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Koszul algebras defined by R. Berger for homogeneous algebras,
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S. Priddy. Our definition is in some sense as closest as possible
to the one given in the homogeneous case. Indeed, we give an
equivalent description of the new definition in terms of the Tor
(or Ext) groups, similar to the existing one for homogeneous
algebras, and also a complete characterization of the multi-
Koszul property, which derives from the study of some associated
homogeneous algebras, providing a very strong link between
the new definition and the generalized Koszul property for the
associated homogeneous algebras mentioned before. We further
obtain an explicit description of the Yoneda algebra of a multi-
Koszul algebra. As a consequence, we get that the Yoneda algebra
of a multi-Koszul algebra is generated in degrees 1 and 2, so a K2
algebra in the sense of T. Cassidy and B. Shelton. We also exhibit
several examples and we provide a minimal graded projective
resolution of the algebra A considered as an A-bimodule, which
may be used to compute the Hochschild (co)homology groups.
Finally, we find necessary and sufficient conditions on some (fixed)
sequences of vector subspaces of the tensor powers of the base
space V to obtain in this case the multi-Koszul property in the
case we have relations in only two degrees.

© 2012 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: Estanislao.Herscovich@ujf-grenoble.fr (E. Herscovich), arey@udesa.edu.ar (A. Rey).
0021-8693/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2012.11.030

http://dx.doi.org/10.1016/j.jalgebra.2012.11.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:Estanislao.Herscovich@ujf-grenoble.fr
mailto:arey@udesa.edu.ar
http://dx.doi.org/10.1016/j.jalgebra.2012.11.030


E. Herscovich, A. Rey / Journal of Algebra 376 (2013) 196–227 197
1. Introduction

Koszul algebras were introduced by S. Priddy in [27], motivated by the article [20] published by
J.-L. Koszul in the 50s. They have been extensively studied in the last years, in particular due to
their applications in representation theory (cf. [3,4]), algebraic geometry (cf. [14]), quantum groups
(cf. [22]), and combinatorics (cf. [18]), to mention a few. These algebras are necessarily quadratic,
i.e. they are of the form T (V )/〈R〉, with R ⊆ V ⊗2. R. Berger generalized in [5] the notion of Koszul
algebras (cf. also [17]) to the case of homogeneous algebras, i.e. algebras given by T (V )/〈R〉, with
R ⊆ V ⊗N , for N � 2. They were called generalized Koszul, or N-Koszul if the mention to the degree of
the relations was to be indicated, and the case N = 2 of the definition introduced by Berger coincides
with the one given by Priddy. The general definition shares a lot of good properties with the one
given by Priddy, justifying the terminology (see for example [5,8]). In particular, the Yoneda algebra
of an N-Koszul algebra is finitely generated (in degrees 1 and 2), and its structure is easily computed
from that of the original algebra. We would like to point out that the new class of algebras satisfying
the Koszul property of Berger lacks however of other interesting properties, e.g. they are not closed
under taking duals, or under considering graded Ore extensions, the Yoneda algebra of an N-Koszul
algebra is not formal for N � 3, etc.

On the other hand, several examples of not necessarily homogeneous algebras which arise in the
practice and which share some of the interesting properties of generalized Koszul algebras lead to
the question if there is an analogous definition of Koszul-like algebra for more general situations. In
this article we propose such a definition for the case of a finitely generated nonnegatively graded
connected algebra which is generated in degree 1 and has a finite number of relations, i.e. algebras
of the form T (V )/〈R〉, where V is a finite dimensional vector space, which we consider to be in
degree 1, and R ⊆ T (V )�2 is a finite dimensional graded vector space. They will be called multi-
Koszul. Our main goal is to provide such a class of algebras, which are in some sense the closest
possible to the generalized Koszul algebras, for which the Yoneda algebra is in fact finitely generated
and its structure is directly deduced from that of the original algebra.

The new definition may seem however to be too restrictive (e.g. see Remark 3.24, and Corol-
lary 5.17), and despite the fact that it is probably not the most general possible and reasonable
extension of the Koszul property for such algebras, all the nice properties satisfied by it (e.g. Theo-
rem 3.17, Propositions 3.7, 3.12 and 3.21, Remarks 3.22 and 3.25, and Corollary 3.23) make us believe
that any sensible such general definition of Koszul-like algebra in the general context of graded alge-
bras, if it exists, should necessarily include our definition as a special case.

This work is partially inspired on the PhD thesis of the second author, but it considers a more
general setting of graded algebras.

The contents of the article are as follows. We start by recalling in Section 2 several well-known
definitions and results about the category of graded modules over a nonnegatively graded connected
algebra.

Section 3 is devoted to the definition of multi-Koszul algebras and to prove some properties
for this family of algebras. The first main result, Proposition 3.12 (see also Proposition 3.15) gives
a (co)homological description of multi-Koszul algebras in term of their Tor (or Ext) groups, which
yields a left–right symmetry of the definition. Then, Theorem 3.17 relates the multi-Koszul property
for an algebra A to the (generalized) Koszul property of some homogeneous algebras associated to A.
Moreover, we also study the associated Yoneda algebra and prove in Corollary 3.23 that multi-Koszul
algebras are K2 algebras, in the sense defined by T. Cassidy and B. Shelton in [13]. We further obtain
a description of the A∞-algebra structure of the corresponding Yoneda algebra (see Remarks 3.22
and 3.25).

Following the ideas of Berger in [5], in Section 4 we construct an A-bimodule resolution of a
multi-Koszul algebra, which can be used in the computation of the Hochschild (co)homology groups
of the algebra.

Finally, in Section 5 we concentrate on the special case of having relations in only two degrees.
We find necessary and sufficient conditions on some (fixed) sequences of vector subspaces of the ten-
sor powers of the base space V to get the multi-Koszul property, following the lines of the analysis
done in the case of (generalized) Koszul algebras by Berger (see [5, Section 2], but cf. also [2]). Some
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of these subspaces together with their conditions are the ones already found in the homogeneous
case, but these are not equivalent to the multi-Koszul definition, and in fact new sequences of vec-
tor subspaces satisfying more complicated conditions are introduced in order to obtain the desired
definition.

We remark that the notion of multi-Koszul algebras for algebras having relations in two degrees
is completely different from the notion of (p,q)-Koszul rings given in [10]. On the other hand, it is
easily seen that any multi-Koszul algebra with relations in degrees 2 and d > 2 satisfies the 2-d-Koszul
property defined in [16].

Throughout this article k will denote a field, and all vector spaces will be over k. Moreover, V will
always be a finite dimensional vector space, and A a nonnegatively graded connected (associative)
algebra over k (with unit), to which we will usually just refer as an algebra, with irrelevant ideal
A>0 = ⊕

n>0 An . The vector space spanned by a set of elements {vs: s ∈ S}, for some index set S ,
will be denoted by spank〈vs: s ∈ S〉 and the ideal I generated by a set of elements {αs: s ∈ S} of
an algebra A will be denoted by 〈αs: s ∈ S〉. We will however also write the former vector space
as 〈vs: s ∈ S〉 to simplify the notation, when we believe that it clearly denotes a vector space, but if
necessary we shall stress that we mean the vector space spanned by those elements, and not the ideal
generated by them, to avoid confusion. All unadorned tensor products ⊗ will be considered over k,
unless otherwise stated. We shall typically denote the vector space V ⊗n by V (n) , for n ∈ Z, where we
follow the convention V (n) = 0, if n < 0, and V (0) = k, and an elementary tensor v1 ⊗ · · · ⊗ vn ∈ V (n)

will be usually written by v1 . . . vn .

2. Preliminaries and basic properties

In this section we shall recall some basic facts about the category of (bounded below) Z-graded
modules over a nonnegatively graded connected algebra. We refer to [11, Exp. 15], or [6] for all the
proofs of the mentioned results.

Throughout this section, A will always denote a nonnegatively graded connected algebra of the
form A = ⊕

m∈N0
Am , and we shall follow the typical convention Am = 0, for m < 0. A Z-graded left

(resp., right) A-module M = ⊕
n∈Z Mn is a Z-graded vector space together with a left (resp., right)

action of A on M such that Am Mn ⊆ Mm+n (resp. Mm An ⊆ Mm+n), and we shall sometimes refer to
them simply as left (resp., right) A-modules. Moreover, since we will mostly deal with left modules,
we will usually omit the adjective and call them just modules (or graded modules), if it is clear from
the context, but we will restore it if it is necessary. We will denote by A-grMod the abelian category
of Z-graded left A-modules, where the morphisms are the A-linear maps preserving the grading.
The space of morphisms in this category between two graded A-modules M and M ′ will be denoted
by homA(M, M ′). This category is provided with a shift functor (−)[1] defined by (M[1])n = Mn+1,
where the underlying A-module structure of M[1] is the same as the one of M , and the action of the
morphisms is trivial. We shall also denote (−)[d] the d-th iteration of the shift functor. The A-module
M is said to be left bounded, or also bounded below, if there exists an integer n0 such that Mn = 0 for
all n < n0. Notice that the graded left A-modules which are left bounded form a full exact subcategory
of A-grMod.

If M is a graded left A-module, we may consider the graded right A-module M#, called the
graded dual, which has n-th homogeneous component (M−n)∗ , where (−)∗ denotes the usual dual
vector space operation, and if α ∈ Am and f ∈ (M#)n , then f ·α ∈ (M#)m+n = (M−m−n)∗ is defined by
( f · α)(x) = f (α · x), for all x ∈ M−m−n . There exists an obvious definition if we start with a graded
right A-module. We will also consider the analogous graded dual construction (−)# in the category
of graded vector spaces. Given graded A-modules N and N ′ , we recall the following notation:

HomA
(
N, N ′) =

⊕
d∈Z

homA
(
N, N ′[d]).

We remark that, if N is finitely generated, then HomA(N, N ′) = HomA(N, N ′), where the last mor-
phism space is the usual one for A-modules by forgetting the gradings (see [24, Cor. 2.4.4]).
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We say that an object M in A-grMod is s-concentrated in degrees l1, . . . , ls if there exist integers
l1 < · · · < ls and vector subspaces of M , Ml1 , . . . , Mls , such that M = Ml1 ⊕ · · · ⊕ Mls . An object M in
A-grMod is called s-pure in degrees l1, . . . , ls if there exist integers l1 < · · · < ls and graded vector
subspaces Ml1 , . . . , Mls of M where each Mli is concentrated in degree li , such that M = AMl1 + · · · +
AMls and Mli ∩ (AMl1 + · · · + AMli−1 ) = 0 for all i = 2, . . . , s. In this case, there exists an isomorphism
of graded vector spaces k ⊗A M � ⊕s

i=1 Mli . If s = 1 we simply say that M is a concentrated (resp.,
pure) module (cf. [5]).

In both cases, the integers l1, . . . , ls such that Ml1 , . . . , Mls are nonzero are uniquely determined
whenever M is a nontrivial module. It is clear that every module which is s-concentrated in degrees
l1, . . . , ls is s-pure in degrees l1, . . . , ls , and that every module s-concentrated in degrees l1, . . . , ls is
isomorphic to a direct sum of shifts k[−l1]dim Ml1 ⊕ · · · ⊕ k[−ls]dim Mls as graded vector spaces.

The following result is the graded version of the Nakayama Lemma.

Lemma 2.1. Let M be a left bounded Z-graded left A-module. If k ⊗A M = 0 then M is also trivial.

Proof. See [6, Lemme 1.3] (see also [11, Exp. 15, Prop. 6]). �
The A-module M is said to be graded-free if it is isomorphic to a direct sum of shifts A[−li] of A.

We remark that a bounded below Z-graded A-module M is graded-free if and only if its underlying
module (i.e. forgetting the grading) is free, if and only if it is projective (as a graded module or not),
if and only if TorA• (k, M) = 0, for all • � 1 (or just • = 1). This will follow from the comments on
projective covers. Furthermore, it is easy to see that the graded dual of a projective graded left (resp.,
right) A-module is an injective graded right (resp., left) A-module (see [11, Exp. 15, Prop. 1]).

A surjective morphism f : M → M ′ in A-grMod is called essential if for each morphism g : N → M
in A-grMod such that f ◦ g is surjective, then g is also surjective. As an application of the Nakayama
Lemma we have the following result which characterizes essential surjective maps.

Lemma 2.2. Let f : M → M ′ be a morphism in the category A-grMod.

(i) Suppose that M ′ is left bounded and that f is surjective and essential. Then 1k ⊗A f is bijective. Moreover,
if M is also left bounded, the converse holds.

(ii) Assume that f is surjective and M is pure in degree l. Then f is essential if and only if fl : Ml → M ′
l is

bijective.

Proof. For the first item, see [6, Lemme 1.5] (see also [11, Exp. 15, Prop. 7]). For the second one, see
[5, Prop. 2.4]. �

In fact, the last item of the previous lemma may be generalized as follows.

Proposition 2.3. Let f ∈ homA(M, M ′) be a surjective morphism. If M is s-pure in degrees l1, . . . , ls , then M ′
is also s-pure in degrees l1, . . . , ls . Moreover, f is essential if and only if the induced morphisms fli : Mli → M ′

li
are injective for 1 � i � s.

Proof. Let m′ ∈ M ′ and m ∈ M be such that f (m) = m′ . Since M is s-pure in degrees l1, . . . , ls , there
exist αi ∈ A and mi ∈ Mli for 1 � i � s such that m = ∑s

i=1 αimi . Therefore, m′ = ∑s
i=1 αi f (mi), where

f (mi) ∈ M ′
li

. Thus, M ′ is s-pure in degrees l1, . . . , ls . By Lemma 2.2, f is essential if and only if the
induced k-linear map

1k ⊗A f : k ⊗A M → k ⊗A M ′

is bijective. However, since M and M ′ are s-pure then k ⊗A M and k ⊗A M ′ are canonically isomorphic
to k ⊗ Ml1 +· · ·+k ⊗ Mls and k ⊗ M ′

l1
+· · ·+k ⊗ M ′

ls
, respectively. Thus, the restrictions to each degree

of 1k ⊗A f become fli : Mli → M ′
l for 1 � i � s. �

i
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Let M be a nontrivial object in A-grMod. A projective cover of M is a pair (P , f ) such that
P ∈ A- grMod is projective and f : P → M is an essential surjective morphism. We remark that ev-
ery left bounded Z-graded A-module M has a projective cover, which is unique up to (noncanonical)
isomorphism (cf. [11, Exp. 15, Théo. 2]). Moreover, given M a bounded below A-module, a projec-
tive cover may be explicitly constructed as follows. Since M �= 0, the Nakayama Lemma tells us that
M/(A>0 · M) � k ⊗A M is a nontrivial graded vector space. Consider a section s of the canonical pro-
jection M → M/(A>0 · M) � k ⊗A M . Now, we define P = A ⊗ (k ⊗A M) together with the A-linear
map f : P → M given by f (α ⊗ v) = αs(v), for α ∈ A and v ∈ k ⊗A M . Using the previous lemma one
directly gets that (P , f ) is a projective cover of M .

We recall that a (graded) projective resolution (P•,d•) of a graded A-module M is minimal if
d0 : P0 → M is a projective cover (or equivalently, it is essential) and each of the maps Pi → Ker(di−1)

induced by di is also essential, for all i ∈ N. We want to remark the important fact that, by iterating
the process of considering projective covers for bounded below modules, one may easily prove that
any bounded below graded A-module has a minimal projective resolution (see [6, Théo. 1.11]). If
the A-module M has a minimal projective resolution (P•,d•), for any other projective resolution
(Q •,d′•) of M , there exists an isomorphism of (augmented) complexes Q • � P• ⊕ H• , where H•
is acyclic (see [6, Prop. 2.2]). Additionally, the minimality assumption on the projective resolution
implies that the differential of the induced complex k ⊗A P• vanishes (see [11, Exp. 15, Prop. 10], or
[6, Prop. 2.3]), so if (P•,d•) denotes such a minimal projective resolution, one also easily gets that
P• � A ⊗ TorA• (k, M). Combining the results of the two previous sentences, it is trivial to see that if
(Q •,d′•) is a projective resolution of a graded A-module M having a minimal projective resolution,
then the former is minimal if and only if the induced differential of k ⊗A Q • vanishes. Projective
resolutions in this context formed of finitely generated modules are often referred to as pure projective
resolutions.

If N is left bounded, let (P•,d•) be a (minimal) graded projective resolution of N . As usual, we
denote

Exti
A

(
N, N ′) = Hi(HomA

(
P•, N ′)),

exti
A

(
N, N ′) = Hi(homA

(
P•, N ′)).

Note that exti
A(N, N ′) = Exti

A(N, N ′)0 and that if the projective resolution of N is composed of finitely
generated projective A-modules, there is a canonical identification Ext•

A(N, N ′) � Ext•A(N, N ′). More-
over, using a very simple duality argument one can see that, if M is a bounded below graded left
A-module, then there is a canonical isomorphism of graded vector spaces

Exti
A(M,k) � TorA

i (k, M)#, (2.1)

for all i ∈ N0 (see [6, Eq. (2.15)], but cf. also [11, Exp. 15, Prop. 2]).
We end this section by stating the beginning of the minimal projective resolution of the trivial

left A-module k for any nonnegatively graded connected algebra A. The analogous statements for the
trivial right A-module k are immediate. We know that the minimal projective resolution of the trivial
(left) A-module k starts as

A ⊗ V
δ1−→ A

δ0−→ k → 0,

where δ0 is the augmentation of the algebra A, V � A>0/(A>0 · A>0) is a vector space spanned
by a minimal set of (homogeneous) generators of A, and δ1 is the restriction of the product of A
(see [11, Exp. 15, end of Section 7]). This implies that A is in fact a quotient of the tensor al-
gebra T (V ). Furthermore, if we set A = T (V )/I , for I a homogeneous ideal, it is also well-known
(and follows easily from the definition) that Ker(δ1) � I/(I ⊗ V ) (as graded vector spaces). This is
a consequence of the easy fact that δ1 is the map (T (V ) ⊗ V )/(I ⊗ V ) → T (V )/I induced by the
canonical inclusion T (V ) ⊗ V ↪→ T (V ). Hence, there is an isomorphism of graded vector spaces
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k ⊗A Ker(δ1) � I/(T (V )>0 ⊗ I + I ⊗ T (V )>0). A space of relations R of A is defined to be a graded
vector subspace of I which is isomorphic to I/(T (V )>0 · I + I · T (V )>0) under the canonical pro-
jection. Notice that its Hilbert series is thus uniquely determined, and the same holds for its first
nonvanishing homogeneous component. It is trivially verified that the ideal of T (V ) generated by R
coincides with I . Hence, if R is a space of relations of A, we have an isomorphism of graded vector
spaces k ⊗A Ker(δ1) � R (see [15, Lemma 1], for complete expressions of the graded vector spaces
TorA• (k,k), for • ∈ N0, in terms of I and the irrelevant ideal T (V )>0). Hence, A ⊗ R → Ker(δ1) is a
projective cover, and the beginning of the minimal projective resolution of the trivial A-module k is
of the form

A ⊗ R
δ2−→ A ⊗ V

δ1−→ A
δ0−→ k → 0,

where δ2 is induced by the usual map α ⊗ v1 . . . vn �→ αv1 . . . vn−1 ⊗ vn .

3. Multi-Koszul algebras

From now on, A will always denote a finitely generated nonnegatively graded connected algebra
generated in degree 1. This means that there exists a finite dimensional vector space V considered to
be in degree 1 and a surjective morphism of graded algebras of the form T (V ) → A, so A � T (V )/I ,
where I ⊆ T (V ) is a homogeneous ideal of T (V ). To avoid redundancy we will always assume that the
vector space V is canonically isomorphic to A>0/(A>0 · A>0) (as graded vector spaces). Let us denote
by R a space of relations of A. We remark that in this situation, it may be equivalently defined as
follows: for each n � 2, let Rn be a subspace of In such that it is supplementary to In−1 ⊗ V + V ⊗ In−1.
The graded vector space R = ⊕

n�2 Rn is clearly a space of relations of A. We may thus suppose that
A = T (V )/〈R〉, for R ⊆ T (V )�2 a graded vector subspace. We will further assume that A has a finite
number of relations, i.e. that R is finite dimensional, so there exists a finite subset S of N�2 such that
R = ⊕

s∈S Rs and Rs ⊆ V (s) . We shall say that such an algebra A = T (V )/I is S-multi-homogeneous, if
we want to stress the degrees of the space of relations of A.

We remark however that the set S ⊆ N�2 may not be completely determined by A. If A =
T (V )/〈R〉 is S-multi-homogeneous, so R = ⊕

s∈S Rs , we could consider any S ′ ⊇ S included in N�2,
and by writing R = ⊕

s′∈S ′ Rs′ , where Rs′ = 0 for s′ ∈ S ′ \ S , we may also say that A is S ′-multi-
homogeneous. Nonetheless, it is easy to see that the family of all subsets S ⊆ N�2 such that A is
S-multi-homogeneous contains a unique minimal element S̄ given by all s ∈N�2 such that Rs �= 0.

The previous considerations tell us that, under the previous assumptions, we may then work in
the following concrete setting. We consider a graded algebra A of the form T (V )/〈R〉, where V is a
finite dimensional vector space, considered to be concentrated in degree 1, and R = ⊕

s∈S Rs , where
Rs ⊆ V (s) and S ⊆ N�2 is a finite subset. We shall suppose from now on that A satisfies these hy-
potheses, unless otherwise stated. However, we will sometimes repeat (some of) the assumptions for
emphasis.

Note that the fact that R is a space of relations of A implies the following minimality condition:

Rs ∩
(∑

s∈S

s−t∑
j=0

V ( j) ⊗ Rt ⊗ V (s−t− j)

)
= 0. (3.1)

Conversely, given R = ⊕
s∈S Rs satisfying (3.1), where Rs ⊆ V (s) and S ⊆ N�2 is a finite subset, then

R is a relation space of the algebra T (V )/〈R〉.
The two-sided graded ideal I = ⊕

n∈Z In generated by R in the tensor algebra T (V ) may be ex-
plicitly presented as

In =
∑
s∈S

n−s∑
j=0

V ( j) ⊗ Rs ⊗ V (n−s− j).
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The homogeneous components of the algebra A are thus given by the vector spaces An = V (n)/In ,
for n ∈ N0, and zero for n < 0.

For each s ∈ N�2, we consider the map ns :N0 →N0 of the form

ns(2l) = sl, ns(2l + 1) = sl + 1.

Notice that ns(t + 2) = ns(t) + s, for all t ∈ N0, and

ns(t + 1) − ns(t) =
{

1, if t is even,

s − 1, if t is odd.

We shall use these elementary properties, specially in Section 5, without further mention.
If s ∈ S , we will denote

J s
i =

ns(i)−s⋂
j=0

V ( j) ⊗ Rs ⊗ V (ns(i)−s− j),

for i � 2, and J s
i = V (i) , for i = 0,1. We remark that the minimality condition (3.1) implies that

J s
i ∩ (V ( j) ⊗ J s′

i′ ⊗ V (ns(i)−ns′ (i′)− j)) = 0, for all different s, s′ ∈ S , j = 0, . . . ,ns(i)−ns′ (i′), and i, i′ ∈N�2

such that ns′ (i′)� ns(i).
Moreover, we define

J i =
⊕
s∈S

J s
i ,

if i � 2, and J i = V (i) , if i = 0,1. Note that J2 = R .

Definition 3.1. Let A be an S-multi-homogeneous algebra with space of relations R = ⊕
s∈S Rs ,

Rs ⊆ V (s) , and S a finite subset of N�2. We suppose the usual minimality condition on R . The left
multi-Koszul complex (K (A)•, δ•) of A is defined by K (A)0 = A, K (A)1 = A ⊗ V and K (A)i = A ⊗ J i
for i � 2, together with the differential δ• where δ1 is induced by the multiplication on A, and, for
i � 2,

δi : A ⊗ J i → A ⊗ J i−1

is given by the restriction of the map δ̂i : A ⊗ (
⊕

s∈S V (ns(i))) → A ⊗ (
⊕

s∈S V (ns(i−1))), where

δ̂i(α ⊗ v j1 · · · v jns(i) ) =
{

αv j1 · · · v js−1 ⊗ v js · · · v jns(i) , if i is even,

αv j1 ⊗ v j2 · · · v jns(i) , if i is odd,

for s ∈ S . Notice that δi(A ⊗ J s
i ) ⊆ A ⊗ J s

i−1, for i � 3 and s ∈ S . It is clear that δi+1 ◦ δi = 0, for
i ∈ N. We may also consider this complex together with the augmentation δ0 : K (A)0 → k given by
the augmentation of the algebra A, which we may depict as follows

· · · → K (A)i
δi−→ K (A)i−1 → ·· · → K (A)1

δ1−→ K (A)0
δ0−→ k → 0.

Note also that the left multi-Koszul complex of A is composed of graded-free left A-modules, and the
differentials are A-linear maps preserving the degree.
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We say that A is left multi-Koszul if the (augmented) left multi-Koszul complex of A provides a
projective resolution of the trivial left A-module k, and in this case we may call the complex the left
multi-Koszul resolution for A.

We remark that the left multi-Koszul complex of A coincides with the minimal projective reso-
lution of the left module k seen at the end of Section 2 up to homological degree 2. It is clear that
the left multi-Koszul resolution for A is minimal (because the induced differential of the complex
k ⊗A K (A)• vanishes) and projective. It is straightforward to see that an algebra is left multi-Koszul if
and only if its left multi-Koszul complex defined above is acyclic in positive homological degrees.

Remark 3.2. Since an algebra A may be regarded to be S-multi-homogeneous for different subsets
S ⊆ N�2, one may wonder whether the definition of left multi-Koszul algebra actually depends on
the subset S . It is however trivially verified that this is not the case, i.e. if A is regarded as S-multi-
homogeneous and also S ′-multi-homogeneous, then it is left S-multi-Koszul if and only if it is left
S ′-multi-Koszul. The same phenomenon also occurs for the definition of right multi-Koszul property
presented in the following remark.

Remark 3.3. There is also an analogous definition of right multi-Koszul complex and hence of right multi-
Koszul algebra. Using the same notation as in the previous definition, the right multi-Koszul complex
(K (A)′•, δ′•) of A is defined by K (A)′0 = A, K (A)1 = V ⊗ A and K (A)′i = J i ⊗ A, for i � 2, together with
the differential δ′• where δ′

1 is induced by the multiplication on A, and, for i � 2,

δ′
i : J i ⊗ A → J i−1 ⊗ A

is given by the restriction of the map δ̂′
i : (⊕s∈S V (ns(i))) ⊗ A → (

⊕
s∈S V (ns(i−1))) ⊗ A, where

δ̂′
i(v jns(i) · · · v j1 ⊗ α) =

{
v jns(i) · · · v js ⊗ v js−1 · · · v j1α, if i is even,

v jns(i) · · · v j2 ⊗ v j1α, if i is odd,

for s ∈ S . We will also consider this complex together with the augmentation δ′
0 : K (A)′0 → k given by

the augmentation of the algebra A.
Notice that the right multi-Koszul complex of A coincides with the left multi-Koszul complex

of Aop, and with the minimal projective resolution of the right module k mentioned at the end of
Section 2 up to homological degree 2.

We say that A is right multi-Koszul if the (augmented) right multi-Koszul complex of A provides
a projective resolution of the trivial right A-module k, and in this case we may call the complex the
right multi-Koszul resolution for A.

It is easy to check that the right multi-Koszul resolution for A is minimal (because the induced
differential of the complex K (A)′• ⊗A k vanishes) and projective, and that an algebra is right multi-
Koszul if and only if its right multi-Koszul complex defined above is acyclic in positive homological
degrees.

Remark 3.4. Note that the previous definition of left or right multi-Koszul property coincides with the
corresponding one given in [7, Section 5], if the algebra is homogeneous, and in principle not to the
one given in [5, Definition 2.10]. Nonetheless, using [7, Prop. 3], one immediately deduces that for a
homogeneous algebra both definitions are equivalent, implying that such an algebra is multi-Koszul if
and only if it is generalized Koszul, and in fact the left (resp., right) multi-Koszul complex coincides
with the (generalized) left (resp., right) Koszul complex defined by Priddy if the algebra is quadratic
and by Berger if the algebra is homogeneous.

Remark 3.5. Notice that, for d ∈ N>2, if A is a left {2,d}-multi-Koszul algebra for the previous defini-
tion, then it is in particular a 2-d-Koszul algebra in the sense defined in [16]. The converse however
does not hold (see the algebra B in [12], which is not {2,3}-multi-Koszul).
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Since the length of a minimal projective resolution of k gives the global dimension of A, the
following proposition is immediate.

Proposition 3.6. Let A = T (V )/〈R〉 be an S-multi-homogeneous algebra (with S a finite subset of N�2) such
that R = ⊕

s∈S Rs satisfies the minimality condition. If the global dimension of A is 2, then A is S-multi-
Koszul.

We also have the following result, which shows a way to produce (an infinite number of) examples
of multi-Koszul algebras.

Proposition 3.7. Let {Bs: s ∈ S}, where S ⊆ N�2 , be a finite collection of nonnegatively graded connected
algebras such that Bs is s-Koszul, for each s ∈ S. Then, the free product (i.e. the coproduct in the category of
graded algebras) A = ∐

s∈S Bs of the collection {Bs: s ∈ S} is a multi-Koszul algebra.

Proof. Let us suppose that Bs = T (V s)/〈Rs〉, for s ∈ S , is an s-Koszul algebra, where Rs ⊆ V (s)
s . By the

definition of the free product of the collection {Bs: s ∈ S}, we may consider that A = T (V )/〈R〉, where
V = ⊕

s∈S V s , and R = ⊕
s∈S Rs . The canonical inclusion Bs ↪→ A is a morphism of graded algebras,

and it makes A a free graded (left or right) Bs-module.
On the one hand, it is clear that, if s ∈ S ,

J s
i =

ns(i)−s⋂
j=0

V ( j) ⊗ Rs ⊗ V (ns(i)−s− j) =
ns(i)−s⋂

j=0

V ( j)
s ⊗ Rs ⊗ V (ns(i)−s− j)

s ,

for i � 2. We recall that J i = ⊕
s∈S J s

i . Moreover, J1 = V = ⊕
s∈S V s , and J0 = k. In fact, if (K (Bs)•, δs•)

denotes the Koszul complex of Bs , which is acyclic in positive homological degrees by assumption,
then K (Bs)• = Bs ⊗ J s• . Since A is free as a Bs-module, we have that A ⊗Bs K (Bs)• = A ⊗ J s• is
also acyclic in positive homological degrees. This can be proved as follows. We consider the con-
vergent spectral sequence of change of base E2

p,q = TorBs

p (A, Hq(K (Bs)•)) ⇒ H p+q(A ⊗Bs K (Bs)•) (see
[28, Application 5.7.8], where we have used the fact that K (Bs)• is a bounded below complex of free
modules). The exactness of the Koszul complex of Bs and the freeness of the Bs-module A imply that
E2

p,q = 0 if (p,q) �= (0,0). In consequence, Hn(A ⊗Bs K (Bs)•) = 0, for n � 1.
Since the multi-Koszul complex (K (A)•, δ•) of the algebra A can be decomposed as K (A)• =⊕

s∈S A ⊗Bs K (Bs)• , for • � 1, and δ• = ⊕
s∈S δs• for • � 2, the exactness of A ⊗Bs K (Bs)• in posi-

tive homological degrees tells us that K (A)• is acyclic in homological degrees greater than or equal
to 2. On the other hand, the exactness of the multi-Koszul complex in homological degree 1 is auto-
matically satisfied for a nonnegatively graded connected algebra. We have thus that K (A)• is exact in
positive homological degrees, so A is multi-Koszul. �

Let A = T (V )/〈Ra〉 and B = T (W )/〈Rb〉 be such that A is a-Koszul, B is b-Koszul, where we
consider V and W to be subspaces of a fixed vector space U , and the minimality condition for
Ra ⊕ Rb ⊆ T (U ) is satisfied. Consider the {a,b}-homogeneous algebra C = T (V ∪ W )/〈Ra, Rb〉. One
may wonder if the previous result could be weakened in order to obtain that C is also multi-Koszul.
As expected, the answer is no, as we may see in the following example.

Example 3.8. Consider the algebras A = k〈x, z〉/〈xz〉 and B = k〈x, y〉/〈y2x〉. It is direct that A is
2-Koszul (see [26, Ch. 2, Cor. 4.3]), B is 3-Koszul (see [5, Prop. 3.8]) and that the minimality condition
for the algebra C = k〈x, y, z〉/〈xz, y2x〉 is not (left) multi-Koszul since k⊗C Ker(δ2) = spank〈y2xz〉 �= J 3

3 .
A similar example can be also obtained for V = W in the previous notation. Consider the algebras

A = k〈x, y〉/〈xy〉 and B = k〈x, y〉/〈y2x〉, which are respectively 2-Koszul and 3-Koszul (by [26, Ch. 2,
Cor. 4.3], and [5, Prop. 3.8], respectively). The minimality condition for spank〈xy, y2x〉 ⊆ k〈x, y〉 is
satisfied. Since k ⊗C Ker(δ2) = spank〈xy2x, y2xy〉 and J3 = 0, the algebra C = k〈x, y〉/〈xy, y2x〉 is not
left multi-Koszul.
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Regarding some of the several different equivalent definitions of the (generalized) Koszul property
for homogeneous algebras, one may wonder for instance if an S-multi-homogeneous algebra is left
multi-Koszul if and only if the trivial A-module k has a minimal projective resolution (P•,d•) whose
i-th projective Pi is pure in degrees {ns(i): s ∈ S}, for all i ∈ N0 (cf. [5, Prop. 2.13]). Unfortunately,
this proposal is different from Definition 3.1 (e.g. Example 3.9), and it leads to several undesirable
situations. For instance, if one only asks that the i-th projective Pi of the minimal projective resolu-
tion of the trivial A-module k is pure in degrees {ns(i): s ∈ S}, for all i ∈ N0, the differentials of such
a minimal projective resolution may become rather complicated, since the relations may interact in
complicated ways. Furthermore, this (alternative) definition would not be yield to a proper general-
ization of the (generalized) Koszul algebras, if we are willing to have such a definition independent
of the index set S in the sense of Remark 3.2 (see the algebra B of Example 3.10). Moreover, fol-
lowing the ideas of Example 3.10, we see that this alternative definition would also allow lots of bad
behaved algebras containing “non-Koszul components”, even in the generalized sense, and in partic-
ular, the Yoneda algebras obtained from this alternative definition will not be necessarily K2 (see
the algebra A of Example 3.10). We next list these examples thus in order to understand better why
Definition 3.1 is in some sense reasonable to avoid the aforementioned phenomena, which we may
regard as pathological.

Example 3.9. Consider the algebra A = k〈x, y, z〉/〈xy, y2z〉. One may easily compute the minimal pro-
jective resolution of the trivial A-module k of the form

0 → A ⊗ 〈
xy2z

〉 δ̃3−→ A ⊗ 〈
xy, y2z

〉 δ2−→ A ⊗ 〈x, y, z〉 δ1−→ A
δ0−→ k → 0,

where the morphisms δi for i = 0,1,2 are defined as above, and δ̃3(α ⊗ xy2z) = αx ⊗ y2z. Note that
the i-th projective module is pure in degrees n2(i) and n3(i), for all i ∈ N0. However, the algebra is
not left multi-Koszul, for the condition Ker(δ2)/(A>0 · Ker(δ2)) = J 2

3 ⊕ J 3
3 fails.

Example 3.10. Consider the algebras B = k〈x, y, z〉/〈x2 y, z2x〉 and C = k〈u〉/〈u4〉. It is easy to check
that C is 4-Koszul (by [5, Prop. 3.8]) whereas B is not 3-Koszul (for instance, because z2x2 y is a
minimal generator of degree 5 of the kernel of the second differential). Let A = B ∗k C be the free
product of B and C . There exists a minimal graded projective resolution

· · · → A ⊗ 〈
un4(i)〉 → ·· · → A ⊗ 〈

u8〉 → A ⊗ W → A ⊗ R → A ⊗ V → A → k → 0,

where V = spank〈x, y, z, u〉, R = spank〈x2 y, z2x, u4〉, W = spank〈z2x2 y, u5〉 and the differentials are
the obvious ones. This implies that the i-th projective module is pure in degrees n3(i) and n4(i), for
all i ∈ N0. However, k ⊗A Ker(δ2) �= J 3

3 ⊕ J 4
3 , so A is not left multi-Koszul.

We note incidentally that, if the algebra B is regarded as an S-multi-homogeneous algebra for
S = {3,4} (by considering R4 = 0), it satisfies that the trivial left A-module k has a minimal projective
resolution whose i-th projective is pure in degrees n3(i) and n4(i), for all i ∈N0.

Before proceeding further we want to make several comments on the left multi-Koszul complex
of an S-multi-homogeneous algebra A. The obvious statements for the right multi-Koszul complex
trivially hold. First, given i ∈ N0, note that the map of graded vector spaces J i+1 → Ker(δi) given by
the restriction of δi+1 is injective. This can be proved as follows. The cases i = 0,1 are immediate,
so we will suppose that i � 2. In that case, the previous map is the direct sum of the maps J s

i+1 →
Ker(δi)∩ (A ⊗ J s

i ), for s ∈ S , so the kernel of the former is the direct sum of the kernel of the previous
maps for each s ∈ S . Furthermore, the kernel of the restriction of δi+1 to J s

i+1 is easily seen to be

J s
i+1 ∩ (Ins(i+1)−ns(i) ⊗ J s

i ). The first term of this intersection is included in Rs ⊗ V (ns(i−1)) , whereas the
second is included in
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(∑
s′<s

s−s′∑
j=0

V ( j) ⊗ Rs′ ⊗ V (s−s′− j)

)
⊗ V (ns(i−1)),

where we have used that ns(i + 1) − ns(i) < s. The intersection of the last two vanishes by the mini-
mality condition (3.1), so a fortiori the kernel of the restriction of δi+1 to J s

i+1 vanishes, which in turn
implies the injectivity of the mentioned morphism J i+1 → Ker(δi).

For each i ∈ N0, let us now consider the map J i+1 → k ⊗A Ker(δi) given by the composition of
J i+1 → Ker(δi) and the canonical projection Ker(δi) → k ⊗A Ker(δi). We claim that this composition is
in fact injective if i is even. This can be proved as follows. By the comments at the end of Section 2,
we know that the mentioned map is in fact an isomorphism for i = 0 (and also for i = 1). We shall
suppose thus that i � 2. As before, the mentioned map can be decomposed as the direct sum of
the corresponding maps of the form J s

i+1 → k ⊗A (Ker(δi) ∩ (A ⊗ J s
i )), for s ∈ S . Hence, it suffices

to prove the injectivity of each of these components. Since i is even, the image of the map J s
i+1 →

Ker(δi)∩(A ⊗ J s
i ) is contained in V ⊗ J s

i , so one sees that the kernel of J s
i+1 → k⊗A (Ker(δi)∩(A ⊗ J s

i ))

vanishes if and only if J s
i ∩ Ker(δi) = 0, which follows from the previous paragraph.

On the other hand, if i � 3 is odd, we may state the following fact about the map J i+1 →
k ⊗A Ker(δi). We know that it can be decomposed as the direct sum of the maps of the form
J s

i+1 → k ⊗A (Ker(δi) ∩ (A ⊗ J s
i )), for s ∈ S . It suffices thus to analyse each of these components

separately. For i odd, the image of the map J s
i+1 → Ker(δi)∩ (A ⊗ J s

i ) is now contained in V (s−1) ⊗ J s
i ,

so one sees that the kernel of J s
i+1 → k ⊗A (Ker(δi) ∩ (A ⊗ J s

i )) is nontrivial if and only if there ex-

ists t � s − 2 such that (V (t) ⊗ J s
i ) ∩ Ker(δi) �= 0, which is equivalent to say that the graded vector

space k ⊗A (Ker(δi) ∩ (A ⊗ J s
i )) has nontrivial homogeneous components of degree strictly less than

ns(i + 1).
This proves the following result.

Lemma 3.11. Let A be an S-multi-homogeneous algebra, with space of relations R = ⊕
s∈S Rs, Rs ⊆ V (s) , and

S a finite subset of N�2 , and let (K (A)•, δ•) be its left multi-Koszul complex. Given i ∈ N0 , the map of graded
vector spaces J i+1 → Ker(δi) given by the restriction of δi+1 is injective. Consider now the map of graded vector
space given by the composition of the previous morphism and the canonical projection Ker(δi) → k⊗A Ker(δi).
If i is even or i = 1, it is injective, and if i is odd and i � 3, it is injective if and only if the graded vector space
k ⊗A (Ker(δi) ∩ (A ⊗ J s

i )) has no nontrivial homogeneous components of degree strictly less than ns(i + 1),
for all s ∈ S.

The corresponding formulation of the lemma for the right multi-Koszul complex of A is obvious,
and we shall refer to the lemma whether we are considering the left or the right version. We may
use the previous lemma in fact to prove the first main result of this section (cf. [7, Prop. 3]):

Proposition 3.12. Let A be an S-multi-homogeneous algebra with space of relations R = ⊕
s∈S Rs, Rs ⊆ V (s) ,

and S a finite subset of N�2 . Then A is left (resp., right) multi-Koszul if and only if there is an isomorphism of
graded vector spaces TorA

i (k,k) � J i , for all i ∈N0 .

Proof. We shall prove the statement for the left multi-Koszul property, since the right one is anal-
ogous. Moreover, we will only show the “if” part, since the converse follows immediately from the
minimality of the (left) multi-Koszul complex.

Assume the existence of the isomorphism of graded vector spaces in the statement. We will
prove that the left multi-Koszul complex is in fact a minimal projective resolution of the trivial left
A-module k. In fact, we will show that K (A)• is a minimal projective resolution of k up to homo-
logical degree i, for all i ∈ N. Since the former coincides with such a minimal projective resolution
up to homological degree 2, we suppose that the statement is true for i � 2. By the comments on
the construction of projective covers in Section 2 and the assumption TorA

i+1(k,k) � J i+1, there is
an essential surjective morphism of graded A-modules hi : A ⊗ J i+1 → Ker(δi) inducing an isomor-
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phism J i+1 → k ⊗A Ker(δi). We will consider two cases. If i = 2, the previous lemma tells us that the
composition

J3 ↪→ Ker(δ2) � k ⊗A Ker(δ2),

where the first map is the restriction of δ3, is injective. Hence, the composition of this map with the
inverse of 1k ⊗A h2 is an injective endomorphism of graded vector spaces of J3, so an isomorphism,
since the latter has finite dimension. This in turn implies that δ3 is in fact a projective cover of Ker(δ2)

by Lemma 2.2.
We now assume that i � 3. In this case, since the morphism δi is a direct sum of its components

A ⊗ J s
i → A ⊗ J s

i−1, for each s ∈ S , we see that the projective cover of Ker(δi) is the direct sum of
the projective covers of each component A ⊗ J s

i → A ⊗ J s
i−1, for s ∈ S , i.e. it is the direct sum of

the graded-free A-modules A ⊗ k ⊗A (Ker(δi) ∩ (A ⊗ J s
i )), for s ∈ S . By induction on s we easily see

that, for all s ∈ S , the graded vector space k ⊗A (Ker(δi) ∩ (A ⊗ J s
i )) has no nontrivial homogeneous

components of degree strictly less than ns(i + 1) and contains J s
i+1, so by the assumption on the Tor

group it coincides with J s
i+1. We may now proceed as in the case i = 2, since by the previous lemma

the composition

J i+1 ↪→ Ker(δi) � k ⊗A Ker(δi),

where the first map is the restriction of δi+1, is injective. Hence, the composition of this map with the
inverse of 1k ⊗A hi is an injective endomorphism of graded vector spaces of J i+1, so an isomorphism,
since the latter has finite dimension. This in turn implies that δi+1 is in fact a projective cover of
Ker(δi). The proposition is thus proved. �

We have thus the following direct consequence.

Corollary 3.13. Let A be an S-multi-homogeneous algebra with space of relations R = ⊕
s∈S Rs, Rs ⊆ V (s) ,

and S a finite subset of N�2 . Then, A is left S-multi-Koszul if and only if it is right S-multi-Koszul.

By the previous result, we shall usually say that an algebra A is left S-multi-Koszul, right S-multi-
Koszul, S-multi-Koszul or simply multi-Koszul indiscriminately.

We may restate the previous results in a slightly different manner. Consider the k-linear endomor-
phism of T (V ) given by

• τ (1) = 1,
• τ (w1 ⊗ w2 ⊗ · · · ⊗ wn) = wn ⊗ · · · ⊗ w2 ⊗ w1,

for w1, . . . , wn ∈ V and n � 1, which is an anti-isomorphism of algebras, so it induces an algebra
anti-isomorphism

τ̄ : A → T (V )

〈τ (R)〉 = A◦.

In other words, it induces an isomorphism between the (usual) opposite algebra Aop of A and A◦ =
T (V )/〈τ (R)〉.

If the relation space R satisfies the minimality condition, then the relation space τ (R) also satisfies
it. We shall say that A◦ is the opposite S-multi-homogeneous algebra of A.

Corollary 3.14. The algebra A◦ is S-multi-Koszul if and only if A is S-multi-Koszul.
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Proof. It is an immediate consequence of Corollary 3.13. �
We now have the following immediate consequence of Proposition 3.12 and the isomorphism (2.1)

for the Yoneda algebra of a multi-homogeneous algebra.

Proposition 3.15. For an S-multi-homogeneous algebra A with space of relations R = ⊕
s∈S Rs, Rs ⊆ V (s) ,

and S a finite subset of N�2 , the following statements are equivalent:

(i) A is multi-Koszul,
(ii) Exti

A(k,k) � J #
i , for all i ∈N0 .

We note that the multi-Koszul resolution for a multi-Koszul algebra A is composed of finitely
generated projective A-modules, for each vector space J i is finite dimensional, so, by the comments
at the end of Section 2, there is a canonical identification Ext•

A(k,k) � Ext•A(k,k).
We want now to relate the multi-Koszul property of a multi-homogeneous algebras with the gener-

alized Koszul property of some associated homogeneous algebras. We will need the following auxiliary
result in the sequel.

Lemma 3.16. Let A be a nonnegatively graded connected algebra, I ⊆ A>0 be a homogeneous ideal, and

L
g−→ M

f−→ N

be a sequence of graded (left) A-modules satisfying that f ◦ g = 0. If the sequence

(A/I) ⊗A L
1A/I ⊗g−−−−→ (A/I) ⊗A M

1A/I ⊗ f−−−−→ (A/I) ⊗A N

is exact, then the former sequence is also exact.

Proof. We only need to prove that Ker( f ) ⊆ Im(g), since the other inclusion follows from f ◦ g = 0.
Moreover, it is also clear that it suffices to show that each homogeneous component Ker( f ) is in-
cluded in Im(g), for the morphisms are homogeneous of degree zero. Let m ∈ M be a homogeneous
element such that f (m) = 0. This implies that (1A/I ⊗ f )(1 ⊗ m) = 0. We shall prove that there exists
l ∈ L such that g(l) = m.

The exactness of the second sequence tells us that there exists l ∈ L (homogeneous and of the
same degree as m) such that (1A/I ⊗ g)(1 ⊗ l) = 1 ⊗ m, i.e. 1 ⊗ (m − g(l)) = 0. Let M ′ be the (left)
A-submodule of M generated by m − g(l). Notice that M ′ is bounded below, for m − g(l) is homoge-
neous. Hence, we get that (A/I) ⊗A M ′ = 0, and, therefore,

k ⊗A M ′ = (A/A>0) ⊗A M ′ = (A/A>0) ⊗A/I (A/I) ⊗A M ′ = 0.

By the Nakayama Lemma it must be M ′ = 0, so m = g(l). The lemma is thus proved. �
We shall now state the second main result of this section. As usual, r-pdimA(M) will denote the

projective dimension of the right A-module M .

Theorem 3.17. Let A = T (V )/〈R〉 be an S-multi-homogeneous algebra with space of relations R = ⊕
s∈S Rs,

Rs ⊆ V (s) , and S a finite subset of N�2 . We denote by As = T (V )/〈Rs〉 the associated s-th homogeneous
algebra. The following conditions are equivalent:

(i) A is multi-Koszul.
(ii) For each s ∈ S, we have that As is s-Koszul, r-pdimAs (A) � 1, and Ker(δ2) = ⊕

s∈S (Ker(δ2)∩ (A ⊗ Rs)),
where δ2 : A ⊗ R → A ⊗ V is the second differential of the left multi-Koszul complex of A.
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Proof. We shall first prove the implication (i) ⇒ (ii). Assume that A is multi-Koszul, i.e. the multi-
Koszul complex K (A)• of A is acyclic in positive homological degrees. Since

Ker(δ2) = Im(δ3) =
⊕
s∈S

(
Im(δ3) ∩ (A ⊗ Rs)

) =
⊕
s∈S

(
Ker(δ2) ∩ (A ⊗ Rs)

)
, (3.2)

we get the last condition of item (ii).
We will now show that As is s-Koszul and r-pdimAs (A) � 1, for each s ∈ S . Let s ∈ S be a fixed

index. Consider a subcomplex K (A)s• of the (nonaugmented) multi-Koszul complex K (A)• of A, given
by K (A)s• = A ⊗ J s• if • � 2, K (A)s• = K (A)• if • = 0,1, provided with the induced differential of
K (A)• . It is straightforward to check that the fact that the multi-Koszul complex K (A)• of A is acyclic
in positive homological degrees implies that the subcomplex K (A)s• is acyclic in homological degrees
greater than or equal to 3. Moreover, using (3.2) and the exactness of K (A)• in homological de-
gree 2 we also get that K (A)s• is acyclic in homological degree 2. As a consequence, we conclude that
K (A)s• is acyclic in homological degrees greater than or equal to 2. Using the evident isomorphism
(K (A)s•, δ•|K (A)s• ) � A ⊗As (K (As)•, δs•) of complexes of graded (left) As-modules, and Lemma 3.16, we
get that (K (As)•, δs•) is acyclic in homological degrees greater than or equal to 2. Since the Koszul
complex of an s-homogeneous algebra is always acyclic in the first homological degree, we conclude
that (K (As)•, δs•) is acyclic in positive homological degrees, so As is s-Koszul.

On the other hand, since As is s-Koszul, (K (As)•, δs•) is a minimal projective resolution of k in
the category of graded As-modules. We recall that for a bounded below graded right As-module M ,
the minimal projective resolution (P•,d•) of M in the category of graded right As-modules is of the
form P• = TorAs

• (M,k) ⊗ As . Since A is a bounded below (right) As-module, and (K (A)s•, δ•|K (A)s• ) �
A ⊗As (K (As)•, δs•) is acyclic in homological degrees greater than or equal to 2, we conclude that A
has a minimal projective resolution in the category of graded right As-modules of length at most 1,
so r-pdimAs (A)� 1.

We shall now prove the converse implication, i.e. (ii) ⇒ (i). Let us suppose that for each s ∈ S ,
we have that As is s-Koszul, r-pdimAs (A) � 1 and Ker(δ2) = ⊕

s∈S (Ker(δ2) ∩ (A ⊗ Rs)). Since As is
s-Koszul for each s, the Koszul complex (K (As)•, δs•) is a minimal projective resolution of k in the cat-
egory of graded As-modules. Moreover, the condition r-pdimAs (A) � 1 together with the previously
seen isomorphisms (K (A)s•, δ•|K (A)s• ) � A ⊗As (K (As)•, δs•) imply that K (A)s• is acyclic in homolog-
ical degrees greater than or equal to 2, for each s ∈ S . Since K (A)• = ⊕

s∈S K (A)s• for • � 2, and
δ• = ⊕

s∈S δ•|K (A)s• , for • � 3, we get that the multi-Koszul complex is acyclic in homological degrees
greater than or equal to 3. Finally, the last condition of (ii) and the exactness of K (A)s• in homological
degree 2 for each s ∈ S imply that

Ker(δ2) =
⊕
s∈S

(
Ker(δ2) ∩ (A ⊗ Rs)

) =
⊕
s∈S

(
Im(δ3) ∩ (A ⊗ Rs)

) = Im(δ3),

so K (A)• is also acyclic in homological degree 2. Again, since the multi-Koszul complex of any con-
nected graded algebra is always acyclic in the first homological degree, we see that (K (A)•, δ•) is
acyclic in positive homological degrees, so A is multi-Koszul. The theorem is thus proved. �
Remark 3.18. Note that the algebras As in the theorem may depend on the choice of the space of rela-
tions R . The abuse of language is however mild, meaning that the statement holds for any such choice.
Moreover, we could have equivalently considered the projective dimension of the corresponding left
module structure of A over As , for each s ∈ S , and the decomposition property for the differential δ′

2
of the right multi-Koszul complex of A.

Remark 3.19. Theorem 3.17 and [5, Thm. 2.11], tell us that if A is an S-multi-Koszul algebra, then,
since each As is s-Koszul, for s ∈ S , we have the distributivity condition on the triples (Es, F s, Gs) and
(Es, F s, (G ′)s) for n � ns( j + 2), where
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Es = V (n−ns( j)) ⊗ J s
j, F s = 〈Rs〉n−ns( j) ⊗ V (ns( j)), for each j ∈N,

Gs = V (n−ns( j+2)+1) ⊗ 〈Rs〉2s−2 ⊗ V (ns( j−2)+1), if j is even,(
G ′)s = V (n−ns( j+1)) ⊗ Rs ⊗ V (ns( j−1)), if j is odd,

and the so-called extra conditions

(
V (s−1) ⊗ Rs

) ∩
(

s−2∑
j=0

V ( j) ⊗ Rs ⊗ V (s−1− j)

)
⊆ V (s−2) ⊗ J s

3.

We shall analyse this in more detail in Section 5, for the special case of an algebra with relations in
two degrees.

Let A = T (V )/〈R〉 be a multi-Koszul algebra. As before, we also denote by As = T (V )/〈Rs〉 the
associated s-th homogeneous algebra, which is Koszul by the previous theorem, and we consider the
canonical surjective morphisms of graded algebras πs : As → A, for s ∈ S . This allows us to consider
any A-module as an As-module. We furthermore consider the surjective morphisms of graded alge-
bras ρs : T (V ) → As .

Let us denote ιs
i : J s

i → J i the canonical injection of vector spaces. We recall that the (left) multi-
Koszul complex of A is written as K (A)• = (A ⊗ J•, δ•)•�0, and analogously, the (left) Koszul complex
of As is written as K (As)• = (As ⊗ J s•, δs•)•�0. They are considered as augmented complexes if fur-
thermore K (A)−1 = k and K (As)−1 = k, for all s ∈ S , respectively, and in fact δ0 : K (A)• → k is a
minimal projective resolution of k in the category of graded (left) A-modules, and for each s ∈ S ,
δs

0 : K (As)• → k is a minimal projective resolution of k in the category of graded (left) As-modules.
It is well-known that the Koszul complex of the tensor algebra T (V ) is of the form K (T (V ))0 =

T (V ), K (T (V ))1 = T (V ) ⊗ V and K (T (V ))• = 0, if • � 2. The morphism ∂1 : K (T (V ))1 → K (T (V ))0
is given by the restriction of the multiplication of T (V ). It is considered as an augmented complex if
furthermore K (T (V ))−1 = k, giving a minimal projective resolution in the category of graded T (V )-
modules via ∂0 : K (T (V ))0 → k defined by the augmentation of T (V ).

In what follows, given a connected nonnegatively graded algebra A, E(A) = Ext•A(k,k) will denote
the associated Yoneda algebra. It is also a connected nonnegatively graded algebra with the cohomo-
logical degree • and the Yoneda product.

For each s ∈ S , the morphism πs induces in turn the following morphism Π s• : K (As)• → K (A)• of
complexes of (left) As-modules defined by Π s• = πs ⊗ ιs• . It is straightforward to check that it com-
mutes with the differential, and in fact it commutes with the augmentation if we define Π s−1 = 1k .
This in turn induces a morphism ps : HomAs (K (A)•,k) → HomAs (K (As)•,k) of complexes of vector
spaces (the differentials are zero by minimality of the resolutions (cf. [11, Exp. 15, Prop. 10], or
[6, Prop. 2.4])). Notice that there are canonical isomorphisms HomAs (K (A)•,k) = HomA(K (A)•,k) �
Ext•A(k,k) and also HomA(K (A)•,k) � J∗• . Analogously, we have ( J s•)∗ � HomAs (K (As)•,k) �
Ext•As (k,k). In this fashion, we also write ps : Ext•A(k,k) → Ext•As (k,k) for the corresponding mor-
phism of graded vector spaces (with the cohomological degree). By using the previous identification,
we see that ps = ⊕

•∈N0
(ιs•)∗ , so it is surjective.

We claim that in fact the previous morphisms ps are also compatible with the Yoneda product,
so they induce morphisms of graded algebras. This follows from the fact that the product for the
Yoneda algebra of a connected graded algebra B is induced by the (unique up to homotopy) mor-
phism of augmented complexes �•(B) : K (B)• → K (B)• ⊗ K (B)• lifting the identity k → k � k ⊗ k,
for K (B)• the augmented complex associated to a projective resolution of the (left) B-module k, by
the formula α ∪ β = (α ⊗ β) ◦ �•(B), for α, β homogeneous cocycles of HomB(K (B)•,k) represent-
ing cohomology classes in Ext•B(k,k). If the projective resolution K (B)• is minimal, the identification
HomB(K (B)•,k) � Ext•B(k,k) even simplifies the treatment. In the previous case, by the Comparison
Theorem 2.2.6 and Porism 2.2.7 in [28], we may conclude that the following diagram
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K (As)•
�s•

Π s•

k

K (As)• ⊗ K (As)•

Π s•⊗Π s•
K (A)•

�•

k

K (A)• ⊗ K (A)•

commutes up to (unique) homotopy, where �• = �•(A) and �s• = �•(As). This immediately implies
that ps is compatible with the Yoneda product.

In the same manner, for each s ∈ S , the morphism ρs induces a morphism F s• : K (T (V ))• →
K (As)• of complexes of (left) As-modules defined by F s• = ρs ⊗ 1, if • = 0,1, and zero for
• � 2. Again, it is clear that it commutes with the differential, and in fact it commutes with
the augmentation if we define F s−1 = 1k . It induces a morphism qs : HomT (V )(K (T (V ))•,k) →
HomT (V )(K (As)•,k) of complexes of vector spaces (the differentials are zero by minimality of the res-
olutions). There are canonical isomorphisms HomT (V )(K (As)•,k) = HomAs (K (As)•,k) � Ext•As (k,k) �
( J s•)∗ and HomT (V )(K (T (V ))•,k) � Ext•T (V )(k,k) � k∗ ⊕ V ∗ , where V ∗ sits in cohomological degree 1
and k∗ in cohomological degree zero. Hence, we may also write qs : Ext•As (k,k) → Ext•T (V )(k,k) for the
corresponding morphism of graded vector spaces (with the cohomological degree). By the previous
identifications we see that qs is given by the projection on the cohomological degrees less than or
equal to 1, so it is surjective. By the same argument as before (or just regarding the explicit formu-
las for the Yoneda product given in Proposition 3.1 of [9]) we see that qs is a morphism of graded
algebras.

Remark 3.20. Note that in fact the Yoneda algebra is a functorial construction, where the definition
on the morphisms is as follows (we refer to [21], specially Chapters 1 and 3). Given any morphism
of (augmented) algebras A → A′ , it induces a morphism of differential graded coalgebras between
their bar constructions B(A) → B(A′) (induced by the cofreeness property of B(A) and the map of
graded vector spaces B(A) → A′ given by the composition of the canonical projection B(A) → A
and of A → A′), so by taking graded duals we obtain a morphism of differential graded algebras
B(A′)# → B(A)#, which in turn induces a morphism of graded algebras H•(B(A′)#) → H•(B(A)#), i.e.
a morphism E(A′) → E(A), since the Yoneda algebra of A (resp., A′) coincides with H•(B(A)#) (resp.,
H•(B(A′)#)).

In particular, the morphism πs : As → A always induces a morphism of differential graded algebras
Πs : B(A)# → B(As)#, so a morphism of graded algebras E(A) → E(As), and we may check that
it trivially coincides with the morphism induced by the previously seen map Π s , by constructing
comparison morphisms from the minimal projective resolutions to the corresponding reduced bar
complexes. The same applies to the morphism ρs : T (V ) → As , the induced morphism of differential
graded algebras Fs : B(As)# → B(T (V ))# and the consequent map E(As) → E(T (V )). Note also the
commutativity Fs ◦ Πs = Fs′ ◦ Πs′ , for all s, s′ ∈ S .

Even though we may have used these constructions to prove all the previous results, it is however
useful to have the explicit form of the maps induced on the Yoneda algebras coming from the minimal
projective resolutions in order to prove the next proposition.

By the explicit expression of the previous morphisms, it is trivial to check that qs ◦ ps = qs′ ◦ ps′ ,
for all s, s′ ∈ S . Let us denote E the inverse limit of the diagram in the category of graded algebras
given by {qs : E(As) → E(T (V )), for s ∈ S}. By the universal property of E , and the aforementioned
commutativity, there exists a unique morphism of graded algebras ι : E(A) → E . However, by the
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explicit expression of the morphisms ps , for s ∈ S , it is easy to see that E(A) is the inverse limit in the
category of graded vector spaces of the system {qs : E(As) → E(T (V )), for s ∈ S}. Since the forgetful
functor from the category of graded algebras to the category of graded vector spaces preserves inverse
limits, E is also an inverse limit in the category of graded vector spaces, so a fortiori the morphism ι
is bijective, and hence an isomorphism of graded algebras. This implies the next result.

Proposition 3.21. The algebra E(A) of a multi-Koszul algebra A is the inverse limit in the category of graded
algebras of the system given by {qs : E(As) → E(T (V )), for s ∈ S}.

Remark 3.22. By the previous result and the explicit characterization of the algebra structure of the
Yoneda algebra of a generalized Koszul algebra given in Proposition 3.1 of [9], we easily get the Yoneda
product of the algebra E(A) for a multi-Koszul algebra.

Again, using the explicit expression of the morphisms ps , and Theorem 4.1 in [17], we also obtain
the following consequence.

Corollary 3.23. The graded algebra E(A) of a multi-Koszul algebra A is generated by E1(A) = Ext1
A(k,k) and

E2(A) = Ext2
A(k,k), i.e. it is K2 (in the sense of Cassidy and Shelton).

Remark 3.24. Contrary to what happens for homogeneous algebras (see [17, Thm. 4.1]), the converse
of the previous corollary does not hold in the case of multi-homogeneous algebras (e.g. see the alge-
bra B in [12], which is not {2,3}-multi-Koszul).

Remark 3.25. We may also use the previous results to obtain a description of the A∞-algebra struc-
ture of the Yoneda algebra of a multi-Koszul algebra as follows (we also refer to [21]). By the
commutative relation stated at the end of Remark 3.20 there exists a map of differential graded
algebras from B(A)∗ to the inverse limit in the category of differential graded algebras of the system
given by {Fs : B(As)∗ → B(T (V ))∗, for s ∈ S}. Moreover, by Proposition 3.21, it is in fact a quasi-
isomorphism of differential graded algebras, so it induces a quasi-isomorphism of A∞-algebras from
E(A) to the A∞-algebra given by the cohomology of the inverse limit in the category of differen-
tial graded algebras of the system {Fs : B(As)∗ → B(T (V ))∗, for s ∈ S}. On the other hand, using the
Merkulov’s procedure to obtain a canonical A∞-algebra structure on the homology of a differential
graded algebra (see [23]), it is trivial to see that we may choose the higher multiplications of the in-
verse limit such that mn(a1 ⊗· · ·⊗an) = 0 if there are indices 1 � i �= j � n satisfying that ai ∈ Edi (As)

and a j ∈ Ed j (As′ ) for s �= s′ , and di,d j > 1. Furthermore, the restriction of the higher multiplication
mn of E(A) to each E(As)⊗n is given by the corresponding Merkulov’s construction of the higher
multiplication of E(As), for each s ∈ S . By [19, Thm. 6.4 and 6.5], we get that the A∞-algebra E(A) is
generated in degree 1, and we may in fact choose the higher multiplications such that mn vanishes
if n /∈ S ∪ {2}, and ms = ms|E(As)⊗s , for s ∈ S \ {2}, is given by the usual expression for the case of
generalized s-Koszul algebras given in the second of the mentioned theorems.

4. Multi-Koszul bimodule resolutions

In this section, we shall construct a minimal projective resolution of a multi-Koszul algebra A
in the category of (graded) A-bimodules, adapting the ideas of [5] (see also [9]), which is useful to
compute its Hochschild (co)homology.

As usual, we consider A to be an S-multi-homogeneous algebra, for a finite subset S ⊆ N�2. We
will denote the abelian category of Z-graded left bounded A-bimodules with degree preserving bi-
module morphisms by C . Let Ae = A ⊗k Aop be the enveloping algebra of A. It is well-known that C
is naturally isomorphic to the category of Z-graded left bounded left Ae-modules, so we can use the
results and notations of Section 2 for the graded algebra Ae .



E. Herscovich, A. Rey / Journal of Algebra 376 (2013) 196–227 213
If s ∈ S , we will denote

J̄ s
m =

m−s⋂
j=0

V ( j) ⊗ Rs ⊗ V (m−s− j),

if m � s, and J̄ s
m = V (m) , if 0 � m < s. Notice that J s

i = J̄ s
ns(i) , for all i ∈N0 and s ∈ S .

For s ∈ S and i � 0 we consider the left A-module K̄ L,s(A)i = A ⊗ J̄ s
i and the A-linear mor-

phism (δL,s)i : K̄ L,s(A)i → K̄ L,s(A)i−1 induced by α ⊗ v1 . . . vi → α · v1 ⊗ v2 . . . vi . It is clear that
(δL,s)

s = 0 and then (K̄ L,s(A)•, (δL,s)•) is an s-complex. Analogously, we consider the s-complex
(K̄ R,s(A)•, (δR,s)•), where K̄ R,s(A)i = J̄ s

i ⊗ A, and where the differential (δR,s)i : K̄ R,s(A)i → K̄ R,s(A)i−1

is induced by vi . . . v1 ⊗ α → vi . . . v2 ⊗ v1 · α. We define K̄ L−R,s(A)• as K̄ L,s(A)• ⊗ A = A ⊗ K̄ R,s(A)• ,
which can be regarded as an s-complex of bimodules either with differential δ′

L,s = δL,s ⊗ 1A or
δ′

R,s = 1A ⊗ δR,s . Note also that δ′
L,s and δ′

R,s commute.
We now consider the complex of A-bimodules (K L−R(A)•, (δL−R)•) defined as follows. We set

KL−R(A)0 = A ⊗ A, KL−R(A)1 = A ⊗ V ⊗ A, and KL−R(A)i = ⊕
s∈S K̄ L,s(A)ns(i) ⊗ A, for i � 2, together

with the differential (δL−R)• defined as follows: (δL−R)1(
∑

j α j ⊗ v j ⊗ α′
j) = ∑

j(α j v j ⊗ α′
j − α j ⊗

v jα
′
j), for v j ∈ V and α j,α

′
j ∈ A, and, for i � 2, we set (δL−R)i = ∑

s∈S (δL−R,s)i , where

(δL−R,s)i =
{

δ′
L,s − δ′

R,s, if i odd,∑s−1
j=0(δ

′
L,s)

j(δ′
R,s)

(s−1− j), if i even.

It is clear that (δL−R)i+1 ◦ (δL−R)i = 0, for i � 0, so (KL−R(A)•, (δL−R)•) is indeed a complex of pure
projective A-bimodules. It can be regarded as an augmented complex for the augmentation (δL−R)0 :
KL−R(A)0 → A given by the product of the algebra. It is called the multi-Koszul bimodule complex
of A.

Theorem 4.1. Let A be an S-multi-homogeneous algebra with space of relations R = ⊕
s∈S Rs, Rs ⊆ V (s) , and

S a finite subset of N�2 . The augmented multi-Koszul bimodule complex

· · · → KL−R(A)2
(δL−R )2−−−−→ KL−R(A)1

(δL−R )1−−−−→ KL−R(A)0
(δL−R )0−−−−→ A → 0 (4.1)

is exact if and only if A is multi-Koszul.

Proof. We suppose that A is multi-Koszul. Applying the functor (−) ⊗A k to (4.1), we obtain the
(augmented) complex (K (A)•, δ•), which is exact when A is multi-Koszul. Since the A-bimodules
KL−R(A)i are graded-free and left bounded for all i ∈ N0, Lemma 3.16 implies that the complex (4.1)
is exact.

Assume now that (4.1) is exact. Let us denote by CR the abelian category of Z-graded left bounded
right A-modules. Since (4.1) is exact, it is a projective resolution of A in CR , so, taking into account
that A is projective in CR , the complex (4.1) is homotopically trivial as a complex of objects of graded
right A-modules. Therefore, its image under the functor (−) ⊗A k is a fortiori homotopically trivial
(as a complex of vector spaces). Since this image is the left multi-Koszul complex of A, it is exact in
positive degrees, so A is multi-Koszul. �
Remark 4.2. If A is multi-Koszul, since there is an obvious isomorphism of complexes of the form
k⊗Ae KL−R(A)• � k⊗A K (A)• , having in fact vanishing differential, by the comments in the antepenul-
timate paragraph of Section 2 it follows that the complex (4.1) is a minimal projective resolution of
A in C .
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Using the previous complex, since the Hochschild homology groups H H•(A) are isomorphic to
TorAe

• (A, A) (for k is a field), we see that H H•(A) may be computed by H•(A ⊗Ae KL−R(A)•,1A ⊗
(δL−R)•). In the same way, the Hochschild cohomology groups H H•(A) are isomorphic to Ext•Ae (A, A),
so H H•(A) can be computed from H•(HomAe (KL−R(A)•, A),Hom((δL−R)•,1A)).

5. Multi-Koszul algebras for relations in two degrees

In this section, we concentrate on the special case of having relations in only two degrees. We
will find necessary and sufficient conditions on some sequences of vector subspaces of the tensor
powers of the base space V to obtain the multi-Koszul property, in an analogous manner as the case
of (generalized) Koszul algebras done by Berger. As expected, several of the subspaces analysed and
the conditions involved were already considered by Berger, but new sequences of subspaces satisfying
more involved conditions are introduced in order to obtain the multi-Koszul definition. This section is
somehow long and rather tedious, which seems to be unavoidable to us, since it includes all detailed
computations and analysis of the mentioned lattices, but their importance justifies in our opinion the
extension.

5.1. Preliminaries

We shall proceed as follows. After some preliminaries, we will analyse the construction procedure
of a minimal graded projective resolution of the trivial A-module k. The description of the successive
kernels of the differentials in this resolution will lead us to several “naturally occurring” sequences
of vector subspaces of tensor powers of V , and we will impose necessary and sufficient conditions
on these lattices to get the multi-Koszul property on the algebra A. The situation is summarized
in Theorem 5.15. We advice the reader that we will use the results of Section 2, specially the ones
concerning the construction of projective covers and minimal projective resolutions of bounded below
graded modules.

Next, we state an easy lemma concerning vector spaces that will be used in the sequel without
much mention.

Lemma 5.1. Let V and W be vector spaces such that V is nontrivial. If V ⊗ W = 0, then W = 0. Also, if W
and W ′ are subspaces of the vector spaces V and V ′ , respectively, then (W ⊗ V ′) ∩ (V ⊗ W ′) = W ⊗ W ′ .

From now on, we fix two integers a and b such that 2 � a < b, Ra and Rb subspaces of V (a)

and V (b) , respectively, and R = Ra ⊕ Rb . We also assume that R satisfies the minimality condition
(3.1) which implies that k ⊗T (V ) 〈R〉 � Ra ⊕ Rb as graded vector spaces. The two-sided ideal I = 〈R〉
generated by R in the tensor algebra T (V ) is given by I = ⊕

n∈Z In , where:

In = 0, if n < a,

In =
n−a∑
j=0

V ( j) ⊗ Ra ⊗ V (n−a− j), if a � n < b,

In =
n−a∑
j=0

V ( j) ⊗ Ra ⊗ V (n−a− j) +
n−b∑
h=0

V (h) ⊗ Rb ⊗ V (n−b−h), if b � n.

We recall the fact already stated at the end of Section 2 that for any nonnegatively graded con-
nected algebra A = T (V )/〈R〉, where V � A>0/(A>0 · A>0) is a vector space spanned by a minimal
set of (homogeneous) generators of A, and R is a space of relations of A, the minimal projective
resolution of the trivial (left) A-module k begins as

A ⊗ R
δ2−→ A ⊗ V

δ1−→ A
δ0−→ k → 0,



E. Herscovich, A. Rey / Journal of Algebra 376 (2013) 196–227 215
where δ2 is induced by the usual map α ⊗ v1 . . . vn �→ αv1 . . . vn−1 ⊗ vn . As previously explained we
will deal with the case where V is concentrated in degree 1 and where R is concentrated in degrees
a and b.

We also recall the definition of the following vector spaces, both concentrated in degree n,

J̄ a
n =

n−a⋂
j=0

V ( j) ⊗ Ra ⊗ V (n−a− j), for n � a,

J̄ b
n =

n−b⋂
j=0

V ( j) ⊗ Rb ⊗ V (n−b− j), for n � b.

Notice that J̄ b
m ∩ (V (m−n) ⊗ J̄ a

n) = 0, for all m � n, by the minimality condition on R .

5.2. Description of Ker(δ2)

It follows easily from the definition of the map δ2 that the n-th homogeneous component of its
kernel is

Ker(δ2)n = (V (n−a) ⊗ Ra ⊕ V (n−b) ⊗ Rb) ∩ (In−1 ⊗ V )

In−a ⊗ Ra ⊕ In−b ⊗ Rb
,

where the direct sums appearing in the right member are due to the minimality condition on Ra ⊕ Rb .
Then

(
Ker(δ2)

)
n = 0 if n � a and

(
Ker(δ2)

)
a+1 = J̄ a

a+1,

so there is an injection J̄ a
a+1 ↪→ k ⊗A Ker(δ2) of graded vector spaces, and thus the projective cover of

Ker(δ2) should include A ⊗ J̄ a
a+1, and furthermore, by Lemma 3.11, it should also include A ⊗ J̄ b

b+1. It
may also include other s-pure modules. We shall now analyse this situation in more detail.

It is straightforward to see that for n = a + m with 2 � m � min{a − 1,b − a}

(
Ker(δ2)

)
n = (

V (m) ⊗ Ra
) ∩

(
m−1∑
j=0

V ( j) ⊗ Ra ⊗ V (m− j)

)
⊇ V (m−1) ⊗ J̄ a

a+1.

Then, for the same indices as before, we have that (Ker(δ2))n = Am−1 · J̄ a
a+1 if and only if

(
V (m) ⊗ Ra

) ∩
(

m−1∑
j=0

V ( j) ⊗ Ra ⊗ V (m− j)

)
= V (m−1) ⊗ J̄ a

a+1, (5.1)

where as usual the dot denotes the action of the ring A on (Ker(δ2))a+1 = J̄ a
a+1.

Note that if (5.1) holds for m = a − 1, then for 2 � m � a − 1 and 2 � t � m − 2, we have that

(
V (m) ⊗ Ra

) ∩
(

m−1∑
j=m−t

V ( j) ⊗ Ra ⊗ V (m− j)

)
⊆ V (m−1) ⊗ J̄ a

a+1.

By Lemma 5.1, we get (5.1) for 2 � m � a − 1.
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For n = a + t = b + h with 1 � h � 2a − b − 1, (Ker(δ2))n is equal to the image under the map
T (V ) ⊗ R → A ⊗ R of

[(
V (t) ⊗ Ra

) ⊕ (
V (h) ⊗ Rb

)] ∩
(

t−1∑
j=0

V ( j) ⊗ Ra ⊗ V (t− j) +
h−1∑
j′=0

V ( j′) ⊗ Rb ⊗ V (h− j′)
)

,

which contains (V (t−1) ⊗ J̄ a
a+1) ⊕ (V (h−1) ⊗ J̄ b

b+1). Notice again that the last sum is direct by the
minimality condition on R and Lemma 5.1.

Consider now the following relations

(
V (l) ⊗ Ra

) ∩
(

l−1∑
j=0

V ( j) ⊗ Ra ⊗ V (l− j)

)
= V (l−1) ⊗ J̄ a

a+1,

(
V (h) ⊗ Rb

) ∩
(

h−1∑
j=0

V ( j) ⊗ Rb ⊗ V (h− j)

)
= V (h−1) ⊗ J̄ b

b+1. (5.2)

With similar arguments as before, the second equation of (5.2) holds for 2 � h � b − 1 whenever it
holds for h = b − 1. The relations (5.2) for l = a − 1 and h = b − 1 will be called extra conditions and
will be abbreviated by e.c. Note also that the equality in the previous identities is clearly seen to be
equivalent to the inclusion of the left members inside the right ones.

The following standard definition will be generalized afterwards (cf. [25, Ch. I, §4, Axiom δ]).

Definition 5.2. Given t ∈ N, a sequence (E, F1, . . . , Ft) of subspaces of a given vector space is said to
be distributive if

E ∩
(

t∑
j=1

F j

)
=

t∑
j=1

(E ∩ F j).

Notice that the inclusion of the right member inside the left one always holds.

Proposition 5.3. The e.c. hold if and only if for 2 � m � a − 1 and 2 � h � b − 1 the triples

(
V (m) ⊗ Ra, Ra ⊗ V (m),

m−1∑
j=1

V ( j) ⊗ Ra ⊗ V (m− j)

)
,

(
V (h) ⊗ Rb, Rb ⊗ V (h),

h−1∑
j=1

V ( j) ⊗ Rb ⊗ V (h− j)

)

are distributive and there are inclusions

(
V (m) ⊗ Ra

) ∩ (
Ra ⊗ V (m)

) ⊆ V (m−1) ⊗ Ra ⊗ V ,(
V (h) ⊗ Rb

) ∩ (
Rb ⊗ V (h)

) ⊆ V (h−1) ⊗ Rb ⊗ V .

Proof. The proof is the same (for each degree a and b) as the one given for homogeneous algebras in
[5, Prop. 2.5]. �
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Lemma 5.4. For 2 � m � a − 1 and 2 � h � b − 1, the inclusions

(
V (m) ⊗ Ra

) ∩ (
Ra ⊗ V (m)

) ⊆ V (m−1) ⊗ Ra ⊗ V ,(
V (h) ⊗ Rb

) ∩ (
Rb ⊗ V (h)

) ⊆ V (h−1) ⊗ Rb ⊗ V

hold if and only if the equalities

(
V (m) ⊗ Ra

) ∩ (
Ra ⊗ V (m)

) = J̄ a
a+m,

(
V (h) ⊗ Rb

) ∩ (
Rb ⊗ V (h)

) = J̄ b
b+h

are satisfied.

Proof. The proof is the same (for each degree a and b) as the one given for homogeneous algebras in
[5, Lemma 2.6]. �
Definition 5.5. Given t, t′ ∈ N, a tuple (E, E ′, F1, . . . , Ft , G1, . . . , Gt′ ) of subspaces of a given vector
space is said (t, t′)-bidistributive if E ∩ E ′ = 0 and

(
E ⊕ E ′) ∩

(
t∑

j=1

F j +
t′∑

j′=1

G j′

)
=

t∑
j=1

(E ∩ F j) ⊕
t′∑

j′=1

(
E ′ ∩ G j′

)
.

The last identity may be replaced by the equivalent condition given by the inclusion of the left-hand
member in the right one. Note further that (E, E ′, F1, . . . , Ft , G1, . . . , Gt′ ) is (t, t′)-bidistributive if and
only if (E ′, E, G1, . . . , Gt′ , F1, . . . , Ft) is (t′, t)-bidistributive.

We have the following simple characterization of the bidistributivity property.

Lemma 5.6. Given a sequence (E, E ′, F1, . . . , Ft , G1, . . . , Gt′ ) of subspaces of a fixed vector space satisfy-
ing that E ∩ E ′ = 0, it is (t, t′)-bidistributive if and only if the triple (

∑t
j=1 F j + ∑t′

j′=1 G j′ , E, E ′) and the
sequences (E, F1, . . . , Ft , G1, . . . , Gt′ ) and (E ′, F1, . . . , Ft , G1, . . . , Gt′ ) are distributive, and there are inclu-
sions

t′∑
j′=1

(E ∩ G j′) ⊆
t∑

j=1

(E ∩ F j),

t∑
j=1

(
E ′ ∩ F j

) ⊆
t′∑

j′=1

(
E ′ ∩ G j′

)
.

Proof. Suppose that (E, E ′, F1, . . . , Ft , G1, . . . , Gt′ ) is (t, t′)-bidistributive. By the obvious inclusion

E ∩
(

t∑
j=1

F j +
t′∑

j=1

G j′

)
⊆ (

E ⊕ E ′) ∩
(

t∑
j=1

F j +
t′∑

j=1

G j′

)
,

the bidistributivity property and the fact that E ∩ E ′ = 0, we see that

E ∩
(

t∑
j=1

F j +
t′∑

j=1

G j′

)
⊆

t∑
j=1

(E ∩ F j).

Since the right member of the first inclusion is trivially included in
∑t

j=1(E ∩ F j)+∑t′
j′=1(E ∩G j′ ), we

get the distributivity of the tuple (E, F1, . . . , Ft , G1, . . . , Gt′ ) and also the first of the stated inclusions.
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The distributivity of the other sequence (E ′, F1, . . . , Ft , G1, . . . , Gt′ ) and the second inclusion follow
in the same way. It remains to prove that the triple (

∑t
j=1 F j + ∑t′

j′=1 G j′ , E, E ′) is also distributive,
which can be shown as follows. The (t, t′)-bidistributive property tells us that

(
t∑

j=1

F j +
t′∑

j′=1

G j′

)
∩ (

E + E ′) =
t∑

j=1

(F j ∩ E) +
t′∑

j′=1

(
G j′ ∩ E ′).

By the inclusions stated in the lemma and the distributivity of the two already analysed sequences,
we have that the right member of the previous identity coincides with

(
t∑

j=1

F j +
t′∑

j=1

G j′

)
∩ E +

(
t∑

j=1

F j +
t′∑

j=1

G j′

)
∩ E ′,

so the distributivity of the mentioned triple follows.
The converse is immediate. �
The following proposition gives an equivalence in terms of the bidistributivity and the e.c., to

decide when Ker(δ2) is 2-pure in degrees a + 1 and b + 1 satisfying that k ⊗A Ker(δ2) � J̄ a
a+1 ⊕ J̄ b

b+1.
The purpose will be then to generalize this equivalence for the other differentials in the resolution.

Proposition 5.7. The kernel Ker(δ2) is 2-pure in degrees a + 1 and b + 1 satisfying that k ⊗A Ker(δ2) �
J̄ a
a+1 ⊕ J̄ b

b+1 if and only if the e.c. hold and, for all n ∈ N0 (or just for n > a), the tuple (E ′, E ′′, F ′, G ′, F ′′, G ′′)
is (2,2)-bidistributive, where:

E ′ = V (n−a) ⊗ Ra, G ′ =
n−a−1∑

j=n−2a+1

V ( j) ⊗ Ra ⊗ V (n−a− j),

F ′ =
n−2a∑
j=0

V ( j) ⊗ Ra ⊗ V (n−a− j) +
n−a−b∑

j′=0

V ( j′) ⊗ Rb ⊗ V (n−b− j′),

E ′′ = V (n−b) ⊗ Rb, G ′′ =
n−b−1∑

j=n−2b+1

V ( j) ⊗ Rb ⊗ V (n−b− j),

F ′′ =
n−a−b∑

j=0

V ( j) ⊗ Ra ⊗ V (n−a− j) +
n−2b∑
j′=0

V ( j′) ⊗ Rb ⊗ V (n−b− j′).

Proof. We recall that V ( j) = 0 for j < 0. Notice also that, for n < b, the bidistributivity of
(E ′, E ′′, F ′, G ′, F ′′, G ′′) reduces to the distributivity of the triple (E ′, F ′, G ′), where on each subspace
all the summands with Rb vanish by (tensor) degree reasons, giving thus similar expressions to the
corresponding ones found in [5, Prop. 2.7].

We shall first prove the “if” part of the statement. Note that we have already showed that

(
Ker(δ2)

)
n = Am−1 · J̄ a

a+1 for n = m + a, with 2 � m � min{a − 1,b − a},

if and only if (5.1) is satisfied. Fix an integer n � min{a,b − a + 1}, even though the proof also ap-
plies to arbitrary n, and suppose that the e.c. and the bidistributivity condition on the previous tuple
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hold. We will use the explicit description of (Ker(δ2))n for arbitrary n given at the beginning of this
subsection.

We have that (Ker(δ2))n ⊆ An−a ⊗ Ra ⊕ An−b ⊗ Rb and the subspace

Nn = (
V (n−a) ⊗ Ra ⊕ V (n−b) ⊗ Rb

)
∩

(
n−a−1∑

j=0

V ( j) ⊗ Ra ⊗ V (n−a− j) +
n−b−1∑

j′=0

V ( j′) ⊗ Rb ⊗ V (n−b− j′)
)

satisfies that

(
Ker(δ2)

)
n = Nn

In−a ⊗ Ra ⊕ In−b ⊗ Rb
.

Note that (E ′ ⊕ E ′′) ∩ (F ′ + F ′′ + G ′ + G ′′) = Nn , and

E ′ ∩ F ′ = In−a ⊗ Ra, E ′′ ∩ F ′′ = In−b ⊗ Rb,

E ′ ∩ G ′ = V (n−a−1) ⊗ J̄ a
a+1, E ′′ ∩ G ′′ = V (n−b−1) ⊗ J̄ b

b+1, (5.3)

where the first two equations are always satisfied and last two hold because of the e.c. The kernel
(Ker(δ2))n is then given by

Nn

In−a ⊗ Ra ⊕ In−b ⊗ Rb
= (In−a ⊗ Ra + V (n−a−1) ⊗ J̄ a

a+1) ⊕ (In−b ⊗ Rb + V (n−b−1) ⊗ J̄ b
b+1)

In−a ⊗ Ra ⊕ In−b ⊗ Rb

� In−a ⊗ Ra + V (n−a−1) ⊗ J̄ a
a+1

In−a ⊗ Ra
⊕ In−b ⊗ Rb + V (n−b−1) ⊗ J̄ b

b+1

In−b ⊗ Rb

� V (n−a−1) ⊗ J̄ a
a+1

(V (n−a−1) ⊗ J̄ a
a+1) ∩ (In−a ⊗ Ra)

⊕ V (n−b−1) ⊗ J̄ b
b+1

(V (n−b−1) ⊗ J̄ b
b+1) ∩ (In−b ⊗ Rb)

,

which is an epimorphic image of

V (n−a−1) ⊗ J̄ a
a+1

In−a−1 ⊗ J̄ a
a+1

⊕ V (n−b−1) ⊗ J̄ b
b+1

In−b−1 ⊗ J̄ b
b+1

� An−a−1 ⊗ J̄ a
a+1 ⊕ An−b−1 ⊗ J̄ b

b+1.

This follows from the obvious inclusion In−s−1 ⊗ J̄ s
s+1 ⊆ (V (n−s−1) ⊗ J̄ s

s+1) ∩ (In−s ⊗ Rs), for s = a,b.
We then conclude that Ker(δ2) is 2-pure in degrees a + 1 and b + 1, satisfying that k ⊗A Ker(δ2) �
J̄ a
a+1 ⊕ J̄ b

b+1.
Conversely, we assume now that Ker(δ2) is 2-pure in degrees a + 1 and b + 1 such that k ⊗A

Ker(δ2) � J̄ a
a+1 ⊕ J̄ b

b+1, so (Ker(δ2))n = An−a−1 · J̄ a
a+1 ⊕ An−b−1 · J̄ b

b+1. This implies the existence of the
following exact sequence

A ⊗ J̄ s
s+1 → A ⊗ Rs → A ⊗ V ,

for s = a,b, where the last map is induced by δ2, and the first one is easily seen to be induced by the
differential δ3 given in Definition 3.1 of the multi-Koszul complex of A. By Lemma 3.16, this implies
that the following sequence
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T (V )/〈Rs〉 ⊗ J̄ s
s+1

δs
3−→ T (V )/〈Rs〉 ⊗ Rs

δs
2−→ T (V )/〈Rs〉 ⊗ V

is also exact. We note that the morphisms of the previous sequence are those of the Koszul complex of
T (V )/〈Rs〉. This implies that Ker(δs

2) is pure in degree s+1, so, by [5, Prop. 2.7], the e.c. corresponding
to s = a,b hold.

We will now prove the bidistributive condition of the tuples in the statement. In order to do so,
consider the following commutative diagram

⊕
s=a,b

V (n−s−1)⊗ J̄ s
s+1

In−s−1⊗ J̄ s
s+1

g

⊕
s=a,b

V (n−s−1)⊗ J̄ s
s+1+In−s⊗Rs

In−s⊗Rs

f

(
⊕

s=a,b V (n−s)⊗Rs)∩(In−1⊗V )⊕
s=a,b In−s⊗Rs

The domain of g is the homogeneous component of degree n of A ⊗ ( J̄ a
a+1 ⊕ J̄ b

b+1), its codomain
is the component of degree n of Ker(δ2) and g is the homogeneous component of the projective
cover, so surjective by the hypotheses. The horizontal epimorphism follows from the trivial inclusions
In−s−1 ⊗ J̄ s

s+1 ⊆ (V (n−s−1) ⊗ J̄ s
s+1) ∩ (In−s ⊗ Rs) for s = a,b, and the map f is just the canonical

inclusion. The commutativity of the diagram just follows from the construction of the projective cover
of a module. The surjectivity of g yields the surjectivity of f , so it gives an equality between the
domain of f and its codomain. By the e.c., we have that the last two identities of (5.3) hold, which
together with the equality coming from f , imply the (2,2)-bidistributivity of the respective tuple. The
proposition is thus proved. �
Remark 5.8. Notice that the spaces of the tuple considered in the previous proposition depend on n.
We will however omit the index to simplify the notation, as in [5].

Remark 5.9. We would like to stress that, contrary to what happens in Proposition 2.7 in [5] for
the case of homogeneous algebras, the hypothesis k ⊗A Ker(δ2) � J̄ a

a+1 ⊕ J̄ b
b+1 cannot be replaced by

the weaker condition Ker(δ2) is 2-pure in degrees a + 1 and b + 1 (see the algebra considered in
Example 3.9).

On the other hand, even though we may understand the condition k ⊗A Ker(δ2) � J̄ a
a+1 ⊕ J̄ b

b+1 as

stating that the obvious morphism from J̄ a
a+1 ⊕ J̄ b

b+1 to k ⊗A Ker(δ2) is an isomorphism, Lemma 3.11
tells us that we may consider that it states the existence of any isomorphism between both spaces,
for the vector spaces are finite dimensional.

Remark 5.10. By Lemma 5.6, the bidistributivity condition on the previous proposition implies the
following inclusions

(
V (ma) ⊗ Ra

) ∩
(

ma+a−b−1∑
j=0

V ( j) ⊗ Rb ⊗ V (ma+a−b− j)

)
⊆ V (ma−1) ⊗ J̄ a

a+1 + Ima ⊗ Ra,

(
V (mb) ⊗ Rb

) ∩
(mb+b−a−1∑

j=0

V ( j) ⊗ Ra ⊗ V (mb+b−a− j)

)
⊆ V (mb−1) ⊗ J̄ b

b+1,
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for all ma,mb ∈ N0 satisfying that b − a + 1 � ma � b − 1, and 1 � mb � a − 1. Notice that the last
inclusion would seem more symmetric if we had also written the subspace Imb ⊗ Ra , which vanishes
because Imb = 0. Furthermore, it is easily seen that the previous inclusions in fact imply that

E ′ ∩ F ′′ ⊆ E ′ ∩ F ′ + E ′ ∩ G ′, E ′ ∩ G ′′ ⊆ E ′ ∩ F ′ + E ′ ∩ G ′,

E ′′ ∩ F ′ ⊆ E ′′ ∩ F ′′ + E ′′ ∩ G ′′, E ′′ ∩ G ′ ⊆ E ′′ ∩ F ′′ + E ′′ ∩ G ′′,

for the vector spaces E ′ , E ′′ , F ′ , F ′′ , G ′ and G ′′ defined in the previous proposition.

We end this subsection by stating a result which is analogous to the one existing for homogeneous
algebras.

Proposition 5.11. The e.c. hold for A◦ if and only if A satisfies its e.c.

Proof. The proof is the same (for each degree a and b) as the one given for homogeneous algebras in
[5, Prop. 4.4]. �
5.3. Description of Ker(δi) for i > 2

From now on we assume that Ker(δ2) is 2-pure in degrees a + 1 and b + 1, with k ⊗A Ker(δ2) �
J̄ a
a+1 ⊕ J̄ b

b+1. Moreover, consider as before δ0 to be the augmentation of the algebra and δ1 : A⊗V → A
to be the restriction of the product of the algebra. Given i � 3, suppose that δ2, . . . , δi−1 have been
defined in such a way that the canonical injections

g̃ j : J̄ a
na( j) ⊕ J̄ b

nb( j) → Ker(δ j−1) ⊆ A ⊗ (
J̄ a
na( j−1) ⊕ J̄ b

nb( j−1)

)
, for all 2 � j � i,

induce essential surjections g j : A ⊗ ( J̄ a
na( j) ⊕ J̄ b

nb( j)) → Ker(δ j−1), whose coextensions A ⊗ ( J̄ a
na( j) ⊕

J̄ b
nb( j)) → A ⊗ ( J̄ a

na( j−1)
⊕ J̄ b

nb( j−1)
) are the differentials δ j . Then δi : A ⊗ ( J̄ a

na(i) ⊕ J̄ b
nb(i)) → A ⊗

( J̄ a
na(i−1)

⊕ J̄ b
nb(i−1)

) may be analogously defined as the coextension of gi . Furthermore, the recursive

procedure yields that, if i > 2,

δi : A ⊗ (
J̄ a
na(i) ⊕ J̄ b

nb(i)

) → A ⊗ (
J̄ a
na(i−1) ⊕ J̄ b

nb(i−1)

)
is a direct sum of two components δa

i ⊕ δb
i , where δs

i : A ⊗ J̄ s
ns(i) → A ⊗ J̄ s

ns(i−1)
, for s = a,b, because

each of the morphisms g̃i satisfies the same property, is induced by the map

α ⊗ v j1 · · · v jns(i) �→
{

αv j1 · · · v js−1 ⊗ v js · · · v jns(i) , if i is even,

αv j1 ⊗ v j2 · · · v jns(i) , if i is odd.

Remark 5.12. Note that these morphisms are well-defined even considering their domains to be
V (n−ns(i)) ⊗ J̄ s

ns(i) , for s = a,b.

By the previous decomposition of the morphism δi , we have that Ker(δi) = ⊕
s=a,b(Ker(δi) ∩ (A ⊗

J̄ s
ns(i))), where Ker(δi) ∩ (A ⊗ J̄ s

ns(i)) = Ker(δs
i ), so we may analyse each direct summand separately.

Moreover, from the expression of δs
i we see that

(
Ker

(
δs

i

))
n = (V (n−ns(i)) ⊗ J̄ s

ns(i)) ∩ (In−ns(i−1) ⊗ V (ns(i−1)))

In−n (i) ⊗ J̄ s
,

s ns(i)
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for n ∈ N0. On the other hand, we may rewrite In−ns(i−1) ⊗ V (ns(i−1)) as

In−ns(i) ⊗ V (ns(i)) +
∑

s′=a,b

n−ns(i−1)−s′∑
j=n−ns(i)−s′+1

V ( j) ⊗ Rs′ ⊗ V (n−s′− j),

where the first term will be denoted by F s , and the summand corresponding to the index s′ of the
second term will be denoted by Gs

s′ . If we write Es instead of V (n−ns(i)) ⊗ J̄ s
ns(i) , the numerator of the

previous quotient is given by Es ∩ (F s + Gs
a + Gs

b), for s = a,b. Notice that the spaces considered in the
previous paragraph depend on n and i. We will however omit the indices to simplify the notation.

We remark that the decomposition of the morphism δi immediately implies that the projective
cover of Ker(δi) is the direct sum of the projective covers of each direct summand Ker(δs

i ) for s = a,b.
Note that Ker(δa

j )n = 0, if n < na( j + 1), and that Ker(δa
j )na( j+1) = J̄ a

na( j+1)
, for j � i, by Lemma 5.4,

which is a consequence of the e.c. This immediately implies that there is an injection of J̄ a
na( j+1)

inside

(k ⊗A Ker(δ j))na( j+1) , given by the composition of the previous injection J̄ a
na( j+1)

↪→ (Ker(δ j))na( j+1)

and the canonical projection Ker(δ j) → k ⊗A Ker(δ j), for j � i, so the projective cover of Ker(δi)

must include A ⊗ J̄ a
na(i+1)

. On the other hand, by Lemma 3.11, the composition of the inclusion

J̄ b
nb(i+1)

↪→ Ker(δb
i ) with the canonical projection Ker(δb

i ) → k ⊗A Ker(δb
i ) is injective if and only if

the homogeneous components (k ⊗A Ker(δb
i ))n vanish for n < nb(i + 1).

We remark that the equation

Es ∩ F s = In−ns(i) ⊗ J̄ s
ns(i) (5.4)

always holds.
Moreover, the e.c. imply that

Es ∩ Gs
s = V (n−ns(i+1)) ⊗ J̄ s

ns(i+1). (5.5)

The proof of this fact is somehow implicit in [5], so we give a detailed proof just for convenience.
It suffices to prove the inclusion of the left member inside the right one, for the other inclusion is
direct. Moreover, note that Gs

s vanishes for n < ns(i + 1), by tensor degree reasons, and the same
happens for the right member of (5.5), so it suffices to prove the identity (or the inclusion) only for
n � ns(i + 1).

We start by writing the following trivial identity

Es ∩ Gs
s = Es ∩ (

V (n−ns(i)) ⊗ Rs ⊗ V (ns(i−2))
) ∩ Gs

s.

We may consider two cases: i odd or i even. If i is odd, then the sum in Gs
s consists of only one

summand, namely V (n−ns(i)−s+1) ⊗ Rs ⊗ V (ns(i)−1) , for ns(i − 1) = ns(i) − 1. In this case we have that
n − ns(i) − s + 1 � 0, because n � ns(i + 1) and i is odd. Hence,

Es ∩ Gs
s = Es ∩ (

V (n−ns(i)) ⊗ Rs ⊗ V (ns(i−2))
) ∩ Gs

s

= Es ∩ (
V (n−ns(i)−s+1) ⊗ ((

V (s−1) ⊗ Rs
) ∩ (

Rs ⊗ V (s−1)
)) ⊗ V (ns(i−2))

)
= Es ∩ (

V (n−ns(i)−s+1) ⊗ J̄ s
2s−1 ⊗ V (ns(i−2))

) = V (n−ns(i+1)) ⊗ J̄ s
ns(i+1),

where we have used in the penultimate equality the identities of Lemma 5.4, which hold due to the
e.c. and Proposition 5.3.

We consider now the case i is even. We point out that in this case n − ns(i) − s + 1 may be
negative, so the sum is more tedious to handle. In fact, we get that
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Es ∩ Gs
s = Es ∩ (

V (n−ns(i)) ⊗ Rs ⊗ V (ns(i−2))
) ∩ Gs

s

can be rewritten as

Es ∩
(

V (Max) ⊗
((

V (min) ⊗ Rs
) ∩

(
min−1∑

j=0

V ( j) ⊗ Rs ⊗ V (min− j)

))
⊗ V (ns(i−2))

)
,

where Max = max{0,n − ns(i) − s + 1} and min = min{n − ns(i), s − 1}. By the e.c., it further coincides
with

Es ∩ (
V (Max) ⊗ (

V (min−1) ⊗ J̄ s
s+1

) ⊗ V (ns(i−2))
) = V (n−ns(i+1)) ⊗ J̄ s

ns(i+1),

and the claim is proved.
Finally, for a couple (s, s′) of different elements in {a,b}, and max{0, s′ − s + 1} � m � s′ − 1, we

define the following intersection

(
V (m) ⊗ Rs

) ∩
(

m+s−s′−1∑
j=0

V ( j) ⊗ Rs′ ⊗ V (m+s−s′− j)

)
, (5.6)

that will be denoted by X s,m
s′ .

We claim that we have the following inclusion

Es ∩ Gs
s′ ⊆ Es ∩ (

V (Max′) ⊗ Xs,min′
s′ ⊗ V (ns(i−2))

)
, (5.7)

which is in fact an equality for i even, where Max′ = max{0,n − ns(i) − s′ + 1} and min′ = min{n −
ns(i), s′ − 1}. If i is odd the corresponding equality should be

Es ∩ Gs
s′ = Es ∩ (

V (n−ns(i)−s′+1) ⊗ ((
V (s′−1) ⊗ Rs

) ∩ (
Rs′ ⊗ V (s−1)

)) ⊗ V (ns(i−2))
)
. (5.8)

The proof is parallel to the previous one, but we sketch it for completeness. We remark that Gs
s′

vanishes for n < ns(i − 1) + s′ , by tensor degree reasons, so it suffices to prove the inclusion (and the
equality if i is even) only for n � ns(i − 1) + s′ .

The first step is to write

Es ∩ Gs
s′ = Es ∩ (

V (n−ns(i)) ⊗ Rs ⊗ V (ns(i−2))
) ∩ Gs

s′ .

We now consider two cases: i odd or i even. If i is odd, then the sum in Gs
s′ consists of only one

summand, namely V (n−ns(i)−s′+1) ⊗ Rs′ ⊗ V (ns(i)−1) , for ns(i − 1) = ns(i) − 1. In this case we also have
n − ns(i) − s′ + 1 � 0, because n � ns(i − 1) + s′ and i is odd. So, Es ∩ Gs

s′ can be further rewritten as

Es ∩ (
V (n−ns(i)−s′+1) ⊗ ((

V (s′−1) ⊗ Rs
) ∩ (

Rs′ ⊗ V (s−1)
)) ⊗ V (ns(i−2))

)
,

and the equality in (5.8) follows. Moreover, it is trivially included in

Es ∩
(

V (n−ns(i)−s′+1) ⊗
((

V (s′−1) ⊗ Rs
) ∩

(
s−2∑
j=0

V ( j) ⊗ Rs′ ⊗ V (s− j−1)

))
⊗ V (ns(i−2))

)
,

which coincides with Es ∩ (V (n−ns(i)−s′+1) ⊗ X s,s′−1
s′ ⊗ V (ns(i−2))), so the desired inclusion follows.
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We consider now the case i is even, and we remark that in this case n − ns(i) − s′ + 1 may be
negative. In fact, we have that Es ∩ Gs

s′ can be rewritten as the intersection of Es with

V (Max′) ⊗
((

V (min′) ⊗ Rs
) ∩

(
min′+s−s′−1∑

j=0

V ( j) ⊗ Rs ⊗ V (min′+s−s′− j)

))
⊗ V (ns(i−2)).

Hence, by the definition of X s,m
s′ given in (5.6), the equality for i even follows and the claim is proved.

In fact, for s = b and s′ = a, using the second inclusion of Remark 5.10 (which follows from the as-
sumption that Ker(δ2) satisfies that k ⊗A Ker(δ2) � J̄ a

a+1 ⊕ J̄ b
b+1), the e.c. and the definition of J̄ b

nb(i+1)
,

we have that

Eb ∩ Gb
a ⊆ V (nb(i+1)) ⊗ J̄ b

nb(i+1). (5.9)

We state the following proposition which generalizes the result for i = 2.

Proposition 5.13. Suppose that for all j such that 2 � j < i, Ker(δ j) is 2-pure in degrees na( j + 1) and
nb( j + 1) satisfying that k ⊗A Ker(δ j) � J̄ a

na( j+1)
⊕ J̄ b

nb( j+1)
. Then, Ker(δi) is 2-pure in degrees na(i + 1) and

nb(i + 1) such that k ⊗A Ker(δi) � J̄ a
na(i+1)

⊕ J̄ b
nb(i+1)

if and only if the tuples (Es, F s, Gs
a, Gs

b) of subspaces
defined in this subsection are distributive for each s ∈ {a,b} and for all n ∈ N0 (or just n � ns(i)), and we have
the following inclusions

Ea ∩ (
Xa,n−na(i)

b ⊗ V (na(i−2))
) ⊆ V (n−na(i+1)) ⊗ J̄ a

na(i+1) + In−na(i) ⊗ J̄ a
na(i),

for all n ∈ N0 satisfying that na(i − 1) + b � n � na(i) + b − 1 if i is even, and the inclusion

(
V (b−1) ⊗ J̄ a

na(i)

) ∩ ((
V (s′−1) ⊗ Rs

) ∩ (
Rs′ ⊗ V (s−1)

)) ⊗ V (ns(i−2))

⊆ V (b−a) ⊗ J̄ a
na(i+1) + Ib−1 ⊗ J̄ a

na(i),

if i is odd.

Proof. We shall first prove the “if” part, so we assume the distributivity of the mentioned tuples, and
the previous inclusions.

We have already seen that

(
Ker(δi)

)
n =

⊕
s=a,b

(V (n−ns(i)) ⊗ J̄ s
ns(i)) ∩ (In−ns(i−1) ⊗ V (ns(i−1)))

In−ns(i) ⊗ J̄ s
ns(i)

.

If we denote the numerator of the summand indexed by s on the right member by Ns
n , we have that

Ns
n = Es ∩ (

F s + Gs
a + Gs

b

) = (
Es ∩ F s) + (

Es ∩ Gs
a

) + (
Es ∩ Gs

b

)
= In−ns(i) ⊗ J̄ s

ns(i) + V (n−ns(i+1)) ⊗ J̄ s
ns(i+1),

where we have used the distributivity conditions in the second equality, Eqs. (5.4), (5.5), either (5.7)
if i is even, or (5.8) if i is odd, and (5.9), and the inclusions of the statement. Hence, Ker(δi) is 2-pure
in degrees na(i + 1) and nb(i + 1) satisfying in fact that k ⊗A Ker(δi) � J̄ a

n (i+1)
⊕ J̄ b

n (i+1)
.

a b
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Conversely, assume that Ker(δi) is 2-pure in degrees na(i +1) and nb(i +1) such that k⊗A Ker(δi) �
J̄ a
na(i+1)

⊕ J̄ b
nb(i+1)

. We will prove the required distributivity condition and the stated inclusions. Con-

sider the following commutative diagram for s ∈ {a,b}

V (n−ns(i+1))⊗ J̄ s
ns(i+1)

In−ns(i+1)⊗ J̄ s
ns(i+1)

g

V (n−ns(i+1))⊗ J̄ s
ns(i+1)

+In−ns(i)⊗ J̄ s
ns(i)

In−ns(i)⊗ J̄ s
ns(i)

f

(V (n−s−1)⊗ J̄ s
s+1)∩(In−s⊗V (s))

In−s−1⊗ J̄ s
s+1

Notice that the domain of g is the homogeneous component of degree n of A ⊗ J̄ s
ns(i+1)

, its codomain
is the component of degree n of Ker(δs

i ) and g is the corresponding homogeneous component of the
projective cover, so surjective. The horizontal epimorphism follows from the trivial inclusion

In−ns(i+1) ⊗ J̄ s
ns(i+1) ⊆ (

V (n−ns(i+1)) ⊗ J̄ s
ns(i+1)

) ∩ (
In−ns(i) ⊗ J̄ s

ns(i)

)
,

and the map f is just the canonical inclusion. The commutativity of the diagram just follows from
the construction of the projective cover of a module. The surjectivity of g yields the surjectivity of f ,
so the latter is an isomorphism. If we consider i even and the case na(i − 1) + b � n � na(i) + b − 1,
the equality coming from (5.7) and the identity given by f imply that the inclusions for the even case
hold. On the other hand, if i is odd and we take n = na(i) + b − 1, the equality (5.8) tells us that the
inclusion in the odd case also holds. Finally, the distributivity of the corresponding tuple also follows
from the isomorphism f . The proposition is thus proved. �
Remark 5.14. In analogous manner to what was stated in Remark 5.9, the condition k ⊗A Ker(δi) �
J̄ a
na(i+1)

⊕ J̄ b
nb(i+1)

, for i � 3, usually understood as stating that the obvious morphism from J̄ a
na(i+1)

⊕
J̄ b
nb(i+1)

to k ⊗A Ker(δi) is an isomorphism, is equivalent to the weaker condition given by the exis-

tence of any isomorphism k ⊗A Ker(δi) � J̄ a
na(i+1)

⊕ J̄ b
nb(i+1)

, due to Lemma 3.11 (see also the proof of
Proposition 3.12).

5.4. Main result

We shall summarize in this subsection the main result achieved in the description of the {a,b}-
multi-Koszul property of algebras in terms of lattices of subspaces, which follows from the previous
results proved in the two previous subsections.

Theorem 5.15. Let A = T (V )/〈R〉 be an {a,b}-multi-homogeneous algebra (2 � a < b) such that Ra ⊕ Rb
satisfies the minimality condition. We have thus the following equivalences:

(i) The e.c. are satisfied, we have the following collection of inclusions

Ea ∩ (
Xa,n−na(i)

b ⊗ V (na(i−2))
) ⊆ V (n−na(i+1)) ⊗ J̄ a

na(i+1) + In−na(i) ⊗ J̄ a
na(i),

for all n ∈N0 satisfying that na(i − 1) + b � n � na(i) + b − 1 if i is even, and the inclusion



226 E. Herscovich, A. Rey / Journal of Algebra 376 (2013) 196–227
(
V (b−1) ⊗ J̄ a

na(i)

) ∩ ((
V (s′−1) ⊗ Rs

) ∩ (
Rs′ ⊗ V (s−1)

)) ⊗ V (ns(i−2))

⊆ V (b−a) ⊗ J̄ a
na(i+1) + Ib−1 ⊗ J̄ a

na(i),

if i is odd, and the tuple (E ′, E ′′, F ′, G ′, F ′′, G ′′) considered in Proposition 5.7 is (2,2)-bidistributive, and
for all i � 3 the tuples (Es, F s, Gs

a, Gs
b) of subspaces defined in the previous subsection are distributive for

each s ∈ {a,b} and for all n ∈N0 (or just n � ns(i)).
(ii) A is {a,b}-multi-Koszul.

Proof. The first statement is a consequence of the second one by Propositions 5.7 and 5.13. The
converse is also direct, using the mentioned results and taking into account the recursive process
explained in the first paragraph of the previous subsection. �
5.5. The monomial case

We shall consider in this subsection an algebra A = T (V )/〈R〉 such that R = Ra ⊕ Rb (2 � a < b)
satisfies the minimality condition and it has a basis of monomials.

We shall first recall some definitions. The set of all the subspaces of V will be denoted by L(V ). It
is known that the lattice (L(V ),⊆,+,∩) is modular, i.e. given W1, W2, W3 ∈L(V ), if W2 ⊆ W1, then
W1 ∩ (W2 + W3) = W2 + (W1 ∩ W3). A sublattice S ⊆L(V ) is distributive if E ∩ (F + G) = (E ∩ F ) +
(E ∩ G) for all E, F , G ∈ S . Note that this also implies the condition E + (F ∩ G) = (E + F ) ∩ (E + G)

(see [25, Ch. I, §4, Thm. 3]).
The following result is a first criterion for distributivity.

Proposition 5.16. Given W1, . . . , Wn subspaces of V , we consider the sublattice T generated by W1, . . . , Wn,
i.e. T is the intersection of all the sublattices of L(V ) containing the subspaces W1, . . . , Wn. Then T is dis-
tributive if and only if there exists a basis B of V such that Bi = B ∩ W i is a basis of W i for all 1 � i � n. In
this case, we say that B distributes with respect to W1, . . . , Wn.

Proof. See [1, Lemma 1.2]. �
We may apply the previous result to the situation we are interested in: if R has a basis of monomi-

als, the sublattice of all vector subspaces of V (n) generated by V ( j) ⊗ Rs ⊗ V (n−s− j) , for j = 0, . . . ,n− s
and s = a,b, is distributive, as one can deduce by using the basis of V (n) composed of all monomials
of (tensor) degree n. This implies that all the tuples considered in Propositions 5.7 and 5.13 are dis-
tributive. In fact, using Lemma 5.6 and the comments of Remark 5.10, we get that Ker(δ2) is 2-pure
in degrees a + 1 and b + 1 such that k ⊗A Ker(δ2) � J̄ a

a+1 ⊕ J̄ b
b+1 if and only if the e.c. and the first

collection of inclusions of Remark 5.10 hold. Moreover, we remark that in this case Proposition 5.13
can be rewritten as stating that, under the same assumptions, Ker(δi) is 2-pure in degrees na(i + 1)

and nb(i + 1) such that k ⊗A Ker(δi) � J̄ a
na(i+1)

⊕ J̄ b
nb(i+1)

if and only if the tuples (Es, F s, Gs
a, Gs

b) of
subspaces defined in that subsection are distributive for each s ∈ {a,b} and for all n ∈ N0 (or just
n � ns(i)). This is due to the fact that the inclusion at the end of the proposition follows from inclu-
sion (5.7) and the mentioned distributivity. We have thus proved the following result:

Corollary 5.17. Let A = T (V )/〈R〉 be an {a,b}-multi-homogeneous algebra (2 � a < b) such that Ra ⊕ Rb
satisfies the minimality condition and it has a basis of monomials. Then, A is multi-Koszul if and only if the e.c.
and the inclusions of Remark 5.10 are satisfied.

Remark 5.18. Note that if the algebra A is monomial the e.c. may be equivalently stated as an over-
lapping property on a basis of monomials of the space of relations, as in [5, Prop. 3.8].
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