffusion coefficients D1 ) D2 ) 2 × 10- 9 m2 s-1

electrolyte concentration such thatκa ) 30
dimensionless surface potential y0(a) ) 4
M-W maximum Stern layer

surface charge
eN1 ) eN2 ) 80 µC cm-2

M-W dissociation constantpK pK1 ) pK2 ) 2

Figure 5. Conductivity increment defined in eq 9, calculated for the
indicatedκa values. Dashed lines: bare particle model. Dotted lines:
M-W model. Solid lines: our model.

Figure 6. Same as Figure 5, but calculated for the indicated
dimensionless surface potential values.
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κa. The first feature is due to the presence of the adsorption
isotherm (eq 1) that populates the Stern layer even for uncharged
particles (Figure 1), leading to a nonvanishing surface conduc-
tivity. As for the dependence onκa, it arises because the static
dipole coefficient of uncharged particles is determined by the
simple expression28

where Du is the Dukhin number: total surface conductivity
divided by the particle radius and the bulk conductivity. For
uncharged particles, the dependence of Du onκa is determined
by the denominator in eq 1, since the ion concentration in the
numerator cancels with that in the expression of the bulk
conductivity. Therefore, Du decreases with increasingκa and
so does the dipolar coefficient.

For high y0(a) values, the conductivity increment of bare
particles also increases, basically due to an increment of the
surface conductivity of the diffuse double layer, and tends to a
finite value for y0(a) f ∞ (in the simplest case of univalent
electrolytes, equal diffusion coefficients values of counterions
and co-ions, andκa f ∞, the theoretical limit of the dipolar
coefficient is1/4,29 so that the conductivity increment tends to
0.75). The M-W and our models tend to the same limiting
values as the bare particle model, since when the surface
conductivity of the diffuse double layer diverges, the contribu-
tion of the inner layer becomes irrelevant.

For intermediatey0(a) values, our model has a very strong
dependence on the surface potential, due to the strong depen-
dence of the ion density in the surface layer on this same
parameter (Figure 1). As can be seen, the conductivity increment
is always substantially greater than for bare particles, as expected
in view of the additional surface conductivity of the surface
layer and the increased surface conductivity of the diffuse layer.
A comparison with results deduced using the M-W model
shows that for low surface potential values∆K is lower
according to our model, at least for the adsorption isotherm
parameters used in Figure 5, because of the lower ion density
values in the surface layer (Figure 1). However, for highy0(a),
our conductivity increment surpasses the values obtained by the
M-W model, since the ion density inside the surface layer
increases (Figure 1), while the fluid flow inside this layer
enhances the surface conductivity.

Figure 6 represents the conductivity increment calculated as
a function ofκa for three values of the surface potential. For
low electrolyte concentrations, the bare particle model leads to
very large conductivity increment values that are mainly caused
by the increment of the effective size of the particles due to
their thick diffuse double layer.29 In the opposite high concen-
tration limit, the surface conductivity increases with the square
root of the electrolyte concentration (eqs 6 and 7), while the
bulk conductivity is proportional to this concentration, so that
the Dukhin number becomes vanishingly small and the con-
ductivity increment tends to-3/2, irrespective of the surface
potential value.29

The behavior of the M-W model is qualitatively similar to
that of the bare particle model, leading always to higher
conductivity increment values due to the additional Stern layer
surface conductivity term. At lowκa, the differences are very
small, except for low surface potentials when the surface
conductivity of the diffuse double layer decreases and the
contribution to the dipole coefficient of the Stern layer becomes
increasingly important (Figure 5). The differences are highest
at intermediate concentrations when the Stern layer surface

conductivity term becomes dominant. Finally, for the highκa
limit, the Stern layer surface conductivity attains its saturation
value (Figure 2), so that Dukhin number tends to zero just as
for the bare particle model.

As for our model, it also leads always to higher conductivity
increment values than the bare particle model, due to the
additional surface conductivity of the surface layer and the
increased surface conductivity of the diffuse layer. At low ion
concentrations, the differences are always very small, because
the contribution of the surface layer becomes negligible as
compared to the diffuse double layer: for decreasingκa, its
thickness remains fixed, while the Debye screening length
increases. Due to this same reason, the surface conductivity of
the diffuse layer tends to that of the bare particle model. At
intermediateκa values, the differences become quite important
especially for high surface potential values, when the inner layer
conductivity can surpass that of the M-W model. Finally, in
the high concentration limit, our model leads to conductivity
increment values that are positive and much higher than the
other two models. The reason for this behavior is that the
average ion density in the surface layer is proportional to the
ion concentration atr ) a, which is proportional to the bulk
ion concentration (eq 4 and Figure 2). Therefore, the surface
layer conductivity increases linearly with the electrolyte con-
centration so that, for highκa values, the Dukhin number tends
to a constant value rather than decreasing to zero as for the
other two models.

Figure 7 represents the dimensionless electrophoretic mobility

calculated as a function of the dimensionless surface potential
for three different values of the productκa. In this expression,
Ve is the electrophoretic velocity andE is the applied electric
field. The three bare particle model curves reflect the well-
known behavior:30 an initial increase corresponding to an
increasing surface charge in the diffuse double layer, a maximum
value (present for sufficiently highκa), and a decrease due to
the increment of the dipolar coefficient and a corresponding
decrement of the total tangential electric field value in the diffuse
double layer. The final limiting value is determined by the
corresponding limit of the dipolar coefficient (Figure 5 and eq
9).

As can be seen, the anomalous surface conductivity can have
a tremendous impact on the electrophoretic mobility value. The
most important qualitative conclusion drawn from Figure 7 is
that, according to our model, the mobility generally increases
with the surface conductivity, while it always decreases ac-
cording to the M-W model. The reason for the behavior of
the M-W model is rather obvious: the diffuse layer and the
fluid boundary condition are the same as in the bare particle
model, while the tangential electric field is lower because the
dipole coefficient is always higher (Figure 5 and eq 9). As for
our model, the mobility at low surface potentials is sensibly
higher than for the bare particle model, because the slipping
plane is shifted tor ) a - h so that all the ions in the diffuse
double layer and an important fraction of free ions in the surface
layer are located relatively far from the slipping plane, which
increases the tangential fluid velocity along the surface of the
particle. For higher surface potential values, this difference
decreases and even changes sign due to the faster increase of
the dipole coefficient in our model (Figure 5). Finally, Figure
7 also illustrates the influence of theλ parameter value,

d ) 2Du - 1
2Du + 2

ue ) 3eη
2εkBT

Ve

E
(10)
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calculated using eq 8, on the electrophoretic mobility. As can
be seen, the mobility values are always lowered with respect to
the values obtained considering thatλ ) 0, the difference being
important forκa ) 100 but negligible forκa ) 10.

Figure 8 shows the dependence of the electrophoretic mobility
on κa, calculated for three different values of the surface
potential. The bare particle model shows the well-known
behavior:31 Debye-Hückel limit for low κa and Smoluchowski
value in the opposite limit. The M-W model displays these
same limiting behaviors, because the anomalous surface con-
ductivity vanishes at lowκa (eq 1), while the dipole coefficient
value coincides with that of the bare particle model at highκa
(Figure 6). For intermediate electrolyte concentrations, the
mobility is always lowered due to the higher dipole coefficient
values (Figure 5).

As for our model, it also tends to the Debye-Hückel limit
at low electrolyte concentrations, because the surface layer
conductivity vanishes under these conditions (Figure 2), while
the surface conductivity of the diffuse layer tends to that of the

bare particle model. For intermediateκa values and moderate
surface potential, the mobility becomes much higher than in
the bare particle model, because an important fraction of free
charges is located far from the zero fluid velocity boundary.
However, the mobility becomes lower for highy0(a), in view
of the high value of the dipole coefficient (Figure 5). In order
to provide an interpretation of the strong increase of the mobility
for the highκa limit, we solve the Navier-Stokes equation in
one dimension inside the surface layer and the electrolyte
solution considering, as in all of this work, that there is no
resistance exerted by the fixed charges in the surface layer to
the fluid flow

In this expression,x is the radial coordinate extending from the
core (x ) 0) and into the electrolyte solution (x > h), Vy )
Vy(x) is the tangential fluid velocity,F ) F(x) is the free ion
charge,Ey is the tangential electric field, and the pressure term
has been omitted in view of symmetry considerations. This
equation can be combined with the equilibrium Poisson equation

whereFf is the density of fixed charges inside the layer, leading
to

The solution of this equation inside the surface layer is

while, outside it, it reduces to

The four unknown coefficients can be determined using the
following boundary conditions:

1. Forx f ∞, the electric potential vanishes, while the fluid
velocity attains a finite value

2. For x ) 0, the fluid velocity vanishes, while the electric
potential attains a finite value

3. For x ) h, the electric potential is continuous, and the
velocity is continuous, as is its first derivative with respect to
x.24 Finally, the first derivative of the potential is also continuous,
becauseε is continuous and there is no surface charge density

Therefore, the fluid velocity value far from the surface layer
is

Figure 7. Dimensionless electrophoretic mobility defined in eq 10,
calculated for the indicatedκa values. Dashed lines: bare particle model.
Dotted lines: M-W model. Solid lines: our model. Dot and dash
lines: our model with the parameterλ value estimated using eq 8.

Figure 8. Same as Figure 7, but calculated for the indicated
dimensionless surface potential values and forλ ) 0 only.

η
d2Vy

dx2
) FEy

d2Ψ0

dx2
) - F + Ff

ε

η
d2Vy

dx2
) -ε

d2Ψ0

dx2
Ey - FfEy

ηVy ) -εΨ0Ey - FfEyx
2/2 + K1x + K0

ηVy ) -εΨ0Ey + C1x + C0

C1 ) 0

C0 ) ηVy(∞)

K0 ) εΨ0(0)Ey

K1 ) FfhEy

ηVy(∞) ) εΨ0(0)Ey + FfEyh
2/2
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For the limit h f 0, this result reduces to the well-known
expression

In the case thatκa f ∞ while the fixed charge density is kept
at a constant value, the potentialΨ0(0) f 0, so that our result
reduces to

which coincides with the result presented in ref 24. In the general
case and for highκa values while keeping constant the surface
potential,Ψ0(0) remains approximately constant with a value
close to and slightly higher thanΨ0(h). On the contrary, the
fixed charge diverges with divergingκa (Figure 4), so that the
electrophoretic mobility (eq 10) also diverges.

Conclusion

We presented a new generalization of the standard electro-
kinetic model, often used for the interpretation of the dielectric
and electrokinetic properties of aqueous colloidal suspensions.
Since our model can be regarded as being based on the existing
model of Mangelsdorf and White, at this first stage we only
discussed its simplest features in order to visualize its potential.
This is why we considered that fluid flow is unrestricted inside
the surface layer (λ ) 0) and that there is no specific adsorption
of ions onto that layer.

It should be stressed that these assumptions are not part of
our model. On the contrary, the parameterλ can be freely
assigned any value 0e λ < ∞ and, forλ f ∞, the fluid ceases
to flow inside the surface layer just as in the M-W model. A
simple estimate of the parameterλ (eq 8) shows that the
assumptionλ ) 0 is reasonable for weakly charged particles in
dilute electrolyte solutions but becomes objectionable in the
opposite limit. As for the specific adsorption, it can be easily
incorporated into the model by considering that the equilibrium
concentrations of ions inside the surface layer are determined
in a way similar to that used in ref 32. With these two additions,
our model can be made to behave just as the M-W model.
However, the trends outlined in the present paper show that it
could be used for the interpretation of a broader set of
experimental data, including those cases when the measured
mobility is higher than predicted by the standard model.

In a future work, we intend to include these generalizations
and present the solution of our model in the frequency domain
in order to analyze its potential for the interpretation of
electrokinetic and dielectric spectroscopy data.
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