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Abstract 

A low-level data fusion strategy was developed and implemented for data 

processing of second-order liquid chromatographic data with dual detection, i.e. 

absorbance and fluorescence monitoring. The synergistic effect of coupling individual 

information provided by two different detectors was evaluated by analyzing the results 
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gathered after the application of a series of data preprocessing steps and chemometric 

resolution. The chemometric modeling involved data analysis by MCR-ALS, 

PARAFAC and N-PLS. Their ability to handle the new data block was assessed through 

the estimation of the analytical figures of merits achieved in the prediction of a 

validation set containing fifteen fluorescent and non-fluorescent veterinary active 

ingredients that can be found in poultry litter. Eventually, the feasibility of the 

application of the fusion strategy to real poultry litter samples containing the studied 

compounds was verified.  

Graphical abstract 
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1. Introduction 

 

Liquid chromatography (LC) is a versatile technique appropriate to analyze a wide 

variety of compounds [1]. In recent years, LC coupled to diode array detection (DAD) 

and/or fast-scanning fluorescence detection (FSFD) in association with multiway 

analysis have allowed improving the analytical performance, providing methods 

attaining highly informative results [2,3]. Aligned with this progression of gathering 

more and better information, the data fusion (DF) strategy allows obtaining accurate 

knowledge about a system and improving prediction results in comparison with those 

obtained using a single technique [4,5]. 

Concisely, the DF analysis consists in combining the outputs arisen from different 

sources and jointly processes them as a unique block [6,7]. In this regard, the possible 

alternatives for fusing the data are generally grouped into three strategies, depending on 

the way in which the fusion occurs. Low-level data fusion implies that the outputs 

describing the individual blocks are concatenated to build a single data array. On the 

other hand, in the mid-level fusion approach, the relevant features are firstly extracted 

from each original data source, and then concatenated evolving into a unique block. 

Eventually, either low- or mid-level fused data are processed in order to build a final 

model. On the contrary, the high-level strategy involves building separate models for 

the different data blocks and, then, the obtained responses are integrated into a single 

final response [8,9].  



4 
 

Recently, original multiway data acquired using the same instrument, i.e. a liquid 

chromatographer, and two different detection modes, i.e. DAD and FSFD, have been 

fused to improve the quantitation of endocrine disruptors. It has been demonstrated that 

the application of DF allowed achieving better results in comparison with those 

obtained from the analysis of the data provided by individual detectors [10]. Therefore, 

in an attempt to extract the hidden information from complex systems and improve the 

prediction ability of the analytical method, the fusion of highly informative data arising 

from different sources for a given sample becomes a strategy worth to be implemented. 

In this sense, Silvestri et al. proposed a mid-level fusion strategy in which the 

synergistic effect resulting from the modeling of merged data gathered from three 

different sources, i.e. nuclear magnetic resonance, fluorescence excitation–emission 

spectroscopy and LC-DAD, allowed acquiring the information that otherwise would not 

be possible to obtain [8]. Besides, some researchers have applied different types of DF 

to the same data set, with the purpose of comparing performances in terms of quality of 

the analytical results [7–9,11]. 

In order to exploit the empowering effect of attaching individual information 

provided by two different detectors by low-level DF, we developed an effective 

approach based on a series of data preprocessing steps that comprises the extraction of 

the main features of the system, which constitutes a significant improvement in the 

chromatographic DF analysis. In this case, the challenge consisted in finding the 

optimal combination of data preprocessing and data modeling that provide the best 

analytical figures. For that, LC-DAD and LC-FSFD second-order data matrices were 

firstly modeled by multivariate curve resolution-alternative least square (MCR-ALS) to 

eliminate the interferences. Then, the matrices were rebuilt only considering the 

analytes under study. To the best of our knowledge, this is the first time MCR-ALS is 
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applied as a data clean-up technique in the context of a DF strategy. In order to correct 

shifting and distortions of the chromatographic peaks of the analytes that contribute 

signal to both LC-DAD and LC-FSFD matrices, the correlation optimized warping 

(COW) [12] methodology was performed. Thereby, merged matrices free of time shifts, 

i.e. trilinear data, were generated [13,14]. Eventually, the fused matrices were submitted 

to three different chemometric modeling, i.e. MCR-ALS, parallel factor analysis 

(PARAFAC) [15,16] and N-way partial least squares (N-PLS) [17,18], and a 

comparative evaluation of their ability to handle the new data block with quantitative 

purposes was carried out through the estimation of the analytical figures of merit and 

the relative error of prediction (REP %) over a validation set. Eventually, the feasibility 

of the application of the DF strategy to real sample matrices containing the studied 

compounds was verified. As a case study, fifteen fluorescent and non-fluorescent 

veterinary active ingredients (AIs) were investigated in poultry litter samples. These AIs 

are orally administered and poorly absorbed in the animal gut; therefore, they are 

excreted unchanged in urine and feces [19]. Several studies have revealed the presence 

of numerous classes of veterinary residues in different environmental matrices close to 

agricultural areas presenting a negative impact on the environment [20,21]. 

 

2. Materials and methods 

 

2.1. Materials and reagents  

Trimethoprim (TMP), ceftiofur (CFT), pyrantel pamoate (PYR) and fenbendazole 

(FBZ) were purchased from Vetranal (Sigma-Aldrich Inc, St Louis, USA). Imidacloprid 

(IMD) and chlortetracycline (CTC) were acquired from Pestanal (Sigma-Aldrich Inc, St 

Louis, USA). Clenbuterol hydrochloride (CLB), chloramphenicol (CAP), flumenique 
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(FLU), albendazole (ABZ), flunixin meglumine (FXN), diazepam (DZP) and 

menbutone (MBT) were purchased from Sigma (Sigma-Aldrich Inc, St Louis, USA). 

Enrofloxacin (ENR) and difloxacin (DIF) were purchased from Fluka (Buchs, 

Switzerland). Sodium phosphate monobasic p.a. and phosphoric acid p.a. were provided 

by Cicarelli (San Lorenzo, Argentina). HPLC-grade acetonitrile (ACN) and methanol 

(MeOH) were obtained from Merck (Darmstadt, Germany). Dimethylformamide 

(DMF) was purchased from Cicarelli (San Lorenzo, Argentina). 

Stock standard solutions were prepared by exactly weighing and dissolving an 

amount of each drug in MeOH (CFT, CLB, ENR, IMD, DIF, CTC, FLU, and DZP), 

ACN (TMP, MBT, and CAP), water (FXN) or DMF (PYR, FBZ and ABZ), as 

appropriate. The final concentration of each solution was 1.00 mg mL
–1

. 

 

2.2. Chromatographic conditions and data generation 

The experiments were performed using an Agilent 1100 LC instrument (Agilent 

Technologies, Waldbronn, Germany), equipped with a quaternary pump, degasser 

membrane, autosampler, oven column compartment, UV-Vis DAD, FSFD and the 

Chemstation software package (Agilent Technologies, Waldbronn, Germany) to control 

the instrument, the data acquisition and the data analysis. The procedure separation was 

carried out on a 3.5 μm Zorbax Eclipse XDBC18 analytical column (4.6×50 mm) 

(Agilent Technologies, Waldbronn, Germany).  

All the chromatographic experiments were performed in gradient mode, setting the 

column temperature at 40 °C and the flow rate at 0.65 mL min
–1

. The initial 

composition of the mobile phase consisted of MeOH:ACN:phosphate buffer 10 mmol 

L
–1

 pH = 3.50 (2.5:2.5:95). Then, the gradient elution was performed as follow: 0-

1 min: 2.5 % MeOH and 2.5 % ACN, 18-21 min: 40 % MeOH and 40 % ACN, and 23-
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25 min: 2.5 % MeOH and 2.5 % ACN. The complete analysis was carried out in 25 

min.  

LC-DAD data matrices (D
0

DAD) were registered in the spectral range from 200 nm 

to 500 nm, in the elution time from 0.0 min to 25.0 min. On the other hand, LC-FSFD 

data matrices (D
0

FSFD) were registered in the emission spectral range from 310 nm to 

600 nm, with the excitation wavelength fixed at 280 nm, which was selected as a 

compromise wavelength considering the excitation wavelength of maximum intensity of 

each analyte, in the same elution time range. In this way, D
0

DAD and D
0

FSFD consisted in 

1868 × 151 and 940 × 291 data points for time and spectral dimensions, respectively.  

 

2.3. Calibration and validation samples 

A calibration set containing thirteen samples was prepared by triplicate 

immediately before analysis by spiking the appropriate volumes of each stock standard 

solution in 1.00 g of basal poultry litter. Final concentrations, given in µg g
–1

, ranged 

from 0.27–10.96 for TMP, 0.06–0.59
 
for ENR, 0.31–10.95 for IMD, 0.44–10.39 for 

CLB, 0.04–0.56 for DIF, 0.57–10.34 for CFT, 0.57–10.30 for CAP, 0.38–14.53 for 

CTC, 0.20–2.54 for FLU, 0.37–13.18 for PYR, 0.28–10.76 for MBT, 0.17–5.51 for 

ABZ, 0.60–11.80 for FXN, 0.32–10.40 for DZP and 0.36–13.49 for FBZ. A 9-sample 

validation set was built considering random concentrations of AIs different from those 

used for calibration but spanning the same concentration range. 

 

2.4. Poultry litter sampling and veterinary drug extraction  

Five samples from commercial farms of different locations: PL1 and PL3 (Crespo, 

Entre Ríos, Argentina), PL2 y PL4 (Barrancas, Santa Fe, Argentina) and PL5 

(Esperanza, Santa Fe, Argentina) were collected.  
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Optimum experimental conditions for extraction of the veterinary drugs in poultry 

litter were optimized in a previous work [22] and followed as stated. The extraction 

procedure was as follows: 1.00 g of calibration, validation or real sample was accurately 

weighed and placed into a 20 mL plastic centrifuge tube. Then, 5.00 mL of the 

extracting solution consisting in MeOH:phosphate buffer 10 mmol L
–1

 pH =3.50 

(33:67) were added and the mixture was vortexed for 2 min, sonicated for 18 min, 

shaken for 6 min, and centrifuged at 3500 rpm for 10 min. Subsequently, the 

supernatant was filtered and 100 μL were injected into the LC system.  

 

2.5. Chemometric algorithms and software 

All the algorithms were implemented in MATLAB 9.2 (R2017a) [23]. MCR-ALS 

algorithms are available online at http://www.mcrals.info/. PARAFAC and N-PLS 

resolutions were carried out using MVC2 toolbox [24]. Homemade routines based on 

Eilers algorithm were applied to perform second-order data baseline correction [25]. 

COW routine [12] used to correct distortions for the chromatographic peaks is available 

at http://www.models.life.ku.dk/DTW_COW.  

 

3. Results and discussion 

 

3.1. General considerations 

D
0

DAD and D
0

FSFD data sets with fifteen compounds and seventeen interferences 

were used to evaluate the performance of the DF strategy proposed in this work. First, 

the matrices for all samples were recorded from each detector separately, and non-

fluorescent (TMP, IMD, CLB, PYR, CFT, CTC, CAP, DZP, MBT, FXN and FBZ) and 

fluorescent (DIF, ENR, FLU and ABZ) compounds were quantitated through their 
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absorption and fluorescent signals, respectively. As a proof of concept of the ability of 

DF to help improve the analytical performance, especially related to selectivity and 

sensitivity enhancement, the individual matrices were properly fused and concurrently 

analyzed. 

 

3.2. Data preprocessing  

In order to prepare the data for the fusion, chromatographic data preprocessing 

joint to extraction of relevant features was carried out. To favor a succinct explanation, 

the whole procedure, which is summarized in Fig. 1, was described considering its 

implementation for a single sample, although it was simultaneously applied to similar 

time-appended matrices. It consists in a series of actions to overcome issues present in 

both D
0

DAD and D
0

FSFD data matrices, and is explained in detail below. 

 

3.2.1. Baseline correction and region selection  

Second-order data baseline correction on D
0

DAD and D
0

FSFD matrices was 

performed applying a multidimensional extension of the asymmetric least-square 

method. Then, aiming at facilitating the chemometric resolution and extracting the more 

relevant features from each data source, the individual matrices were partitioned in the 

temporal mode into three sections of sizes 253 × 106, 341 × 106 and 211 × 106 for LC-

DAD, and 120 × 181, 170 ×  181 and 105 × 181 for LC-FSFD. As a result, the fused 

matrixes contained five analytes each (see Table 1).  

 

3.2.2. Data complexity reduction by MCR-ALS 

MCR-ALS performs a bilinear decomposition of a D matrix into three matrices 

according to the equation:  
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D = CS
T
 + E                                                                                          (1) 

where C is the matrix of the individual resolved chromatographic time profiles, S 

contains the spectral profiles of each component and E comprises the residuals [26]. 

The number of chemical components in the chromatographic segment under study 

was estimated by singular value decomposition (SVD) on augmented data matrices (see 

Table 1). The initial estimates of spectral profiles to start the ALS optimization were 

calculated using a method based on simple-to-use interactive self-modeling mixture 

analysis (SIMPLISMA) [27]. During the analysis, unimodality (in the temporal mode), 

non-negativity (in the temporal and spectral modes) and normalization (in the spectral 

mode) constraints were applied. As a result, the optimized time (C) and spectral (S) 

profiles for the analytes and the unknown compounds of each region were obtained. It is 

important to highlight that, from this point onwards, the contributions of the unknown 

components were dismissed and all the processing continued on data free of 

interferences. 

 

3.2.3. Factor scaling and time interpolation 

Previously to DF, each column of each CDAD matrix was multiplied by a scaling 

factor to guarantee that their maximum intensities equal those of the related CFSFD 

matrix, but maintaining the relation between the areas on the different samples, with the 

solely purpose of favoring the data visual inspection. Besides, it is mandatory to assure 

that the matrices to be fused comprise the same number of time sensors, since otherwise 

they cannot be fused. Therefore, since the time dimension of DDAD and DFSDS matrices 

is uneven due to the differences in the scanning frequency of the detectors, the time 

dimension of each CFSFD matrix was interpolated using the MATLAB function spline. 
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3.2.4. Peak alignment and data fusion 

It is worthwhile mentioning that lack of reproducibility in peak times and shapes 

is usually observed among chromatographic runs. Additionally, when dual detection is 

performed for a given sample, a constant time shift is encountered due to the time lag 

between the detectors. Thus, either bilinearity of fused single data or trilinearity of a 

third-order data array is not fulfilled. In this matter, several algorithms can be 

implemented to correct for peak distortions and turn the data into bi- and/or trilinear. 

COW is a mathematic procedure able to overcome shift and shape distortions in order to 

align by warping the chromatographic peaks with a reference, without modifying the 

relation between areas [12]. However, to the best of our knowledge, there is no 

alignment procedure capable of tackling the situation when highly overlapped signal or 

several peak distortions are present. 

Under this scenario, a combination of MCR-ALS/COW [14] was here applied as a 

preprocessing alternative to reduce the complexity of the data by selective subtraction of 

the signals of the interferences and alignment of the target peaks. This strategy 

combines the essential characteristic of each algorithm, i.e. exploitation of the second-

order advantage and correction for distortions of the chromatographic peaks. At this 

stage, it becomes crucial to remark that COW was applied to the MCR-ALS resolved 

time profiles before rebuilding the matrices for the subsequent chemometric modeling. 

The aligned concentration profiles were then multiplied by the transpose of SDAD and 

SFSFD, as appropriate, to generate two individual matrices for each region, i.e. D
1

DAD and 

D
1

FSFD, only including the target analytes. The purpose of applying the COW procedure 

is twofold: construct bilinear fused data matrices and build a trilinear data array (D
*
). 

Thus, for PARAFAC and N-PLS, both DAD-to-FSFD and run-to-run peak correction 

was performed, obtaining a trilinear data array. However, only DAD-to-FSFD peak 
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correction was required for MCR-ALS, since this algorithm can cope with lack of 

trilinearity (see Fig. 2).  

Finally, DF was carried out concatenating on the time axis the individual matrices 

D
1

DAD and D
1

FSFD for each region to obtain fused single matrices D
2

DAD 1/FSFD 1 (253 × 

287), D
2

DAD 2/FSFD 2 (341 × 287) and D
2

DAD 3/FSFD 3 (211 × 287). Figure 2 E illustrates the 

spectral profiles of the analytes after data fusion. 

 

3.3. Chemometric modeling  

3.3.1. MCR-ALS predictive performance on individual vs. fused data  

At first, augmented D
0

DAD and D
0

FSFD data matrices were modeled by MCR-ALS, 

and the performances of the resolutions were compared with those achieved for the 

fused data matrix (D
*
), which was built by appending on top of each other the fused 

D
2

DAD/FSFD matrices of each region, i.e. D
2

DAD 1/FSFD 1, D
2

DAD 2/FSFD 2 and D
2

DAD 3/FSFD 3. 

Statistical figures were estimated according to Olivieri [28]. Tables 2 and 3 summarize 

the analytical figures of merits and REP %, respectively, computed for the non-fused 

and fused second-order data modeling. This algorithm was selected to cope with the loss 

of trilinearity found in the original matrices, since their constituent profiles in the time 

dimension were not constant from sample to sample. For this reason, data processing 

involved the construction of augmented matrices along the time mode. 

The analytical sensitivity (γ) calculated for the MCR-ALS analysis of D
0

DAD and 

D
0

FSFD were in the ranges of 15-837 g µg
–1

 and 83-1623 g µg
–1

, respectively, whereas 

those calculated from DF were significantly higher, i.e. in the range of 34-3427 g µg
–1

. 

In addition, LOD and LOQ values reached with fused data are 1.7 to 8-folds lower than 

those achieved for the modeling of individual non-fused data matrices. This 

improvement could be ascribed to the enhancement in the sensitivity of the method, 



13 
 

possibly, by virtue of the pre-processing procedure conducted prior to DF (removal of 

interferences, noise reduction, etc.), concurrently with the improvement in the 

selectivity achieved after DF modeling for those analytes that present both absorption 

and fluorescent signal. Besides, the REP values in the range of 2.5-5.6 % for fused data 

were also notably better than those obtained for individual data (between 3.1-8.1 % for 

D
0

DAD and 7.5-9.3 % for D
0

FSFD data). Contrarily to this favorable tendency, in the 

particular case of CLB, the REP value increases from 3.7 to 3.8 for non-fused and fused 

data, respectively. This slight enhancement can be linked to the fact that CLB and CAP 

present highly similar spectra, and this does not constitute a drawback when the CLB 

modeling is carried out in non-fused D
0

DAD since the analytes belong to different 

regions. In light of the aforementioned facts, it can be stated that the analytical 

performance of DF, evaluated through figures of merit, shows an outstanding 

improvement in comparison to single data arrays. 

With the purpose of assessing accuracy and precision of the predicted 

concentrations for the individual and fused data obtained by MCR-ALS, the elliptical 

joint confidence region (EJCR) [29] test was performed. As can be seen in Fig. 3, all 

ellipses include the theoretically expected point (1,0), suggesting that both approaches 

are appropriate for resolving the analytes under study. The sizes of the elliptical regions 

for fused data compared to non-fused data present evident dissimilarities between non-

fluorescent (TMP, IMD, CLB, CFT, CTC, CAP, PYR, MBT, FXN, DZP and FBZ) and 

fluorescent (FLU, ENR, DIF and ABZ) compounds. There is no size variation among 

ellipses for non-fluorescent compounds for both non-fused and fused data sets, which 

allows infering about similar precision in their determination. However, the sizes of the 

ellipses for fluorescent compounds that underwent DF are significantly smaller than 

those acquired from data provided by individual detectors, revealing an enhancement in 
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the precision due to its application. These clear differences for fluorescent compounds 

have also been verified in a previous work [10]. 

 

3.3.2. Predictive performances of MCR-ALS, PARAFAC and N-PLS on low-level DF 

The fused data was modelled by three well-known second-order calibration 

algorithms in order to assess their prediction performance. Details about analytes and 

interferences, size of each section, matrices scaling and fused matrix D
*
 are displayed in 

the Table 1.  

After DAD-to-FSDS and run-to-run COW alignment, the fused data sets were 

arranged in three-way arrays fulfilling trilinearity conditions [30]. To appraise the 

potential of diversely structured algorithms in comparison to the bilinear-based model, 

the samples were analyzed by means of PARAFAC and N-PLS, and their results were 

compared with those provided by MCR-ALS. In PARAFAC modeling, direct trilinear 

decomposition was used as initialization method. In addition, the non-negativity 

constraint was applied to the three modes. The selection of the optimum number of 

components was performed using the core consistency analysis (CORCONDIA) [15]. 

The estimated number of components for the validation samples was fifteen, which was 

in accordance with the presence of fifteen different signals corresponding to each 

studied AI. The same phenomenon occurred for N-PLS analysis, in which the optimum 

number of latent variables was estimated by cross-validation.  

The prediction results reported in Table 3 for the validation samples obtained 

through the application of the three algorithms were evaluated considering the root 

mean square error of prediction (RMSE) and the REP %. The comparison of their 

predictive performances shed light on the fact that the developed data preprocessing 

strategy allowed not only resolving the fused data with other algorithms than MCR-
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ALS, but also achieving slightly better results, in this particular case with PARAFAC. 

This better performance can be due to both its inherent cubic structure and its unicity 

property. As an example, a significant REP % improvement was achieved for the 

analysis of FBZ, which is the analyte with fewer differences between samples in terms 

of changes in both retention time and peak shape. As an evident exception, the analysis 

of CLB still remained more favorable when conducted by MCR-ALS probably because 

the peak distortion correction was not efficient due to the magnitude of the differences 

found between samples, leading to a non-trilinear data array. Regarding N-PLS, the 

modeling demonstrated to be superior to cope with the high spectral collinearity 

between CAP and CLB, providing the best analytical results for CAP. 

With respect to the fluorescent analytes, the main differences were observed 

between the results obtained with and without DF application, independently of the 

multivariate algorithm employed in the quantitation step, except for the case of DIF, in 

which PARAFAC and N-PLS also showed better performance than MCR-ALS. 

Moreover, in most of the cases, the plots of the EJCR test for accuracy and 

precision assessment of the results provided by PARAFAC and N-PLS lead to smaller 

elliptical surfaces compared to the MCR-ALS results, which also contains the ideal 

point (1,0).  

 

3.5. Analysis of the real samples  

Five real samples acquired from different poultry farms of Entre Ríos and Santa 

Fe provinces were analyzed in order to prove the applicability of the proposed 

methodology. As can be observed in Table 4, the prediction results obtained by MCR-

ALS for the non-fused matrices are in agreement with those provided by the three 

algorithms for the fused matrices. Nevertheless, it is important to highlight the fact that 



16 
 

FBZ, detected in sample PL3, and IMD, detected in sample PL5, are below the 

detection threshold when the analysis is separately performed with data obtained from 

individual detectors. Conversely, the synergist effect resulting from the combination of 

independent absorbance and fluorescence signals demonstrated that detection may also 

become possible in cases of extremely low analyte concentration. 

 

4. Conclusions 

The herein proposed strategy based on low-level DF combined to a thorough data 

preprocessing demonstrated to be an effective and powerful tool, which contributes to 

the analysis of complex second-order chromatographic data gathered by different 

detectors. The preprocessing strategy helps overcome particular issues such as 

baseline/background contribution, chromatographic peaks distortions and peak overlaps 

in the first place. Among its principal benefits, it allows making the data suitable for the 

application of a variety of algorithms in view of exploiting their intrinsic characteristics 

to improve the quality of the analytical results. As far as the performance of the models 

is concerned, low-level DF not only increases the global prediction ability but also 

decreases the uncertainty of each individual result.  
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Table 1. Specific details about relevant data extraction and low-level DF  

Region Scaling Factor Analytes Matrix size 
Components: analytes + 

interferences
a
 

1 
DAD*10 TMP, IMD,CLB, ENR, DIF 253 × 106 5 + 3 = 8 

FSFD ENR, DIF 120 × 181 2 + 2 = 4 

2 
DAD*4 CTC, CAP, CFT, PYR, FLU 341 × 106 5 + 6 = 11 

FSFD FLU 170 × 181 1 + 2 = 3 

3 
DAD*4.4 MBT, FBZ, DZP, FXN, ABZ 211 × 106 5 + 2 = 7 

FSFD ABZ 105 × 181 1 + 2 = 3 

Data Fusion 
    

D
*
 

 
TMP, IMD, CLB, ENR, DIF, 

805 × 287 

 

DAD-FSFD CTC, CAP, CFT, PYR, FLU, 15 + 0 = 15
b
 

 
MBT, FBZ, DZP, FXN, ABZ 

 
a 
Number of interferences estimated by SVD

 

b 
Interferences were removed before DF 

Table 2. Figures of merit computed for second-order data modeling  
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: analytical sensitivity, LOD: limit of detection, and LOQ: limit of quantitation estimated according to 

Ref. [28]  

 

Table 3. Predictions on validation samples by modeling of non-fused and fused second-order data 

Analyte

s 

 RMSE (μg g
–1

) 
a 

 REP%
b
 

 

 
Non-

fused 
 Fused  

Non-

fused 
 Fused  

 
MCR-

ALS 
 

MCR-

ALS 

PARAFA

C 

N-

PLS 
 

MCR-

ALS 
 

MCR-

ALS 

PARAFA

C 

N-

PLS 
 

ENR  0.02  0.01 0.01 0.01  7.5  4.0 4.0 4.3  

DIF  0.03  0.01 0.01 0.01  9.3  5.1 2.8 3.5  

FLU  0.11  0.06 0.04 0.05  7.5  3.7 2.8 3.2  

ABZ  0.18  0.08 0.09 0.08  6.7  3.1 3.5 3.2  

TMP  0.17  0.14 0.29 0.28  3.1  2.5 5.2 5.1  

IMD  0.21  0.16 0.16 0.22  3.7  3.0 2.8 3.9  

CLB  0.17  0.17 0.18 0.21  3.7  3.8 4.0 4.7  

CTC  0.33  0.31 0.31 0.24  3.7  3.5 3.5 2.7  

CAP  0.29  0.26 0.27 0.23  5.6  5.0 5.2 4.5  

CFT  0.36  0.16 0.23 0.20  8.1  3.5 5.2 4.7  

PYR  0.30  0.24 0.19 0.21  6.2  4.9 4.0 4.5  

MBT  0.29  0.25 0.24 0.22  6.6  5.6 5.4 5.5  

FBZ  0.31  0.21 0.21 0.18  6.9  4.7 4.6 4.0  
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DZP  0.22  0.18 0.20 0.19  4.8  4.0 4.5 4.3  

FXN  0.27  0.23 0.20 0.20  6.1  5.1 4.4 4.5  

a 
RMSE: root mean square error,       √

 

 
∑ (          )

  
 , where I = 9 

b 
REP%: relative error of prediction,             

    

  ̅
, where   ̅ is the mean calibration 

concentration 

 

Table 4. Determination of AIs in real samples collected from five commercial farms 

  
 Non-fused  Fused 

Sample  Analyte (µg g
–1

)
a
   MCR-ALS  MCR-ALS PARAFAC N-PLS 

PL1 ENR
b
  0.81 (0.05)  0.80 (0.01) 0.79 (0.03) 0.77 (0.03) 

IMD  0.54 (0.02)  0.55 (0.01) 0.52 (0.01) 0.533 (0.009) 

FXN  0.63 (0.05)  0.63 (0.03) 0.65 (0.02) 0.64 (0.02) 

        

PL2 TMP  0.79 (0.06)  0.80 (0.02) 0.78 (0.04) 0.79 (0.02) 

ABZ  0.24 (0.01)  0.247 (0.003) 0.251 (0.008) 0.246 (0.004) 

        

PL3 ABZ  0.86 (0.06)  0.83 (0.01) 0.86 (0.04) 0.87 (0.04) 

CAP  0.70 (0.02)  0.71 (0.02) 0.73 (0.04) 0.73 (0.04) 

FBZ  -  0.055 (0.004) 0.059 (0.005) 0.055 (0.005) 

        

PL4 ABZ  0.21 (0.01)  0.213 (0.002) 0.219 (0.007) 0.212 (0.003) 

IMD  0.64 (0.04)  0.66 (0.01) 0.64 (0.04) 0.67 (0.01) 

FLU  0.15 (0.01)  0.156 (0.002) 0.159 (0.006) 0.155 (0.004) 

CAP  0.64 (0.05)  0.64 (0.02) 0.63 (0.03) 0.66 (0.01) 

        

PL5 ENR
b
  1.73 (0.05)  1.730 (0.003) 1.72 (0.02) 1.706 (0.004) 

FLU  1.39 (0.07)  1.34 (0.01) 1.343(0.01) 1.32 (0.01) 

IMD  -  0.114 (0.008) 0.113 (0.007) 0.112 (0.008) 

Standard deviations between parentheses  
a 
Concentrations below the corresponding LOD are indicated with dashes 

b 
The samples were diluted (1/5) in order to reach concentrations between the limits of the calibration 

curve 

 

 

 

 

Figure captions: 
 

Figure 1. Data pretreatment carried out for a single sample to reach DF and modeling 

by chemometric algorithms: baseline correction and region selection, MCR-ALS 

processing for data clean up, factor scaling and time interpolation, peak correction, 

rebuilding of D only including the target analytes, data fusion, building of D
*
 and MCR-

ALS for quantitative purposes, building of the three-way structure arrangement D
*
, 

application of PARAFAC and N-PLS for quantitative purposes. D
0
 indicates the 

original matrices, while D
1
 and D

2
 are those obtained after the first and second 

preprocessing steps, respectively. 
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Figure 2. Time profiles and fused spectra for the calibration samples having 1, TMP; 2, 

IMD; 3, ENR; 4, CLB; 5, DIF; 6, CFT; 7, CTC; 8, CAP; 9, PYR; 10, FLU; 11, MBT; 

12, ABZ; 13, FXN; 14, DZP; 15, FBZ: (A and B) data obtained after DAD-to-FSFD 

and run-to-run COW alignment for each analyte in each sample, (C and D) the same 

data after DAD-to-FSFD and run-to-run COW alignment for each analyte from sample 

to sample, and (E) fused analyte spectra. 
 

 

Figure 3. Elliptical joint confidence regions (at 95% confidence level) for slope and 

intercept of the regression of MCR-ALS non-fused data (green line), MCR-ALS fused 

data (red line), PARAFAC (blue line), N-PLS (violet line). The black dot marks the 

theoretical (intercept = 0, slope = 1) point. 
 

 

Figure 1 
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Highlights 

 Low-level data fusion strategy for second-order liquid chromatography data processing. 

 Assessment of the synergistic effect of coupling the individual information provided by two 

different detectors. 

 Chemometric data pretreatment and quantitative modeling by MCR-ALS, PARAFAC and 

N-PLS. 

 Simultaneous analysis of fluorescent and non-fluorescent veterinary active ingredients that 

can be found in poultry litter. 

 Application to real poultry litter samples containing the studied compounds.  

 

 




