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Abstract

It is shown that the fundamental expression for the complex permittivity ε∗
s of a dilute suspension of monodispersed, spherical particles,

ε∗
s = ε∗

e (1 + 3φd∗),

where ε∗
e is the complex permittivity of the suspending medium and d∗ the dipolar coefficient, is strictly valid for any value of the volume fraction

φ of particles in the suspension, provided that d∗ is interpreted as the ensemble average value of the dipolar coefficient of the particles and is
defined in terms of the macroscopic electric field in the suspension.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It is generally accepted [1–7] that the fundamental expres-
sion for the complex permittivity ε∗

s of a suspension of homo-
geneous, monodispersed, spherical particles,

(1)ε∗
s = ε∗

e (1 + 3φd∗),
where ε∗

e is the complex permittivity of the suspending medium
and d∗ the dipolar coefficient, is only valid for low values of the
volume fraction φ of particles in the suspension.

In this work we review three deductions of this expression,
taking care to avoid all the usual approximations involving the
assumption φ � 1. We show that all these formulations lead to
the above expression, which appears to be valid for any value of
the volume fraction, provided that d∗ is interpreted as propor-
tional to the ensemble average value of the dipolar coefficient of
the particles and is defined in terms of the macroscopic electric
field in the suspension.
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In order to simplify the presentation, we first restrict the de-
ductions to the calculation of the permittivity of nonconducting
systems. An extension of the obtained results to the calculation
of the complex permittivity of conducting systems is presented
afterward.

2. Deduction based on the Maxwell–Wagner approach

The permittivity of a suspension can be defined in the fol-
lowing way [8,9]. We consider two macroscopic spherical sam-
ples with the same radius R, one made of the suspension,
and the other of some homogeneous material, Fig. 1. We now

Fig. 1. Macroscopic spheres made of the suspension and of a homogeneous
material, used in the Maxwell–Wagner approach.
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Fig. 2. Macroscopic heterogeneous and homogeneous spheres immersed in the
unbound suspending medium in the presence of an initially uniform electric
field.

choose the permittivity of this material in such a way that, when
immersed in the same external medium and acted upon by the
same external field, the total field outside the two spheres is
also the same. The permittivity obtained in this way is defined
as being the permittivity of the suspension: εs.

Since, by hypothesis, the dielectric behavior of the two
spheres must always be the same, we are free to choose the
configuration that leads to the result in the simplest possible
way. We therefore consider that both spheres are immersed in
the same medium in which the particles are suspended, which
is characterized by a permittivity εe, Fig. 2.

A uniform electric field Ee directed along the x axis is now
applied to both systems. The resulting potential outside the
sphere (1) made of the suspension is determined by the sum
of the contributions of its particles,

(2)U(1)
e = −Eer cos θ + NV

〈p〉
4πε0

cos θ

r2
,

where r , θ are spherical coordinates in a system with origin
centered on the sphere and polar axis directed parallel to the
applied field, N is the number of particles per unit volume, V =
4πR3/3 is the volume of the sample,

〈p〉 = 1

NV

∣∣∣∣∣
NV∑
i=1

pi

∣∣∣∣∣
is the average value of the dipole moment of a particle (includ-
ing the polarization charges in the surrounding medium), and
ε0 is the absolute permittivity of free space. Actually, Eq. (2)
is rigorously valid only far from the sphere, since the particles
are not located at its center. However, this is not a limitation
of this particular deduction, but a general result stating that it
is impossible to express all the properties of a heterogeneous
material by a homogeneous one.

The potential inside and outside the homogeneous sphere
(2), solution of the Laplace equation, has the following form:

U(2)
s = Ar cos θ,

U(2)
e = −Eer cos θ + B

cos θ

r2
.

The coefficients A and B can be determined using the following
boundary conditions on the surface of sphere (2):

1. Continuity of the electric potential:

U(2)
s (R, θ) = U(2)

e (R, θ).
2. Continuity of the radial component of the electric displace-
ment:

−εs
∂U

(2)
s (r, θ)

∂r

∣∣∣∣
R

= −εe
∂U

(2)
e (r, θ)

∂r

∣∣∣∣
R

.

The resulting expressions for the potentials are

(3)U(2)
s = − 3εe

εs + 2εe
Eer cos θ,

(4)U(2)
e = −Eer cos θ + εs − εe

εs + 2εe
R3Ee

cos θ

r2
.

Equating the expressions for the potentials outside both spheres,
Eqs. (2) and (4), leads to the following result for the permittivity
of the suspension:

(5)εs = εe

1 + 2NV
〈p〉

4πε0R
3Ee

1 − NV
〈p〉

4πε0R
3Ee

.

Writing the average dipole moment 〈p〉 in terms of the dipolar
coefficient,

(6)
〈p〉

4πε0
= da3Ee,

where a is the radius of a particle, transforms Eq. (5) into

(7)εs = εe
1 + 2φd

1 − φd
,

where

φ = NV a3/R3

is the volume fraction occupied by the particles in the suspen-
sion. For low concentration values (φ � 1), Eq. (7) reduces to

(8)εs = εe(1 + 3φd).

While this deduction gives the impression that the assump-
tion φ � 1 is only made when going from Eq. (7) to Eq. (8),
it is actually made earlier, when Eq. (6) is written, since in this
expression the dipolar coefficient is related to the electric field
in the suspending medium far from any particle. Expressing the
dipolar coefficient in terms of the macroscopic electric field in
the suspension, Eq. (3),

〈p〉
4πε0

= da3 3εe

εs + 2εe
Ee,

directly transforms Eq. (5) into

εs = εe(1 + 3φd)

without making any assumptions regarding the value of φ.

3. Deduction based on the Dukhin–Shilov approach

In this deduction we consider two identical parallel plate
condensers [10]. The first (lower index 1) is filled with the sus-
pending medium εe and the second (lower index 2) with the
suspension εs; see Fig. 3. Both are connected in series so that,
when a DC voltage is applied to the system, the free charge on
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Fig. 3. Ideal parallel plane condensers filled with the suspending medium and
with the suspension, used in the Dukhin–Shilov approach.

their plates has the same value. Therefore,

(9)D1 = D̄2,

where the upper segment has the meaning of a volume average.
Using this expression together with

D1 = εeE1

and

D̄2 = εsĒ2

leads to the following expression for the permittivity of the sus-
pension:

(10)εeE1 = εsĒ2.

Writing in this expression

(11)εs = εe + δε,

(12)Ē2 = E1 + δE

and neglecting the small addend containing the product δε δE

leads to

(13)δε = −εe δE

E1
.

The calculation of δE is performed by considering the electric
potential at the two conducting plates of condenser 2, due to
the presence of the particles in the suspension. The potential of
a particle is

Ui(r, θ) = pix

4πε0

cos θ

r2

or

Ui(x, y) = pix

4πε0

x

(x2 + y2)3/2
.

In these expressions, pix is the component of the dipole mo-
ment of particle i in the direction of the applied field. The
perpendicular component need not be considered because its
contribution cancels out in the forthcoming calculation.

The average value of the potential of a particle, calculated
over the area of a circle of radius R on a plate located a distance
x0 from the particle, as shown in Fig. 4, is

Ūi(x0) = 1

πR2

R∫
Ui(x0, y)2πy dy
0

Fig. 4. Coordinate system used for the calculation of the average potential on
one of the electrodes due to the dipole moment of a suspended particle.

= pix

4πε0

2x0

R2

R∫
0

y dy

(x2
0 + y2)3/2

= pix

4πε0

2x0

R2

[
1

|x0| − 1√
x2

0 + R2

]
,

which, for R � x0, becomes

Ūi(x0) → pix

4πε0

2

R2
.

Clearly, the average potential calculated over the other plate
has the same value but with a minus sign, so that the poten-
tial difference is two times larger. Moreover, since this value
does not depend on the position of the particle in the condenser,
the potential difference due to all the particles is a simple sum
of their individual contributions. If the condenser has circular
plates of radius R and spacing L, and contains N particles per
unit volume, the potential difference δU due to all the particles
is

δU = 2
πR2LN∑

i=1

(
pix

4πε0

2

R2

)
= 4πLN

〈p〉
4πε0

,

where

〈p〉 = 1

πR2LN

πR2LN∑
i=1

pix = 1

πR2LN

∣∣∣∣∣
πR2LN∑

i=1

pi

∣∣∣∣∣,
since the sum of all the dipole moments has the direction of the
applied field. Therefore

(14)δE = −δU

L
= −4πN

〈p〉
4πε0

.

Combining this result with Eqs. (11) and (13) leads to the
expression for the permittivity of the suspension:

(15)εs = εe

(
1 + 4πN

〈p〉
4πε0E1

)
.

Relating the average value of the particle dipole moment to the
dipolar coefficient,

(16)
〈p〉

4πε0
= da3E1,

leads to the final result,

(17)εs = εe(1 + 3φd),
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where

(18)φ = N4πa3/3

is the volume fraction of particles in the suspension.
Note that in the deduction of Eq. (17), the assumption that

the particle concentration is low was made twice: first, in writ-
ing Eq. (13) the addend containing δε δE was neglected and,
second, in writing Eq. (16) the dipole coefficient was expressed
in terms of the field E1 rather than the macroscopic field in the
suspension Ē2.

Avoiding the first of these assumptions, Eq. (13) becomes

(19)δε = − εe δE

E1 + δE

so that Eq. (15) for the permittivity of the suspension transforms
into

(20)εs = εe

(
1 + 4πN

〈p〉
4πε0E1

1 − 4πN
〈p〉

4πε0E1

)
.

Expressing the dipole coefficient in terms of Ē2, the macro-
scopic field in the suspension (condenser 2), rather than E1, the
macroscopic field in the suspending medium (condenser 1),

〈p〉
4πε0

= da3Ē2,

leads finally to

εs = εe(1 + 3φd)

without making any assumptions regarding the value of φ.

4. Deduction based on the Landau–Lifchitz formalism

We consider a heterogeneous dielectric system made of par-
ticles immersed in a homogeneous medium with permittivity
εe and calculate the macroscopic permittivity of the whole sys-
tem, εs, using as definition for this magnitude the seemingly
most general expression given in Section 9 of Ref. [11]:

(21)D̄ = εsĒ.

In this expression

D̄ = 1

V

�
V

D(r)dV, Ē = 1

V

�
V

E(r)dV

are volume averages of the electric displacement and of the
electric field, D(r) and E(r) are the local values of these fields,
and r is the radius vector of a generic point in the system. The
integration is performed over the whole volume V of the sys-
tem that is assumed to be large as compared to the characteristic
size of the particles.

We consider that the system is macroscopically isotropic and
that the electric field is applied in the direction of the x axis. Un-
der these conditions, the vectors D̄ and Ē will also be oriented
along this same axis. The permittivity of the suspension thus
becomes

(22)εs = D̄x

Ē
=

1
V

�
V

Dx(r)dV

1 �
E (r)dV

.

x V V x
Writing the x components of the two field vectors as Dx =
D · gradx and Ex = E · gradx, and using the identity

div(ϕA) = ϕ divA + A · gradϕ,

leads to

(23)Dx = div(xD) − x divD, Ex = div(xE) − x divE.

We now use the Maxwell equations relating the electric dis-
placement and electric field to the volume densities of free (ion)
charge ρf, bound (polarization) charge ρb, and total charge

ρ = ρf + ρb:
(24)divD = ρf, divE = 1

ε0
ρ.

Combining Eqs. (23) and (24), and taking into account that
the considered problem is of the “dielectric inside a dielectric”
type, so that there are no free charges (ρf = 0), leads to

(25)Dx = div(xD), Ex = div(xE) − x

ε0
ρ.

We now substitute Eq. (25) for Dx(r) and Ex(r) in the inte-
grals appearing in Eq. (22) and use the identity�
V

divAdV =
�
S

AdS.

We consider that the volume V corresponds to the whole sam-
ple so that, at all points of its surface S, the permittivity is that
of the dispersion medium εe and, therefore,

(26)D = εeE.

We thus obtain�
V

Dx(r)dV =
�
S

(xD · dS) = εe

�
S

(xE · dS),

(27)
�
V

Ex(r)dV =
�
S

(xE · dS) − 1

ε0

�
V

ρx dV.

Using the general definition of the dipole moment of a sys-
tem, the last integral in Eq. (27) represents the sum of the dipole
moments (including the polarization charges of the surround-
ing medium) of all the particles present in the sample (or rather
their components along the direction of the applied field):

(28)
�
V

ρx dV =
NV∑
i=1

pix.

Equating the surface integrals on the right-hand side of the
expressions (27),

(29)
�
V

Dx(r)dV = εe

�
V

Ex(r)dV + εe

ε0

NV∑
i=1

pix,

and combining with Eq. (22) leads, finally, to the general ex-
pression for the permittivity of the suspension:

(30)εs = εe + εe

ε0

1
V

∑NV
i=1 pix

Ēx

.
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This result, deduced using the most general expression (21), is
valid for any value of the particle concentration and for any
particle shape, provided that their distribution and orientation
is isotropous so that the macroscopic system is also isotropous.
This requirement is the sole restriction on this deduction.

In the particular case of a suspension of monodispersed
spherical particles,

NV∑
i=1

pxi = NV 〈p〉.

Expressing the average dipole moment in terms of the dipolar
coefficient and the average electric field in the suspension,

〈p〉 = 4πε0da3Ēx,

and using Eq. (18) leads to the final result,

εs = εe(1 + 3φd).

5. Generalization to conducting systems

We shall now generalize the considered deductions to con-
ducting systems. In this most general case, the dielectric prop-
erties can be characterized by the complex permittivity, defined
as

(31)ε∗(ω) = ε(ω) − j
σ (ω)

ω
,

where the asterisk (*) denotes a complex quantity, j = √−1,
while ε(ω) and σ(ω) are the absolute permittivity and the con-
ductivity (real functions of the frequency).

5.1. Generalization of the deduction based on the
Maxwell–Wagner approach

In this case, the generalization is straightforward. The con-
sidered macroscopic spheres are the same as before, except that
they are now characterized by the complex permittivities ε∗

e (ω)

and ε∗
s (ω), and an AC electric field E∗

e (ω) is used. All the equa-
tions and arguments hold unaltered, except for the substitution
of all the frequency independent quantities by their complex
frequency dependent analogs.

5.2. Generalization of the deduction based on the
Dukhin–Shilov approach

Again, the considered systems are the same as before, except
that the two condensers are now characterized by the complex
permittivities ε∗

e (ω) and ε∗
s (ω) and an AC voltage is used. Since

the two condensers are connected in series, the current I ∗(ω)

and the total voltage U∗(ω) across the system are related by

U∗ = I ∗
(

1

jωC∗
1

+ 1

jωC∗
2

)
,

where

C∗
1,2 = ε∗

e,sπR2

L
.

Therefore, the voltages across the individual condensers are

U∗
1,2 = I ∗

jωC∗
1,2

= U∗ C∗
2,1

C∗
1 + C∗

2

so that the electric fields inside the condensers are

E∗
1 = −U∗

1

L
= −U∗

L

ε∗
s

ε∗
e + ε∗

s
and

Ē∗
2 = −U∗

2

L
= −U∗

L

ε∗
e

ε∗
e + ε∗

s
.

These expressions show that the electric displacements

D∗
1 = ε∗

e E∗
1 = −U∗

L

ε∗
e ε∗

s

ε∗
e + ε∗

s
and

D̄∗
2 = ε∗

s Ē∗
2 = −U∗

L

ε∗
s ε∗

e

ε∗
e + ε∗

s

are equal to one another, leading to the complex generalization
of Eq. (9).

From here on, all the following equations and arguments
hold unaltered, except for the replacement of all the frequency-
independent quantities by their complex frequency-dependent
analogs.

5.3. Generalization of the deduction based on the
Landau–Lifchitz formalism

Unlike the preceding cases, this generalization is not imme-
diate, since in the deduction of Eq. (25) it was specifically as-
sumed that the considered system is non-conducting. However,
when the system is conducting, the field-induced polarization
of the double layer leads to the appearance of a free charge
density near the surfaces of the suspended particles (at a dis-
tance of the order of the Debye screening length). This charge
density ρf 	= 0, together with Eq. (24), shows that divD 	= 0
so that, in the complex formulation, there is no direct transition
from Eq. (23) to Eq. (25). Therefore, it is not possible to simply
replace the permittivities of the components by their complex
counterparts.

In order to surmount this problem, we consider the expres-
sion for the full complex electric displacement D∗ as a sum of
two terms: the first one, D∗

b, reflecting the contribution due to
dielectric polarization (displacement of bound charges) and the
second one, J ∗

f , related to the ionic current density (movement
of free charges):

(32)D∗(ω, r) = D∗
b(ω, r) − j

J ∗
f (ω, r)

ω
.

We now consider the continuity equation for the free charge
density,

divJ ∗
f = −∂ρ∗

f

∂t
= −jωρ∗

f ,

and the Poisson equation,

divD∗
b = ρ∗

f .
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Combining these expressions with the divergence of the com-
plex electric displacement, Eq. (32), leads to the result

divD∗ = divD∗
b − j

divJ ∗
f

ω
= ρ∗

f − j
−jωρ∗

f

ω
= 0.

Therefore, despite the presence of the field-induced free charge
density ρ∗

f , the divergence of the complex electric displace-
ment, which includes the contribution of the ion current density,
is equal to zero. This provides the path for the transition from
the complex formulation of Eq. (23) to that of Eq. (25), which
becomes

D∗
x = div(xD∗), E∗

x = div(xE∗) − 1

ε0
ρ∗x.

From here on, all the arguments and equations leading from
Eq. (21) to Eq. (30) are readily generalized, so that the complex
analog of that equation becomes

(33)ε∗
s = ε∗

e + ε∗
e

ε0

1
V

∑NV
i=1 p∗

ix

Ēx

.

It should be noted that, in general, the ionic current density
J ∗

f (ω, r) in Eq. (32) is not necessarily caused solely by the elec-
tric field. For example, in the charged liquid within the diffuse
part of the electric double layer, the local electric current den-
sity may be also related to the hydrodynamic flow (convective
electric current) and to ion diffusion (diffusion current). There-
fore, the generalization of Eq. (26) is not valid at every point
of the electrolyte solution inside the suspension. However, in
the presented deduction, this equation is only used over the
macroscopic surface surrounding the whole system where the
electrolyte solution is electroneutral so that the generalization
of Eq. (26) is valid. Therefore, the validity of Eq. (33) is not
restricted to the case when this current density is only due to
electromigration (as is the case in the Maxwell–Wagner model).
On the contrary, it may include other fields, such as the diffu-
sion current, which is responsible for the low-frequency or α

dispersion in colloidal suspensions.

6. Conclusion

We have shown that the fundamental expression (1) for the
complex permittivity of a suspension is valid for any value of
the volume fraction φ of suspended particles. However, this as-
sertion requires a generalization of the definition of the dipolar
coefficient,

〈p∗〉
4πε0

= d∗a3E∗,
where 〈p∗〉 is the ensemble average of the dipole moments of
the particles in the suspension and E∗ is the macroscopic elec-
tric field.

Because of this generalization, the present work does not
solve the more than a hundred year old mixture formula
problem [8,9,12–14]: the relationship between the dielectric
properties of a suspension and either the dielectric proper-
ties of its components (particles and electrolyte solution) or
the field-induced dipole moment of a single suspended parti-
cle.

However, the obtained result is far from trivial. It makes it
possible, for example, to calculate the complex permittivity of a
concentrated suspension using numerical results for the dipole
moment of the suspended particles, or, inverting the problem,
to determine the average dipole moment of the suspended par-
ticles in a concentrated suspension from experimental data on
its dielectric properties.
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