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aDto. de Matemática, FCE-UNLP, La Plata, Argentina
bDto. de Computación FCEN-UBA, Buenos Aires, Argentina
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Abstract

Golumbic, Lipshteyn and Stern [? ] proved that every graph can be rep-
resented as the edge intersection graph of paths on a grid (EPG graph),
i.e., one can associate with each vertex of the graph a nontrivial path on a
rectangular grid such that two vertices are adjacent if and only if the corre-
sponding paths share at least one edge of the grid. For a nonnegative integer
k, Bk-EPG graphs are defined as EPG graphs admitting a model in which
each path has at most k bends. Circular-arc graphs are intersection graphs
of open arcs of a circle. It is easy to see that every circular-arc graph is
a B4-EPG graph, by embedding the circle into a rectangle of the grid. In
this paper, we prove that circular-arc graphs are B3-EPG, and that there
exist circular-arc graphs which are not B2-EPG. If we restrict ourselves to
rectangular representations (i.e., the union of the paths used in the model is
contained in the boundary of a rectangle of the grid), we obtain EPR (edge
intersection of paths in a rectangle) representations. We may define Bk-EPR
graphs, k ≥ 0, the same way as Bk-EPG graphs. Circular-arc graphs are
clearly B4-EPR graphs and we will show that there exist circular-arc graphs
that are not B3-EPR graphs. We also show that normal circular-arc graphs
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are B2-EPR graphs and that there exist normal circular-arc graphs that are
not B1-EPR graphs. Finally, we characterize B1-EPR graphs by a family of
minimal forbidden induced subgraphs, and show that they form a subclass
of normal Helly circular-arc graphs.
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Keywords: edge intersection graphs, paths on a grid, forbidden induced
subgraphs, (normal, Helly) circular-arc graphs, powers of cycles
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1. Introduction

Let G be a rectangular grid of size (` + 1) × (` + 1). The vertical grid
lines will be referred to as columns and denoted by x0, x1, . . . , x`, and the
horizontal grid lines will be referred to as rows and denoted by y0, y1, . . . , y`.
A grid point lying on column x and row y is referred to as (x, y). A path on G
is nontrivial if it contains at least one edge of the grid. Let P be a collection
of nontrivial simple paths on G. The edge intersection graph of P (denoted
by EPG(P)) is the graph whose vertices correspond to the paths of P and
two vertices are adjacent in EPG(P) if and only if the corresponding paths
in P share at least one edge in G. A graph G is called an edge intersection
graph of paths on a grid (EPG graph) if G=EPG(P) for some P . Every graph
G satisfies G=EPG(P) for some P on a large enough grid and allowing an
arbitrary number of bends (turns on a grid point) for each path [? ]. In recent
years, the subclasses for which the number of bends of each path is bounded
by some integer k ≥ 0, known as Bk-EPG graphs, were widely studied [? ?
? ? ? ? ? ]. The bend number of a graph G (resp. a graph class H), is the
smallest integer k ≥ 0 such that G (resp. every graph in H) is a Bk-EPG
graph. We denote by Bk-EPG, k ≥ 0, the class of Bk-EPG graphs.

In [? ], it was shown that for every integer k ≥ 0 there exists a graph with
bend number k, and that recognizing B1-EPG graphs is NP-complete. The
bend number of classical graph classes was investigated as well. In [? ], it was
shown that outerplanar graphs are B2-EPG graphs and that planar graphs
are B4-EPG graphs. For planar graphs, it is still an open question whether
their bend number is equal to 3 or 4. On the other hand, it is easy to see
that B0-EPG graphs exactly correspond to interval graphs (i.e., intersection
graphs of intervals on a line) [? ]. A generalization of interval graphs are
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circular-arc (CA) graphs, i.e., intersection graphs of open arcs on a circle. It
is natural to see circular-arc graphs as EPG graphs by identifying the circle
with a rectangle of the grid. Hence, circular-arc graphs form a subclass of
B4-EPG graphs. This leads to some natural questions. For example, the
bend number of circular-arc graphs or the characterization of circular-arc
graphs that are Bk-EPG graphs, for some k < 4. One of the main results of
this paper is that the bend number of circular-arc graphs is 3.

Another interesting question is how many bends per path are needed for
a circular-arc graph to be represented in a rectangle of the grid, i.e., in such a
way that the union of the paths is contained in the boundary of a rectangle of
the grid. We call such graphs edge intersection graphs of paths on a rectangle
(EPR graphs). It is easy to see that EPR graphs are exactly the circular-arc
graphs. We will study the classes Bk-EPR, for 0 ≤ k ≤ 4, in which the paths
on the grid that represent the vertices of the graph have at most k bends. As
before, we denote by Bk-EPR, k ≥ 0, the class of Bk-EPR graphs. Similar
to the case of EPG graphs, one can define for a circular-arc graph G the
bend number with respect to an EPR representation as the smallest integer
k such that G is a Bk-EPR graph. Notice that CA = EPR = B4-EPR. We
strengthen this observation by showing that the bend number for circular-
arc graphs with respect to EPR representations is 4. Furthermore, we focus
on B1-EPR graphs and B2-EPR graphs (B0-EPR graphs correspond again
to interval graphs), and relate these classes with the class of normal Helly
circular-arc graphs. In summary, we obtain the following results: we prove
that the bend number of normal circular-arc graphs with respect to EPR
representations is 2; moreover, we characterize B1-EPR graphs by a family
of minimal forbidden induced subgraphs, and show that they are exactly the
normal Helly circular-arc graphs containing no powers of cycles Ck

4k−1, with
k ≥ 2, as induced subgraphs.

An extended abstract of a preliminary version of this work was published
in the proceedings of LAGOS 2015 [? ].

2. Preliminaries

All graphs that we consider in this paper are connected, finite and simple.
For all graph theoretical terms and notations not defined here, we refer the
reader to [? ].

We denote by Cn, n ≥ 3, the chordless cycle on n vertices. A graph is
called chordal, if every cycle of length at least four has a chord. Given a
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graph G and an integer k ≥ 0, the power graph Gk has the same vertex set
as G, two vertices being adjacent in Gk if their distance in G is at most k.

Let G = (V,E) be a graph and let X ⊆ V . We denote by G − X the
subgraph of G induced by the vertex set V −X.

A clique (resp. a stable set) is a subset of vertices that are pairwise
adjacent (resp. nonadjacent). We say that a vertex v dominates a vertex w
if they are adjacent and every neighbor of w is also a neighbor of v.

A thick spider Sn, n ≥ 2, is the graph whose 2n vertices can be partitioned
into a clique K = {c1, . . . , cn} and a stable set S = {s1, . . . , sn} such that,
for 1 ≤ i, j,≤ n, ci is adjacent to sj if and only if i 6= j. Notice that Sn1 is an
induced subgraph of Sn2 if n1 ≤ n2. (The name spider for graphs or graph
classes has been used in the literature with different meanings. We follow
the notation in [? ], in the particular case in which the head of the spider is
empty.)

Given a circle C of length `, we can assign to vertices s1, . . . , sn of the thick
spider Sn a set of pairwise disjoint arcs of C, each of them of length `/n−2ε,
and to vertices c1, . . . , cn of Sn a set of arcs of C of length (n − 1)`/n + ε
each (where ε is a small enough real number), in such a way that the arc
corresponding to ci is disjoint from the arc corresponding to si and intersects
every other arc corresponding to a vertex in S, for i = 1, . . . , n. Notice that
since the length of each of the arcs corresponding to vertices in K is greater
than `/2, they are pairwise intersecting. So, Sn is a circular-arc graph, as we
have described a circular-arc model for it.

More in general, if G is a circular-arc graph, C denotes the corresponding
circle, and A the corresponding set of open arcs, then (A, C) is called a
circular-arc model of G [? ]. A graph G is a Helly circular-arc graph (HCA
graph) [? ] if it is a circular-arc graph having a circular-arc model such
that any subset of pairwise intersecting arcs has a common point on the
circle. Such a model is called a Helly model. A circular-arc graph having
a circular-arc model without two arcs covering the whole circle is called a
normal circular-arc graph (NCA graph), and such a model is called a normal
model. Circular-arc models that are at the same time normal and Helly are
precisely those without three or less arcs covering the whole circle (see, for
example, Theorem 1 in [? ]). A graph that admits such a model is called a
normal Helly circular-arc graph (NHCA graph) [? ]. We will denote by NCA
(resp. NHCA) the class of normal (resp. normal Helly) circular-arc graphs.

In [? ], the authors present a characterization of NHCA graphs by a
family of minimal forbidden induced subgraphs. Recent surveys on circular-
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arc graphs are given in [? ? ]. A very recent characterization of circular-arc
graphs by forbidden structures is presented in [? ].

3. Circular-arc graphs as EPG graphs

The main result in this section is that the bend number of circular-arc
graphs with respect to EPG representations is equal to 3. We first show that
every circular-arc graph is a B3-EPG graph (Theorem ??), then we exhibit an
example of a graph in B3-EPG \ B2-EPG (Proposition ??). We present also
in this section a family of NHCA graphs that are not in B1-EPG (Lemmas
?? and ??). This family will play a central role in the characterization of
B1-EPR graphs in the next section.

Theorem 1. Every circular-arc graph is a B3-EPG graph.

Proof. Let G be a circular-arc graph and let (A, C) be a circular-arc model
of G. Without loss of generality, we may assume that the endpoints of the
arcs are all distinct and we can number them clockwise in the circle from 1 to
2n (with n being the number of vertices of G). We also define a point 0 in the
circle between 2n and 1 (clockwise). The arc (a, b), 1 ≤ a, b ≤ 2n, denotes
the arc from endpoint a to endpoint b (clockwise). In particular, an arc (a, b)
contains point 0 of C if and only if a > b. Let X be the set of vertices in G
corresponding to arcs containing point 0 of C. Clearly, these vertices form a
clique in G. Moreover, G−X is an interval graph that can be represented on
a line by taking, for each vertex, the interval (a, b) defined by the endpoints
of its corresponding arc, since a < b for vertices in G−X. We will construct
the following EPG representation of G on a grid. For each vertex in G−X
corresponding to an arc (a, b), assign the 3-bends path on the grid whose
endpoints are (x0, yb) and (xb, y0) and whose bend points correspond to the
grid points (x0, ya), (xa, ya), (xa, y0). For each vertex of X corresponding to
an arc (c, d) (in this case c > d), assign the 3-bends path on the grid whose
endpoints are (x0, y0) and (x2n, y0) and whose bend points correspond to the
grid points (x0, yd), (xc, yd), (xc, y0). Since all the endpoints of the arcs in A
are different, the edge intersections of the paths are either on column x0 or
on row y0 of the grid. Clearly, two paths corresponding to vertices of G−X
intersect if and only if the corresponding arcs intersect on C. Two paths
corresponding to vertices of X intersect at least on the edge of the grid going
from (0, 0) to (0, 1). The path corresponding to a vertex in G − X with
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endpoints (a, b) and the path corresponding to a vertex in X with endpoints
(c, d) intersect if and only if either d > a or c < b, and the same condition
holds for the corresponding arcs in C. Thus, we obtain a representation of G
as a B3-EPG graph. 2

Combining Theorem ?? with the following result shows that the bend
number of circular-arc graphs with respect to EPG representations is 3.

Proposition 2. The thick spider S40 is in B3-EPG \ B2-EPG.

Proof. Since all thick spiders are circular-arc graphs, it follows from
Theorem ?? that S40 is a B3-EPG graph.

Suppose there exists a B2-EPG representation of S40. Let us consider the
path Pc corresponding to a vertex c of the clique and the paths corresponding
to its 39 neighbors in the stable set S. The path Pc uses at most three lines
(rows and/or columns) of the grid since it has at most 2 bends. Thus, Pc

intersects at least 13 paths, P1, . . . ,P13, corresponding to 13 of its neighbors
in S on a same line x. Without loss of generality, we may assume that x is
a column of the grid.

Notice that, since the paths have at most 2 bends, the edges of each
path on a same row or column form a connected subpath (this does not
hold for example in paths with four bends: the 4-bends path on the grid
whose endpoints are (0, 0) and (0, 3) and whose bend points correspond to
the grid points (0, 1), (1, 1), (1, 2), and (0, 2), as the disconnected segments
(0, 0)–(0, 1) and (0, 2)–(0, 3) on column 0).

Consider now the 13 connected subpaths on x corresponding to the paths
P1, . . . ,P13 that Pc intersects on column x. Since these paths correspond
to vertices of S, they are edge-disjoint and thus their subpaths on x can be
ordered. We may assume then that P1, . . . , P13, the subpaths of P1, . . . ,P13

on column x, are ordered by index from left to right. Let sj, j ∈ {1, . . . , 39},
be the vertex in S corresponding to the path P7, i.e., Psj = P7. The path
Pcj , corresponding to vertex cj of the clique that is not adjacent to sj, cannot
intersect the subpaths corresponding to P1, . . . , P13 on both sides of P7 on x
since it has at most two bends. Thus, it intersects at least 6 of them on some
other row or column.

So we may assume, without loss of generality, that it intersects the paths
P8, . . . ,P13 on some other row or column. But since these paths have at most
two bends, are edge-disjoint and all use column x, it follows that Pcj intersects
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at most 2 paths among P8, . . . ,P13 on a row. Therefore Pcj necessarily uses
two columns and one row, and it intersects at least 4 paths among P8, . . . ,P13

on a column x′ 6= x.
Since these 4 paths use both columns x, x′ and they are edge disjoint, it

follows that each of them uses a different row. Also notice that the order
of their corresponding subpaths on the two columns x, x′ from left to right
must be the same, since they have at most 2 bends and therefore they cannot
swap the order without intersecting.

Let sk, k ∈ {1, . . . , 39}, be the vertex corresponding to one of the two
paths of these four whose subpaths on column x′ are located in the middle
(i.e., the second or third subpath). It is now easy to see that, given that fixed
configuration for the four paths, it is impossible for the path Pck , correspond-
ing to vertex ck of the clique that is not adjacent to sk, to avoid the path Psk

while intersecting the paths corresponding to the remaining three vertices
using only two bends. Thus S40 does not admit a B2-EPG representation. 2

The thick spider S40 is probably not a minimal example in B3-EPG \
B2-EPG. The size 40 was chosen for the easy of presentation. Finding a
characterization of the minimal graphs in (CA ∩ B3-EPG) \ (CA ∩ B2-
EPG) and in (CA ∩ B2-EPG) \ (CA ∩ B1-EPG) is left as an open problem.

We close this section by presenting a family of NHCA graphs that are
not in B1-EPG, and will be part of the characterization of B1-EPR graphs
in the next section: the powers of cycles Ck

4k−1, with k ≥ 2.

Lemma 3. Powers of cycles Ck
4k−1, with k ≥ 2, are NHCA.

Proof. Let k ≥ 2 and let G be the graph Ck
4k−1, where the vertices of the

cycle are denoted by v1, . . . , vn, with n = 4k − 1.
Let C be a circle of length ` and let a1, a2, . . . , a2n be 2n points of it, or-

dered clockwise and such that the clockwise distance from ai to ai+1 is `/(2n).
Let Ai, for 1 ≤ i ≤ n, be the clockwise open arc from a2i−1 to a2i+2k, where
the index operations are performed modulo 2n. Let A = {A1, . . . ,An}. We
will show first that (A, C) is a circular-arc model for G, with Ai correspond-
ing to vi. Indeed, as the length of all the arcs is the same and their start
points are distinct, no arc is contained in another. Then the arc Ai intersects
exactly the arcs that have one of their endpoints within Ai, which are, by
definition of the arcs, Ai+1, . . . ,Ai+k and Ai−1, . . . ,Ai−k.

We will show now that (A, C) is a normal Helly model. As we already
noticed, all the arcs have the same length and, by definition, this length is
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(2k+ 1)`/(2n). Also, the intersection of two arcs is either empty or of length
at least `/(2n). So, with three arcs a, b, and c such that a intersects b and
c intersects b, we can cover at most a length of 3(2k + 1)`/(2n)− 2`/(2n) =
(6k + 1)`/(2n). Observe that (6k + 1)`/(2n) < ` ⇔ (6k + 1)` < 2n` and
recalling that n = 4k − 1, this reads (6k + 1)` < (8k − 2)` which holds if
and only if 2k > 3, that is true for k ≥ 2. As circular-arc models that are
at the same time normal and Helly are precisely those without three or less
arcs covering the whole circle, this completes the proof. 2

In order to prove the next result we need to introduce some more defini-
tions. It was shown in [? ] that an induced cycle C4 in a graph G corresponds
to either a true pie or a false pie or a frame in any B1-EPG representation
of G (see Figure ??). In a true pie or a false pie, the paths representing the
vertices of the induced C4 use one common grid point which is defined as
the center of the pie. A frame is a model of C4 such that each of the four
corresponding paths has a bend in one of the four corners of a rectangle of
the grid. Some examples of frame models are shown in Figure ??.

Lemma 4. Powers of cycles Ck
4k−1, with k ≥ 2, are not in B1-EPG.

Proof. Let k ≥ 2 and let G be the graph Ck
4k−1, where the vertices of the

cycle are denoted by v1, . . . , vn, with n = 4k− 1. Suppose, by contradiction,
that G admits a B1-EPG representation. Note that v1, vk+1, v2k+1 and v3k+1

induce a C4 in G.
We will consider the possible representations of the 4-cycle induced by

v1, vk+1, v2k+1 and v3k+1. Let us denote by Pi the path corresponding to
vi, for i = 1, . . . , n. We will inductively show that, for each of the possible
representations, the path Pi+1 has to share with Pi a special point pi and its
two incident edges of the grid. The point pi will be either the bend of Pi or
the center of the pie in case of pie representations.

Suppose first that the cycle is represented by a true pie using column x
and row y of the grid. Let p be the intersection point of x and y. Vertex
v2 is adjacent to v1, vk+1, and v3k+1 in G. Since its corresponding path P2

must intersect P1, Pk+1 and P3k+1 and it cannot intersect P2k+1, it is forced
to have a bend at p and use the same semi-row and semi-column as P1. The
same argument can then be applied to vk+2 and Pk+2 with respect to Pk+1,
to v2k+2 and P2k+2 with respect to P2k+1 and to v3k+2 and P3k+2 with respect
to P3k+1. Considering now the cycle v2, vk+2, v2k+2 and v3k+2, we can repeat
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Figure 1: From left to right: a true pie, a false pie and four examples of a frame [? ].

the process and, after k− 1 iterations, we will reach a contradiction because
P1 should not use the same semi-row and semi-column as P3k+1.

Suppose now that the 4-cycle is represented by a false pie with center
p = (x, y). By symmetry, we may assume that P1 has a bend at p and Pk+1

uses edges on column x on both sides of p. Clearly, no path with at most
one bend uses edges on two different rows or columns. Since v2 is adjacent to
v3k+1, v1, and vk+1, the path P2 must have a bend at p and use the same semi-
row and semi-column as P1. A similar argument shows that Pk+2 must use
edges on column x on both sides of p, as Pk+1. Symmetrically, an analogous
situation holds for P2k+2 with respect to P2k+1 and for P3k+2 with respect to
P3k+1. As above, we can repeat the process and, after k − 1 iterations, we
will reach again a contradiction.

Finally, suppose that the 4-cycle is represented by a frame on the rect-
angle defined by columns x and x′ and rows y and y′. Suppose that P1 has
edges on x and y, Pk+1 on y and x′, P2k+1 on x′ and y′, and P3k+1 on y′ and
x. In order to have edge intersections with P1, Pk+1, and P3k+1, the only
possible row-column combination for the path P2 is to use edges on x and y.
Now repeating similar iterative arguments as previously, we will reach again
a contradiction. 2

4. Circular-arc graphs as EPR graphs

In this section, we focus on representations of circular-arc graphs as edge
intersection graphs of paths on the boundary of a rectangle of the grid, i.e.,
we restrict ourselves to 2 rows and 2 columns of the grid. Obviously, CA =
B4-EPR since we can embed the CA model into a rectangle of the grid in a
natural way, and conversely. A strengthening of this observation is that the
bend number of CA graphs with respect to EPR representations is equal to
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4. To show this, we exhibit in Proposition ?? a circular arc-graph that is not
B3-EPR.

In Theorem ?? we show that every normal circular-arc graph is a B2-EPR
graph, and we give a counterexample for the converse in Proposition ??.

In Lemma ?? we show that every graph in B1-EPR admits a normal
Helly circular-arc model. This property allows us to exhibit an example of
a normal circular-arc graph that is not B1-EPR, concluding that the bend
number of NCA graphs with respect to EPR representations is equal to 2.
We also point out that there are graphs in B1-EPG \ B1-EPR.

In Theorem ??, we prove the equivalence of five statements for B1-EPR
graphs that are not chordal, two of them using structural properties, other
two in terms of their NHCA models, and one in terms of forbidden induced
subgraphs. Joining this result with known results from the literature on
chordal NHCA graphs, we state in Theorem ?? a characterization of general
B1-EPR graphs. We prove that B1-EPG ∩ NHCA = B1-EPR = NHCA ∩
{Ck

4k−1}k≥2-free. As NHCA graphs are characterized by minimal forbidden
induced subgraphs [? ], this result implies a forbidden induced subgraph
characterization of B1-EPR graphs.

Finally, we sketch a linear-time algorithm to recognize B1-EPR graphs.

Proposition 5. The thick spider S13 is not in B3-EPR.

Proof. By contradiction, suppose that S13 admits a B3-EPR representa-
tion. Clearly, at most four of the paths corresponding to vertices in the stable
set contain a corner of the rectangle, since they are pairwise non adjacent.
So, from the remaining 9 paths, representing vertices in the stable set, at
least three of them are intervals completely contained in one side of the rect-
angle. Let us denote these paths in order by Pi, Pj, Pk, representing vertices
si, sj, sk. The path corresponding to vertex cj in the clique has to intersect
Pi, and Pk avoiding Pj, so it necessarily needs four bends, a contradiction. 2

The thick spider S13 is a minimal forbidden induced subgraph for the
class of B3-EPR graphs. We sketch, in Figure ??, B3-EPR representations
of S13 − {s1} and S13 − {c1} which, by symmetry, imply the minimality.

We will now consider normal circular-arc graphs (graphs having a circular-
arc model without two arcs covering the whole circle) and show that their
bend number with respect to EPR representations is equal to 2.

Theorem 6. Every NCA graph is a B2-EPR graph.
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Figure 2: Sketches of B3-EPR representations of S13 − {s1} and S13 − {c1} (we draw all
the vertices of the stable set and representative vertices of the clique; other vertices in the
clique can be represented symmetrically).

Proof. Let (A, C) be a NCA model of a normal circular-arc graph. With-
out loss of generality, we may assume that the endpoints of the arcs are
pairwise different. Let p be a point of C that is not the endpoint of an arc
of A. Since the model is normal, the union of the arcs of A that contain p
does not cover C. Thus, there exists a point q in C that is not the endpoint
of an arc of A and is not contained in the union of the arcs of A containing
p. We can then embed our model on a rectangle of the grid in the following
way (arcs will bijectively correspond to paths and C will bijectively corre-
spond to the rectangle): two consecutive corners of the rectangle correspond
to point p of the circle and the remaining two corners correspond to point
q of the circle. In this way, since no arc of A contains both p and q, paths
corresponding to arcs containing either p or q have two bends, while paths
corresponding to arcs containing neither p nor q have no bend. 2

The converse is not true. We will show next that there exist B2-EPR
graphs that are not in NCA.

Proposition 7. The thick spider S6 is in B2-EPR \ NCA.

Proof. Let (A, C) be a circular-arc model of S6. Without loss of general-
ity, we may assume that the disjoint arcs A1, . . . ,A6 representing the vertices
s1, . . . , s6 in the stable set are in clockwise order. The arc representing vertex
c1 intersects A2 . . . ,A6 and is disjoint from A1, so it properly contains A3,
A4, and A5. Similarly, the arc representing vertex c4 properly contains A6,
A1, and A2, and intersects A3 and A5, without intersecting A4. Thus the
arcs representing vertices c1 and c4 cover the circle, and since the model was
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Figure 3: From left to right: a B1-EPG representation of S3; a sketch of a B2-EPR
representation of S6 (we draw all the vertices of the stable set and representative vertices
of the clique; other vertices in the clique can be represented symmetrically); sketches of
B3-EPR and B2-EPG representations of S7 (again, we draw all the vertices of the stable
set and representative vertices of the clique; other vertices in the clique can be represented
symmetrically).

arbitrary up to symmetries, S6 is not in NCA. A B2-EPR representation of
S6 is given in Figure ??. 2

We will now focus on B1-EPR graphs and show that they are NHCA
graphs.

Lemma 8. B1-EPR ⊆ NHCA.

Proof. Consider a B1-EPR representation of a graph G and let P be the
set of paths corresponding to the vertices of G. We will consider the natural
bijection between the rectangle R and a circle C, that maps the paths in P
to open arcs A of C. Notice that two open arcs intersect if and only if the
corresponding paths of P intersect on an least one edge of the grid. Thus,
(A, C) is a circular-arc representation of G. Now, since each path has at most
one bend and the arcs are open, the union of three (resp. two) arcs of A
contains at most three (resp. two) points of C corresponding to corners of
R. Hence (A, C) is a NHCA model for G. 2

As a corollary, we obtain that the bend number of NCA graphs with
respect to EPR representations is equal to 2. We know from Theorem ??
that it is at most 2. Now consider the thick spider S3, which is in NCA
(see for example [? ]). In [? ] it is shown that S3 is not in NHCA, so by
Lemma ??, it is not in B1-EPR.
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The thick spider S3 is also an example of a graph in B1-EPG \ B1-EPR,
as it was shown in [? ] that it belongs to B1-EPG.

In the next theorem, we will introduce five equivalent statements for B1-
EPR graphs that are not chordal, two of them using structural properties,
other two in terms of their NHCA models, and one in terms of forbidden
induced subgraphs.

Theorem 9. Let G = (V,E) be a graph which is not chordal. Then the
following statements are equivalent:
(i) G ∈ B1-EPR;
(ii) G ∈ NHCA and G contains no Ck

4k−1, with k ≥ 2, as induced subgraph;
(iii) G ∈ NHCA and admits a NHCA model (A, C) with the following prop-
erty: there are four points of C, different from the endpoints of the arcs of
A, such that no arc of A contains two of these points;
(iii′) G ∈ NHCA and in every NHCA model (A, C) of G there are four
points of C, different from the endpoints of the arcs of A, such that no arc
of A contains two of these points;
(iv) G ∈ NHCA and G has four disjoint connected subgraphs H1, H2, H3, H4,
such that H1 and H3 are in different connected components of G \ (V (H2) ∪
V (H4)) and H2 and H4 are in different connected components of G\(V (H1)∪
V (H3)).
(iv′) G ∈ NHCA and G has four disjoint complete subgraphs H1, H2, H3, H4,
such that H1 and H3 are in different connected components of G \ (V (H2) ∪
V (H4)) and H2 and H4 are in different connected components of G\(V (H1)∪
V (H3)).

Proof. We will prove (iii) ⇒ (iv′), (iv) ⇒ (iii′), (i) ⇒ (ii), (ii) ⇒ (iii),
(iii) ⇒ (i). The implications (iii′) ⇒ (iii) and (iv′) ⇒ (iv) are straightfor-
ward.

(iii) ⇒ (iv′): Let (A, C) be a circular-arc model of G such that there
exist four points p1, . . . , p4 (clockwise) of C satisfying that no arc of A con-
tains two of these points. Define Hi as the subgraph induced by the vertices
corresponding to arcs of A containing pi, for i = 1, . . . , 4. Since G is not
chordal, the four graphs H1, . . . , H4 are clearly non empty complete sub-
graphs, and since no arc contains two of the four points, they are disjoint.
By the topology of the circle and the order of the points on it, it follows that
every path connecting a vertex corresponding to an arc containing p1 and
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a vertex corresponding to an arc containing p3 necessarily contains either a
vertex corresponding to an arc containing p2 or a vertex corresponding to an
arc containing p4. So, H1 and H3 are in different connected components of
G \ (V (H2)∪V (H4)) and, analogously, H2 and H4 are in different connected
components of G \ (V (H1) ∪ V (H3)).

(iv) ⇒ (iii′): Let H1, H2, H3, H4 be disjoint connected subgraphs of G
such that H1 and H3 are in different connected components of G \ (V (H2)∪
V (H4)) and H2 and H4 are in different connected components of G\(V (H1)∪
V (H3)). Let (A, C) be a NHCA model of G, and let Ai be the set of arcs
corresponding to vertices of Hi, for i = 1, . . . , 4.

The union of the arcs in Ai induces a connected sector of C, for each
i = 1, . . . , 4. Moreover, by our assumptions, A \ (A1 ∪ A3) induces more
than one connected sector on C, such that arcs in A2 and in A4 are in
different connected sectors A2 and A4. These sectors can be represented
as two disjoint arcs of C with endpoints t2, h2, and t4, h4 (respectively) in
clockwise order (the arc corresponding to Ai is obtained by taking the union
of all arcs in belonging to the same sector as Ai, for i = 2, 4). Define A1 and
A3 analogously, and let us represent them by two disjoint arcs of C with t1, h1,
and t3, h3 being their endpoints, respectively. Notice that since the graph is
not chordal, and thus A covers the circle, either A1 covers (h2 − ε, t4 + ε)
and A3 covers (h4 − ε, t2 + ε), or A1 covers (t2 − ε, h4 + ε) and A3 covers
(t4 − ε, h2 + ε), for some ε > 0. Without loss of generality, we may assume
that the first case holds.

Let p1 be a point in the clockwise open arc (h2, t4), p2 in (h1, t3), p3
in (h4, t2), and p4 in (h3, t1). No arc of A1,A2,A3 or A4 contains two of
these points, since these arcs are contained in A1, A2, A3 and A4, respectively.
Furthermore, no arc in A \

⋃4
i=1Ai contains two of these points, because

A1, A2, A3 and A4 are connected sectors of eitherA\(A1∪A3) orA\(A2∪A4).

At this point, we know (iii)⇒ (iii′), and thus (iii)⇔ (iii′).

(i)⇒ (ii): Since B1-EPR ⊆ B1-EPG, this follows directly from Lemmas
??, ??, and ??.

(ii) ⇒ (iii): Let G be a minimal counterexample to (iii), and let (A, C)
be an arbitrary NHCA model of G. Then for every choice of four points of
C, there is an arc of A that contains two of these points.
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As usual, we will assume that the arcs in A are open and their endpoints
are pairwise distinct. We can number the endpoints clockwise in the circle
from 1 to 2n (n being the number of vertices of G). For an arc Ai ∈ A, its
endpoints will be referred to as tail and head in such a way that Ai is the
open arc traversing C clockwise from the tail to the head.

Claim 10. No arc of A is properly contained in another.

Proof of Claim ??. Suppose there is an arc Ai which is properly contained
in an arc Aj, i 6= j. By minimality, and since (iii) ⇒ (iii′), the model
(A\{Ai}, C) admits four points p1, p2, p3, p4 such that no arc contains two of
them. But if Aj does not contain two of these points, neither does Ai that
is properly contained in Aj. Thus, (A, C) satisfies the property as well, a
contradiction to our hypothesis. ♦

Claim 11. No vertex is dominated by another.

Proof of Claim ??. Suppose that vertex v dominates vertex w. Let Av

and Aw be their corresponding arcs in the NHCA model (A, C). If there is
an arc Az, corresponding to a vertex z, that intersects Aw only on Aw \ Av,
then, since z is also adjacent to v, Az intersects Av only on Av \ Aw. But
then Av, Aw and Az cover C, a contradiction. Thus, such an arc of Az does
not exist. But then we can replace Aw by Aw∩Av obtaining a NHCA model
of the same graph with an arc properly contained in another, a contradiction
with the previous claim. ♦

It was shown by Golumbic and Hammer [? ] that the last claim implies
that, when traversing the endpoints of the arcs on the circle clockwise, heads
and tails necessarily alternate. Moreover, they proved that G is the t-th
power of the cycle Cn, for some value of t. Since G is a counterexample to
(iii), it follows that t ≥ 2.

Let 1, . . . , 2n denote the endpoints of the arcs, where odd numbers cor-
respond to tails and even numbers to heads. Thus, every arc is of the form
(2i − 1, 2i + 2t), for i = 1, . . . , n, where the sums are taken modulo 2n. In
particular, every arc properly contains 2t of the 2n endpoints. Since the
model is normal and Helly, 6t < 2n, otherwise arcs (1, 2t+2), (2t+1, 4t+2),
and (4t + 1, 6t + 2) cover the circle. On the other hand, 8t > 2n, otherwise
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points 2, 2t + 2, 4t + 2, and 6t + 2 would be such that no arc of A contains
two of them.

We will show now that 6t < 2n < 8t is also a sufficient condition for the
t-th power of the cycle Cn to be a counterexample to (iii) (not necessarily
minimal). It is clear that 6t < 2n ensures that Ct

n is a NHCA graph. Consider
a NHCA model of Ct

n. Now, suppose 2n < 8t and let p1, p2, p3, p4 be four
points of C. We may assume that they correspond to endpoints of arcs,
otherwise we can move each of them to its closest endpoint without creating
a new containment relation between arcs and points. If there are two points
at distance at most 2t − 2, i.e., in the closed interval [i, i + 2t − 2] for some
i = 1, . . . , n, then they are both contained either in the arc (i− 1, i+ 2t) or
in the arc (i− 2, i+ 2t− 1), depending on the parity of i. So we may assume
now that p1, p2, p3, p4 are pairwise at distance at least 2t− 1. It follows from
the inequality 2n < 8t that at least two pairs of vertices are at distance
exactly 2t− 1 on C, and at least one of these pairs corresponds to endpoints
i, i + 2t − 1 with i even. Thus, these two points are both contained in the
arc (i− 1, i+ 2t).

Since t ≥ 2, the inequality 6t < 2n implies that n ≥ 7 thus, by the
property above, C2

7 is a minimal counterexample to (iii). Indeed, Ct
n, t ≥ 2,

contains C2
7 as induced subgraph if and only if 12t < 4n ≤ 14t (it can

be verified that the arcs (1, 2t + 2), (2t + 1, 4t + 2), (4t + 1, 6t + 2), . . . ,
(12t+ 1, 14t+ 2), where the operations are done modulo 2n, induce C2

7).
More in general and inductively, we can prove that Ck

4k−1, with k ≥ 2, is a
minimal NHCA counterexample to (iii) and that Ct

n, t ≥ 2, contains Ck
4k−1 as

induced subgraph if and only if 2(4k−5)t < 2(k−1)n and 2kn ≤ 2(4k−1)t,
or equivalently, (4k − 5)/(k − 1) < n/t ≤ (4k − 1)/k.

As (4k − 1)/k converges to 4 as k tends to infinity, every Ct
n with t ≥ 2

and such that 3 < n/t < 4 contains a power of a cycle Ck
4k−1 as induced

subgraph, for some k ≥ 2, and this completes the proof.

(iii)⇒ (i): Let (A, C) be a circular-arc model of G such that there exist
four points on C satisfying that no arc of A contains two of these points.

We will place the corners of the rectangle in those four points. Since the
arcs in A are open and we are assuming, without loss of generality, that the
endpoints of the arcs are pairwise distinct, we may assume as well that the
four points are different from all the arc endpoints. It is easy to see then that
we can find a big enough rectangle in the grid such that we can represent
the arcs as paths in the grid, maintaining the order of their endpoints, and
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placing the four corners at the desired points, and this will give us a B1-EPR
representation of G. 2

Now we are able to prove the following.

Theorem 12. Let G = (V,E) be a graph. Then G ∈ B1-EPR if and only if
G ∈ NHCA and G has no Ck

4k−1, k ≥ 2, as induced subgraph.

Proof. One implication follows immediately from Lemmas ?? and ??,
since the class is hereditary. For the converse, if G is not a chordal graph,
then the result follows from Theorem ??. Suppose now that G is chordal.
It is shown in [? ] that a chordal NHCA graph is indeed an interval graph,
thus a B0-EPR graph and, in particular, a B1-EPR graph. 2

Since Ck
4k−1, k ≥ 2, is not in B1-EPG (see Lemma ??), it follows that B1-

EPG ∩ NHCA = B1-EPR = NHCA ∩ {Ck
4k−1}k≥2-free. We leave as an open

problem the characterization of the minimal graphs in B4-EPR \ B3-EPR
and in B3-EPR \ B2-EPR.

4.1. Linear time recognition of B1-EPR graphs

We will now sketch a linear-time algorithm to recognize B1-EPR graphs.
The algorithm is based on the linear-time recognition algorithm of NHCA
graphs [? ], that outputs a NHCA model of the graph if there is one, and
property (iii′) of Theorem ??.

Let G be a NHCA graph that is not chordal, and let (A, C) be a normal
Helly circular-arc model of it. Let A = a1, . . . , a2n be the endpoints of the
arcs in A, in clockwise order.

Let P = p1, . . . , p2n be points of the circle such that pi is between ai and
ai+1 for i = 1, . . . , 2n (index operations are performed modulo 2n). We will
define a function f : P → P . For each point in P , let f(p) be the first point
clockwise in P such that there is no arc of A containing both p and f(p).

Notice that, since the model covers the circle, f(pi) 6= pi+1, for every i.
Moreover, if the point ai+1 is a tail, then f(pi+1) = f(pi), and if the point
ai+1 is the head of an arc Av in A, then either Av contains f(pi) and f(pi+1)
is the point right after the tail of Av, or f(pi+1) = f(pi). We can therefore
compute f(p1), . . . , f(p2n) in linear time.

Now, observe that if points q, q′, q′′, q′′′ (clockwise) in P satisfy the prop-
erty that no arc ofA contains two of these points, then points q, f(q), f 2(q), f 3(q)
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satisfy this property as well. It is worth noticing that, since the model is nor-
mal and Helly, for every point q in P the points q, f(q), f 2(q), f 3(q) are in
clockwise order.

By definition of f , in order to check the property, we only need to check
that there is no arc containing both q and f 3(q). Equivalently, we need to
check that either f 4(q) = q or f 3(q), f 4(q), q are in clockwise order.

The algorithm is then as follows. Given a graph G, we first apply the
algorithm in [? ], that runs in O(n+m) time, where n and m are, respectively,
the number of vertices an edges of G. If G is an interval graph, the algorithm
outputs an interval model of G, as it uses as a sub-algorithm one of the many
available interval graphs recognition algorithms. In this case the graph is B0-
EPR. If, otherwise, G is not chordal, the algorithm outputs a normal Helly
circular-arc model (A, C) of it.

Let A = a1, . . . , a2n be the endpoints of the arcs in A, in clockwise order.
We define the set P = p1, . . . , p2n and compute f(p1), . . . , f(p2n) in linear
time. We can then check for every point q in P if either f 4(q) = q or
f 3(q), f 4(q), q are in clockwise order. If the answer is affirmative for some
point q, the graph G is B1-EPR by Theorem ?? and the observations above.
Moreover, we can place the bends of the rectangle in the representation at
q, f(q), f 2(q), and f 3(q). If the answer is negative for every point q, the graph
G is not B1-EPR, by the observations above.

Since checking the property for each q in P can be done in constant
time once we have precomputed f(P ), the last step of the algorithm takes
linear time. The overall complexity of the algorithm is then O(m + n), the
complexity of the NHCA recognition algorithm.

5. Further results

The thick spider S3 is one of the minimal forbidden induced subgraphs for
the class NHCA [? ], but all the thick spiders are CA graphs and, by Theo-
rem ??, B3-EPG graphs. Thick spiders allow us to distinguish classes in the
families Bk-EPR (k ≤ 4), Bk-EPG (k ≤ 3), NHCA and NCA. In the previous
sections we have proved that S40 is in B3-EPG \ B2-EPG (Proposition ??),
and that S6 is in B2-EPR \ NCA (see Proposition ?? and Figure ??). In
this section we will prove that S7 is in B3-EPR \ B2-EPR (Proposition ??),
as well as in B2-EPG \ B1-EPG (Proposition ??).

Proposition 13. The thick spider S7 is in B3-EPR \ B2-EPR.
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Proof. Figure 3 shows a B3-EPR representation of S7. Let us show now
that S7 is not a B2-EPR graph. By contradiction, suppose that S7 admits
a B2-EPR representation. Let us consider only the paths corresponding to
vertices in the stable set. If there are three of them whose union is contained
in two adjacent sides of the rectangle (or in one side of the rectangle), let
us say in order Pi, Pj, Pk, representing vertices si, sj, sk, respectively, then
the path corresponding to vertex cj in the clique has to intersect Pi and Pk

avoiding Pj, and so it needs at least three bends, a contradiction. So, we may
assume that this situation does not occur. Consider two opposite corners of
the rectangle. If they are not covered by two different paths corresponding
to the stable set, then there are at least three paths whose union is contained
in two adjacent sides of the rectangle, a contradiction. So, we may assume
that the four corners are covered by paths, corresponding to (at most) four
vertices of the stable set. If no such path uses two corners, then, from the
remaining three paths, there are two of them that are intervals contained in
the same side or in adjacent sides of the rectangle. But then, their union
together with one path on a corner are contained in two adjacent sides of
the rectangle, a contradiction. If exactly one of the paths uses two corners
(and one side of the rectangle), from the remaining four paths, there are two
of them that are intervals contained in the same side of the rectangle, so as
before we obtain a contradiction. Finally, if there are two paths using two
corners each, and two sides of the rectangle, from the remaining five paths,
there are three of them that are intervals contained in the same side of the
rectangle, a contradiction. This completes the proof. 2

The thick spider S7 is not a minimal forbidden induced subgraph for the
class of B2-EPR graphs, but it is minimal within the family of thick spiders.
Indeed, with a similar proof we can show that S7−{c1} is still in B3-EPR \
B2-EPR, but S6 is in B2-EPR (see Figure ??).

Proposition 14. The thick spider S7 is in B2-EPG \ B1-EPG.

Proof. Figure 3 shows a B2-EPG representation of S7. Let us show now
that S7 is not a B1-EPG graph. By contradiction, suppose that S7 admits
a B1-EPG representation. Let us consider the path Pc corresponding to a
vertex c of the clique and the paths corresponding to its 6 neighbors in the
stable set S. The path Pc has edges on at most two lines (one row and one
column) of the grid. Thus, it intersects at least 3 paths corresponding to
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neighbors in S on a same line x. Without loss of generality, we may assume
that x corresponds to a column of the grid. Consider now the 3 intervals on
column x belonging to the 3 paths mentioned above. Since the corresponding
vertices are pairwise non adjacent, they admit some order on column x, say
Ii, Ij, Ik, corresponding to vertices si, sj, sk, respectively. Having at most
one bend each, the paths corresponding to si and sk do not have edges in a
common column (and they do not have edges in a column different from x,
or more than one interval on x). So there is no way for the path Pcj corre-
sponding to the vertex cj of the clique that is not adjacent to sj of avoiding
the interval Ij while intersecting the paths corresponding to si and sk using
only one bend. 2

In this case S7 is not a minimal example. Indeed, S4 is not in B1-EPG, but
the size 7 was chosen for the easy of presentation. Another similar example
of a circular-arc graph being not in B1-EPG is the 4-sun [? ].

6. Conclusions and open questions

In this paper we study the number of bends per path needed to represent
the class of circular-arc graphs as edge intersection graphs of paths on a grid.

One of the main results is that CA ⊆ B3-EPG. We also show that (CA
∩ B3-EPG) \ (CA ∩ B2-EPG) and (CA ∩ B2-EPG) \ (CA ∩ B1-EPG)
are non-empty, being the thick spiders S40 and S7, respectively, examples of
graphs in these families.

These examples are not necessarily minimal, the sizes were chosen for
the easy of presentation. Finding a characterization of the minimal graphs
in (CA ∩ B3-EPG) \ (CA ∩ B2-EPG) and in (CA ∩ B2-EPG) \ (CA ∩
B1-EPG) is left as an open problem.

We also study a particular type of representation in which the union of
the paths used in the model is contained in the boundary of a rectangle of
the grid.

It is easy to see that CA =B4-EPR, and we prove thatB4-EPR \B3-EPR,
B3-EPR \ B2-EPR, and B2-EPR \ B1-EPR are non-empty, being the thick
spiders S13, S7, and S3, respectively, examples of graphs in these families.
Not all of them are minimal examples as graphs, but they are minimal as
examples within thick spiders.

Concerning subclasses of circular-arc graphs, we prove that NCA ( B2-
EPR. We also show that (NCA ∩ B2-EPR) \ (NCA ∩ B1-EPR) is non-empty,
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being the thick spider S3 a minimal example in this family.
We prove that B1-EPR ( NHCA. Indeed, one of the main results in

this paper is the equivalence B1-EPG ∩ NHCA = B1-EPR = NHCA ∩
{Ck

4k−1}k≥2-free. As NHCA graphs are characterized by minimal forbidden
induced subgraphs [? ], this result implies a forbidden induced subgraph
characterization of B1-EPR graphs.

We leave as an open problem the characterization of the minimal graphs
in B4-EPR \ B3-EPR and in B3-EPR \ B2-EPR.

Finally, we sketch a linear-time algorithm to recognize B1-EPR graphs.
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