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a b s t r a c t

This work extends a recent set-based Model Predictive Control (MPC) scheme for closed loop re-
identification that solves the potential conflict between the simultaneous persistent excitation of the
system and the stabilization of the closed-loop system.

Based on the original scheme proposed in González et al. (2014), thismanuscript extends those results
by taking into accountmodel uncertainties andby exploiting the knowledge of the probability distribution
of the excitation signal used to identify the plant.

The robust extension solves the main drawback of the previous work, which was limited to a nominal
analysis while the need of re-identification assumes the presence of model uncertainties. In addition, the
probabilistic analysis allows the use of smaller target sets computed as Probabilistic Invariant Sets (PIS),
improving the system performance during the identification procedure.

Simulation results show the practical benefits of the novel robust strategy.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Model predictive control (MPC) is a popular control technique
that mainly bases its performance on a simplified model of the
plant. In most applications, this model requires a periodic update
(re-identification) that must be performed in a closed-loop fashion
in order to not to stop the process under control. Themain problem
of the closed-loop model update is that the control objectives are
opposite to those of exciting the system for identification. From
the controller point of view, the persistent excitation required
by any identification procedure is a disturbance that should be
rejected. On the other hand, from the identification point of view,
the control actions produce undesirable correlations between the
signals used to obtain the model parameters. Several strategies
were developed to perform closed-loop re-identification under
MPC controllers. The interested reader may refer to [1,2], where
the main problem of a closed-loop identification is explained and
studied, i.e. the dynamic control objectives are incompatible with
the identification objectives, or [3,4] inwhich amethod is proposed
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to handle these opposite objectives, and how to perform the re-
identification in a closed-loop system [5–7].

The main theoretical drawback of all these schemes is the lack
of formal feasibility and attractivity/stability analysis. In [8], a MPC
scheme suitable for re-identification is proposed,which overcomes
this drawback and ensures recursive feasibility and stability, per-
forming at the same time a safe closed-loop re-identification. The
basic idea was to design a MPC that steers the system states to the
interior of a (target) invariant set while they are outside that set,
and once the states reach the set, to persistently excite the system.
The MPC problem formulation uses the concept of generalized
distance from a point (the state and input trajectory) to a set
(target invariant set and input excitation set). So, the two tasks
of convergence and excitation can be spatially separated in the
state space. Themethodwas also tested in a polymerization reactor
in [9], where a proper form to compute invariant sets for uncertain
systems is presented.

The method proposed in [8], however, is only developed for
the nominal case (although the terminal set can be robustly com-
puted), which is a strong drawback given that re-identification sce-
narios are precisely given when the prediction model is no longer
valid. To this aim, and as a first contribution of this work, we pro-
pose a robust formulation of the controller presented in [8], which
is based on the well-known tube-based MPC formulation [10]. We
select this approach since [10] shows that this form of robust MPC
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has the same order of online complexity as the one shown by
conventional MPC for deterministic linear systems, quadratic cost
and additive uncertainties, among other advantages. To do that,
the parametric-uncertainty of the model is properly converted
into additive uncertainties. Although we use the tube-based MPC
formulation to treat the uncertainties of the system, there are
several ways to extend the nominal MPC of the previous work to
the robust case, we can refer for example the following significant
works [11–15], of robust MPCs where the approach is different but
equally applicable.

Another drawback of [8] is that the strategy computes the
invariant sets according to the maximum value that the excita-
tion signals can take, without exploiting the knowledge of their
probabilistic distribution. This fact results in large target regions
that conservatively contain the excited system evolution. Thisway,
only large disturbances that take the system trajectories outside
these unnecessary large sets are rejected by the controller, imply-
ing that the scheme achieves a relatively poor performance.

With the goal of computing invariant sets that take into account
the probability distributions of the disturbance signals, [16] intro-
duces the concept of Probabilistic Invariant Sets (PIS). PIS are sets
where the state trajectories remain most of the time with a given
probability (close to 1 for most practical problems). That way, PIS
result significantly smaller than classic invariant sets and appear
as a promising alternative for obtaining less conservative (smaller)
invariant target regions for the robust MPC scheme proposed here.

The contribution of this work is then twofold: (i) it extends the
Model Predictive Control suitable for re-identification presented
in [8] to the parametric-uncertainty robust case; and (ii) it properly
includes the novel concepts of Probabilistic Invariant Sets [16] in
order to obtain a less conservative robust formulation. Besides, it
is shown that – with a given probability – the system remains
inside the target set during a period of time that is long enough to
ensure a proper re-identification of the model, even when model
uncertainty is considered. All these advantages, and a comparison
with the deterministic formulation [8], are illustrated by means of
numerical simulations.

Notation: The natural set is defined by N = {1, 2, 3, . . .}. A C-
set is a convex and compact set that contains the origin. A proper C-
set is a C-set that contains the origin as an interior point. Consider
two sets U ⊆ Rn and V ⊆ Rn, containing the origin, and a real
number λ. The Minkowski sum U ⊕ V ⊆ Rn is defined by U ⊕ V =

{(u + v) : u ∈ U, v ∈ V}; and the set λU = {λu : u ∈ U} is a scaled
set of U . Furthermore, U ⊖ V ≜ {x : x + v ∈ U, for all v ∈ V}.
Given x, y ∈ Rn, ∥x − y ∥

2
M = (x − y)TM(x − y), with M ∈ Rn×n

positive definite, while ∥x − y∥ =

√
(x − y)T (x − y). The open ball

with center in x ∈ Rn and ratio ε > 0 is defined as Bε(x) ≜ {y ∈

Rn
: ∥x − y∥ < ε}. x is an interior point of V if the there exist

ε > 0 such that Bε(x) ⊂ V . The interior of V is the set of all its
interior points and it is denoted by V◦. If V is closed, the boundary
of V is denoted by ∂V , and it is defined as ∂V ≜ V \ V◦. Let V be
a proper C-set on Rn. The distance from x ∈ Rn to V is defined as
dV (x) ≜ inf{∥x − x̄ ∥

2
M : x̄ ∈ V}. dV (x) is a convex and continuous

function, and dV (x) ≥ 0 for all x ∈ Rn, while dV (x) = 0 if and only
if x ∈ V .

2. Problem statement

We assume in this work a general control structure in which
a non-robust (nominal model based) MPC is used to control a
plant. Then, when there is a suspicion that the prediction model
used by this MPC is significantly deteriorated, this nominal MPC is
replaced by a MPC suitable for re-identification, and the excitation
and data collecting procedure is made, to obtain a new (more
accurate) model. Once the new model is obtained, the nominal
MPC resumes the control of the plant. The idea behind this strategy

is that a nominal MPC with an accurate model is the best option to
control a plant, in comparison to robust MPC strategies (a lot of
studies were made regarding the intrinsic high conservativeness
and computational expense of most robust MPC’s, [17,18]).

Regarding the MPC suitable for closed-loop re-identification
of the general control structure, the goal of this note is to de-
velop a robust MPC strategy that allows for a safe closed-loop
re-identification of a whole family of linear systems that we will
present in (1). This controller spatially divides the whole con-
trol/identification task in two parts: outside a given target set
(TS), it robustly steers the uncertain system to it and, inside, it
performs a system excitation that allows for a proper and safe
identification. In this context, the TS must be understood in its
dual role of a control objective set (when the system input is a
manipulated control action) and that of excitation set (when the
system input is a non-manipulated excitation signal). In the first
role, the TSmust be robust invariant for the parametric uncertainty
described in the next subsection (to account for robust stability)
while, in the second role, the TS must be not only robust invariant
for the parametric uncertainty, but also invariant to the persistent
excitation signal necessary for the identification, for the system to
remain inside the TS set during the excitation.

2.1. Model description

Consider a family of discrete-time systems described by

xk+1 = A(θ )xk + B(θ )uk, θ ∈ Θ, (1)

where xk ∈ X ⊂ Rn is the system state at the kth sample time,
uk ∈ U ⊂ Rm is the current control input, A(θ ) and B(θ ) are
Lipschitz functions of θ ∈ Θ ⊂ Rl, and θ is an unknown fixed
parameter that accounts for a constant plant-model mismatch. It
is assumed that the nominal model is represented by (Ā, B̄), where
Ā ≜ A(0), and B̄ ≜ B(0). It is also assumed that set X is convex,
closed and robust control invariant (see the definition below), and
contains the origin; set U is convex and compact, and contains the
origin; and set Θ is compact and contains the origin. Furthermore,
A(θ ) has all its eigenvalues strictly inside the unit circle, and the
pair (A(θ ), B(θ )) is assumed to be controllable, for all θ ∈ Θ .

It is assumed that the set Θ is convex. Thus, the set of possible
models is given by

M = co{(A(θ ), B(θ )) : ∀ θ ∈ Θ}.

Hence, the pair (A(θ ), B(θ )) can take, at any time, any value in the
convex set M. Set M represents the family of possible models.

2.2. Control scheme

In the next section, the design of the Robust MPC controller
suitable for closed-loop re-identification will be addressed. The
general formulation under which the proposal will be developed
is based on a cost function of the form:

VN (x, Ω;u) =

N−1∑
j=0

[αdΩ (xj) + βdΠ (uj)], (2)

where, as usual in MPC literature, u = {u0, . . . , uN−1} is a control
input sequence, xj and uj represent the state and input prediction
along a horizon N , respectively, x = x0 is the current state, and Ω

is a target set in the state space, with an associated input set Π .
α and β are penalization constants. Furthermore, the general MPC
optimization problem is given by:

V ∗

N (x, Ω) = min
u

{VN (x, Ω;u) : u ∈ UN (x, Ω)},

where the feasible set UN (x, Ω) is a general representation –
depending on current state x and on the set Ω – that includes
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the state, input and terminal constraints. According to the robust
and probabilistic properties of the proposed MPC, this general
formulation will take different forms, to account for a safe exci-
tation/identification procedure.

3. Robust MPC for closed-loop re-identification

3.1. Preliminaries

In this section, theMPCproposed in [8] is extended to the robust
case, according to the tube-based approach strategy presented
in [10]. To account for an additive uncertainty representation,
which also covers the parametric one presented in (1),1 the fol-
lowing model is considered:

xk+1 = Āxk + B̄uk + wk, wk ∈ W, (3)

with

W = {(A(θ ) − Ā)x + (B(θ ) − B̄)u : θ ∈ Θ, x ∈ X , u ∈ U}. (4)

Notice that W ⊆ Rn is a bounded set containing the origin in its
interior and, furthermore, if wk = (A(θ ) − Ā)xk + (B(θ ) − B̄)uk,
then wk ∈ W , and the family of models (3) contains (maybe
conservatively) the entire family (1) [19].

Remark 1. Representing parametric uncertainties as additive un-
certainties may be a conservative solution which may result in
a conservative set W as the one defined in (4). However it is a
practical way of treating parametric uncertainties, and it allows
one to apply well known robust MPC strategies like the tube-
MPC [19, Chapter 3]. Indeed, if the original system is perturbed only
by additive uncertainties, themodel of (3) can represent the family
of models without conservatism.

The nominal system corresponding to (3) is given by

x̄k+1 = Āx̄k + B̄uk, (5)

and so, the error ek = xk − x̄k has the following uncertain dynamic:
ek+1 = Āek + wk. Based on this error system, the so-called tubes
are introduced:

Proposition 1. Suppose that Z is a robust invariant set2 for ek+1 =

Āek + wk. If xk ∈ x̄k ⊕ Z, then xk+1 ∈ x̄k+1 ⊕ Z for all wk ∈ W , where
xk+1 = Āxk + B̄uk + wk and x̄k+1 = Āx̄k + B̄uk.

Before introducing the target set of the MPC formulation, the
definition of robust invariant set for system (1) is given:

Definition 1 (Robust Control Invariant Set, RCIS). A proper C-set
Ω ⊆ X is a robust control invariant set for system (1) if x ∈ Ω

implies that there exists u ∈ U such that A(θ )x + B(θ )u ∈ Ω for
all θ ∈ Θ . The corresponding input set associated to Ω , is given by
Π ≜ {u ∈ U : ∃ x ∈ Ω such that A(θ )x + B(θ )u ∈ Ω, ∀ θ ∈ Θ}.

For the case of no uncertain systems (when Θ = {0}, for
instance), the latter set is named control invariant set (CIS).

Consider now a proper C-set Ω ⊂ X (which will play the role
of TS of the MPC controller), which is a RCIS for system (1), and let
us define the following restricted sets:

X̄ ≜ X ⊖ Z, Ω̄ ≜ Ω ⊖ Z . (6)

1 The parametric uncertainties of system (1) are transformed in additive uncer-
tainties (using the ideas in [19, Chapter 3]) in order to treat them in an easier way.
2 Z is a robust invariant set for ek+1 = Āek + wk if ek ∈ Z ⇒ ek+1 ∈ Z , for all

wk ∈ W .

It must be assumed that Z ⊂ X and Ω ⊂ Z (usual assumptions
in this context), then the sets in (6) are not empty. The set Ω̄ is a
control invariant set for the nominal system (5). To see that, note
that Ω is in particular a control invariant set for system (5), since
0 ∈ Θ . Consider xk ∈ Ω̄ , which means that xk = yk − zk for some
yk ∈ Ω, zk ∈ Z , and let uk be such that Āyk + B̄uk ∈ Ω . Then

xk+1 = Āxk + B̄uk

= Ā(yk − zk) + B̄uk

= Āyk + B̄uk − Āzk
∈ Ω ⊖ Z = Ω̄.

3.2. Robust MPC formulation

The idea in this subsection is to present a robust extension of the
MPC formulation presented in [8], based on nominal predictions
and on the restricted state and terminal constraint sets X̄ and Ω̄ .
Suppose that Π̄ is the corresponding input set to Ω̄ (according
to Definition 1). The proposed controller cost function (2), will be
rewritten as:

VN (x, Ω̄;u) =

N−1∑
j=0

[αdΩ̄ (x̄j) + βdΠ̄ (uj)], (7)

where u = {u0, . . . , uN−1} is the sequence of control actions, and
x̄j is the nominal system state (i.e., x̄j+1 = Āx̄j + B̄uj, with x̄0 = x). α
and β are positive real numbers, and N ∈ N is the control horizon.
In contrast to conventional MPC cost functions, VN (x, Ω̄; ·) can be
zeroed at a given equilibrium point, but also at the whole set Ω̄ ,
together with its corresponding input set Π̄ ⊂ U .

For any state x ∈ X̄N ⊂ X̄ , where X̄N is the N-step controllable
set to Ω̄ for the nominal system (i.e., the set of states that can be
feasibly steered to Ω̄ in N steps, by means of the nominal system),
the optimization problem PN (x, Ω̄) to be solved at each time-step
is given by:

V 0
N (x, Ω̄) = min

u
{VN (x, Ω̄;u) : x̄j ∈ X̄ , uj ∈ U, x̄N ∈ Ω̄,

∀j ∈ I0:N−1},

where I0:N−1 ≜ {0, 1, 2, . . . ,N − 1}.
If no uncertainty is explicitly considered, from [8] we know

the optimal solution to PN (x, Ω̄) and the relative optimal control
sequence u0(x, Ω̄) ≜ {u0

0(x, Ω̄), . . . , u0
N−1(x, Ω̄)}, are such that

V 0
N (Āx + B̄κN (x, Ω̄), Ω̄) − V 0

N (x, Ω̄) ≤ −αdΩ̄ (x). (8)

where κN (x, Ω̄) ≜ u0
0(x, Ω̄), thus deriving asymptotic stability of

set Ω̄ .
If the uncertainty is explicitly considered, it is not necessarily

true that, given any x ∈ X̄N \ (Ω̄ ⊕ Z), V 0
N (Āx + B̄κN (x, Ω̄) + w, Ω̄)

is smaller than V 0
N (x, Ω̄), for all w ∈ W .

Thus, we need to establish the robust asymptotic stability of
Ω̄ ⊕ Z , which, considering that Ω̄ ⊕ Z = Ω ⊖ Z ⊕ Z ⊆ Ω [20],
implies the robust asymptotic stability of the set Ω .

The proposed robust problem P rob
N (x, Ω̄) is defined by

V ∗

N (x, Ω̄) = min
u,x̄0

{VN (x̄0, Ω̄;u) : x̄j ∈ X̄ , uj ∈ U, x̄N ∈ Ω̄,

x ∈ x̄0 ⊕ Z, ∀j ∈ I0:N−1}.

In problem P rob
N (x, Ω̄), the function VN (x, Ω̄;u) and the state,

input and terminal constraint are the same as the ones defined in
problem PN (x, Ω̄). However, to account for the desired robustness,
an initial state constraint is necessary. Given that now x is an
uncertain state, the initial state for nominal predictions, x̄0, is a new
decision variable that must fulfill [10]:

x ∈ x̄0 ⊕ Z .
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The solution of P rob
N (x, Ω̄) yields the optimal control sequence

u∗(x, Ω̄) ≜ {u∗

0(x, Ω̄), . . . , u∗

N−1(x, Ω̄)}

and the associated optimal state sequence x̄∗(x, Ω̄) ≜ {x̄∗

0(x, Ω̄),
. . . , x̄∗

N (x, Ω̄)}, where the optimal initial state x̄∗

0(x, Ω̄) is not nec-
essarily equal to the current state x of the controlled system. The
(implicit) model predictive control law is, therefore,

κ∗

N (x, Ω̄) ≜ u∗

0(x, Ω̄), (9)

while the uncertain system – under the robust model predictive
control – satisfies

xk+1 = Āxk + B̄κ∗

N (xk, Ω̄) + wk, wk ∈ W. (10)

3.3. Robust stability

The robust MPC control law κ∗

N (x, Ω̄) provides a non-increasing
Lyapunov function along trajectories starting at any state x ∈ XN =

{x : ∃ x̄0 ∈ X̄N such that x ∈ x̄0 ⊕ Z}, for all w ∈ W , as it is shown
in the next theorem:

Theorem 1. Suppose x ∈ XN , so that (x̄∗

0(x, Ω̄),u∗(x, Ω̄)) exists
and is optimal for P rob

N (x, Ω̄), where u∗(x, Ω̄) = {u∗

0(x, Ω̄), u∗

1(x, Ω̄),
. . . , u∗

N−1(x, Ω̄)}, and the associated trajectory (for the nominal sys-
tem) is given by
x̄∗(x, Ω̄) = {x̄∗

0(x, Ω̄), x̄∗

1(x, Ω̄), . . . , x̄∗

N (x, Ω̄)}. Therefore, for all
x+

∈ Āx + B̄κ∗

N (x, Ω̄) ⊕ W , (x̄∗

1(x, Ω̄), ũ(x, Ω̄)) is feasible for
P rob
N (x+, Ω̄), with ũ(x, Ω̄) defined by

ũ(x, Ω̄) ≜ {u∗

1(x, Ω̄), . . . , u∗

N−1, ũ},

such that x̃ ≜ Āx̄∗

N (x, Ω̄) + B̄ũ ∈ Ω̄ , and

V ∗

N (x
+, Ω̄) − V ∗

N (x, Ω̄) ≤ −dΩ̄ (x∗

0(x, Ω̄)). (11)

Proof. We follow similar steps of that in the Proof of Property 3
in [10], but considering that we now have target sets instead of
target equilibrium points. In what follows, the dependence from
Ω̄ will be omitted for the sake of clarity.

The state sequences associated with u∗(x, Ω̄) and ũ∗(x, Ω̄) are,
respectively, x̄∗(x, Ω̄) and x̃(x, Ω̄) where

x̃(x, Ω̄) = {x̄∗

1(x, Ω̄), . . . , x̄∗

N (x, Ω̄), x̃}.

Because x ∈ x̄∗

0(x, Ω̄) ⊕ Z , it follows, from Proposition 1, that
x+

∈ x̄∗

1(x, Ω̄) ⊕ Z .
Since (x̄∗

0(x, Ω̄),u∗(x, Ω̄)) is feasible for P rob
N (x, Ω̄), constraints

are satisfied by u∗(x, Ω̄) and x̄∗(x, Ω̄), hence the input constraints
are satisfied by the first N − 1 elements of ũ(x, Ω̄) and the state
constraints are satisfied by the first N elements of x̃(x, Ω̄). We take
ũ ∈ U such that x̃ ∈ Ω̄ , so both, the input and final constraints,
are satisfied. Thus, ũ(x, Ω̄) is a feasible input sequence. Moreover,
since x+

∈ x̄∗

1(x, Ω̄) ⊕ Z , the pair (x̄∗

1(x, Ω̄), ũ(x, Ω̄)) is feasible for
P rob
N (x+, Ω̄) and x+

∈ XN .
To prove the decreasing of the cost, note that x+

∈ x̄∗

1(x, Ω̄) ⊕

Z so that (x̄∗

1(x, Ω̄),u0(x̄∗

1(x, Ω̄), Ω̄)) is feasible for P rob
N (x+, Ω̄),

hence V ∗

N (x
+) ≤ V 0

N (x̄
∗

1(x, Ω̄)). But, from (8), V 0
N (x̄

∗

1(x, Ω̄)) ≤

V 0
N (x̄

∗

0(x, Ω̄)) − αdΩ̄ (x̄∗

0(x, Ω̄)), since x̄∗

1(x, Ω̄) is the state of the
nominal system at time 1 if at time 0 the state is x̄∗

0(x, Ω̄) and
the control is κN (x̄∗

0(x, Ω̄)). Finally, since V ∗

N (x) = V 0
N (x̄

∗

0(x, Ω̄)), the
decreasing of the cost follows. ■

Based on the latter result, we can show that the TS Ω is asymp-
totically stable for the uncertain closed-loop system (10).

Theorem 2 (Robust Stability). The set Ω is robust asymptotically
stable for the uncertain closed-loop system (10), with a domain of
attraction given by XN .

Proof. Let x ∈ XN . Taking the same notation of Theorem 1, we
know that x+

∈ x∗

0(x, Ω̄)⊕Z and, from the fact that dΩ̄ (x∗

0(x, Ω̄)) ≥

dΩ̄⊕Z (x∗

0(x, Ω̄) + z) for all z ∈ Z , we have that dΩ̄ (x∗

0(x, Ω̄)) ≥

dΩ̄⊕Z (x+). This implies, by means of (11), that

V ∗

N (x
+, Ω̄) − V ∗

N (x, Ω̄) ≤ −dΩ̄ (x∗

0(x, Ω̄)) ≤ −dΩ̄⊕Z (x
+), (12)

for all x+
∈ x∗

0(x, Ω̄) ⊕ Z . So, by the classical Lyapunov theory, the
set Ω̄ ⊕ Z is robust asymptotically stable for the uncertain closed-
loop system (10), and given that Ω̄⊕Z ⊆ Ω , the result follows. ■

The latter result shows that the uncertain closed-loop system
(10) converges to the TSΩ , for allwk ∈ W . Furthermore, according
to (4), it means that the uncertain closed-loop system

xk+1 = A(θ )xk + B(θ )κ∗

N (xk), θ ∈ Θ, (13)

also converges to Ω , for all θ ∈ Θ .

3.4. Final control formulation

According to the ‘‘excitation set ’’ role of the TS, the following
persistent excitation signal is defined,which account for the formal
concept of ‘‘persistent excitation’’ presented in [21].

Definition 2 (Persistent Excitation Signal). Given a compact non
empty set V ⊂ Rm, we say that a stationary process v : N → V is a
persistent excitation signal if it satisfies E[vk] = 0 and cov[vk] > 0
for all k ∈ N, and, additionally, vk is uncorrelated with vj, for k ̸= j.

As we mentioned earlier, once the robust MPC – derived from
previous problem P rob

N (x, Ω̄) – drives system (1) to the TS Ω , the
idea is to persistently excite the system (bymeans of the persistent
excitation signal) to perform a suitable re-identification procedure.
To do that, the cost function of problem P rob

N (x, Ω̄) is modified in
order to include the excitation task.

Let vk ∈ V be a persistent excitation signal as the one defined
in Definition 2, and let k be the actual sample time. Then, the
proposed cost function is given by:

V exc
N (x, Ω̄, vk;u) = [1 − ρ(x)]VN (x, Ω̄;u) + ρ(x)∥u(0) − vk∥,

where ρ(x) = 1 if x ∈ Ω , and ρ(x) = 0 otherwise.
For any initial state x in XN ⊂ X , at a given time step k,

the optimization problem Pexc
N (x, Ω̄, vk), to be solved at each time

instant k, is given by:

V ∗

N (x, Ω̄, vk) = min
u,x̄0

{V exc
N (x̄0, Ω̄, vk;u) : x̄j ∈ X̄ , uj ∈ U,

x̄N ∈ Ω̄, x ∈ x̄0 ⊕ Z, j ∈ JN−1}. (14)

Notice that ρ(x) is a discontinuous function necessary to cancel
the control law and apply the persistent excitation whenever the
state enters Ω . The idea of this Optimization Problem is to spa-
tially separate the controller actions. Inside the TS Ω , a persistent
excitation signal is injected to the system according to the cost
term ∥u(0) − vk∥. Outside Ω , the objective is exclusively to steer
the system to Ω . So, the solution of Problem Pexc

N (x, Ω̄, vk) can be
expressed as:

κexc
N (x) =

{
κ∗

N (x) if x ∈ XN \ Ω,

vk if x ∈ Ω,

and the uncertain closed-loop system (13) becomes:

xj+1 = A(θ )xj + B(θ )κexc
N (xj), θ ∈ Θ. (15)
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Under this proposed control schemes, it remains to define the
additional conditions that the TS should satisfy to ensure a proper
identification procedure, i.e. the conditions under which the prob-
ability that the excitation will not take the system out this set is
considered low.

4. Target set design

In the MPC suitable for re-identification context, the TS has to
satisfy two (opposite) requirements: to be robust stable for the
family of models (13) – what was proved in Section 3.1 – and, to
be invariant in some sense, to ensure that the persistent excitation
of the system (with aim of proper re-identification) does not take
the system out of it.

For this latter requirement, it is sufficient (although it is not
necessary) for the TS to be invariant for all possible persistent
excitations, i.e. invariant for the following system family:

zj+1 = A(θ )zj + B(θ )vj, θ ∈ Θ, (16)

where vj is a persistent excitation signal on the compact set V ⊂ U .
The ISI sets presented in [8] fulfill this condition, but paying

the price of being too large to account for ‘‘all’’ possible excitation
signals.3 Besides, the uncertainty set Θ must be considered very
small: depending on the size of the excitation set V , it may be so
small that it does not cover all the models required for a proper
uncertainty description.

To overcome these drawbacks, the TS proposed in this work
will be the smallest one ensuring the robust stability of (13), but
still large enough to ensure that the system can be persistently
excited inside it. To simultaneously match these two conditions,
we used the concept of probabilistic invariant sets for system
(16) [16],which take advantages of the knowledge of the persistent
excitation probability distribution.

4.1. One step probabilistic invariant set

In [16], the concept of probabilistic invariant sets (PIS) is in-
troduced, to characterize sets that are invariant for a disturbed
system with a given probability. The considered system is of the
form zk+1 = Āzk + B̄vk, where vk is a persistent excitation signal
and, if the state z0 is inside the PIS, it will remain there, for all k > 0,
with certain probability p. This kind of sets clearly are a possible TS
candidate for the proposed robust MPC, since they take advantage
of the knowledge of the probabilistic distribution of the excitation
signal to reduce the set size and, at the same time, ensure that the
system state will remain in the set – if not forever – for a large
enough time to perform the identification.

In our context, however, it is not necessary (although it is
sufficient to reduce the TS length) to consider a PIS as TS. In fact, we
only need the probabilistic invariance of the TS for only one time
step, given that, if the state leaves the set, the controller will abort
the excitation to steer the state back to the set. Furthermore, the
TSmust be robust for the parametric uncertain system (16). The TS
candidate for the proposed robust MPC is defined next:

Definition 3 (Robust γ -One Step Probabilistic Invariant Set, Rγ -
OSPIS). Let p ∈ (0, 1] and γ ∈ (0, 1]. Let v be a persistent
excitation signal in V . A proper C-set Ω ⊆ X is a robust γ -one
step probabilistic invariant set with probability p for system (16),
if and only if Pr[(A(θ )z + B(θ )v) ∈ γΩ | z ∈ Ω] ≥ p, for all θ ∈ Θ .

3 Here, a large set means a (deterministic or probabilistic) invariant set with
large volume. The invariance condition implies a set shape that captures the system
dynamic.

Notice that the robust property of the above definition refers
to the entire family of models determined by θ ∈ Θ , while the
probabilistic property refers to the persistent excitation signal vj ∈

V . A set Ω fulfilling Definition 3 for system (16), with Θ = {0}
(nominal system), is named γ -OSPIS (if γ = 1, simply OSPIS).
Furthermore, when γ = 1 a Rγ -OSPIS is simply an ROSPIS and,
when p = 1, a Rγ -OSPIS is a deterministic robust γ -ISI set, as
defined in [8].

Remark 2. The OSPIS is in general a concept that requires weaker
conditions that the PIS from [16]. Every PIS is an OSPIS, although
the opposite is not true. Furthermore, there is not a method to
compute a robust PIS, while a robust OSPIS (necessary in the
proposed MPC formulation) can be computed by means of a rel-
atively simple procedure, as it is shown in the next section. Even
more, in the closed-loop re-identification procedure it is enough to
ensure invariance of the TS in one step only, since in case the state
leaves the set, the excitation procedure will be suspended and the
controller will steer the state back to the set.

Next, we will show that a Rγ -OSPIS with probability p > 0 for
(16) is also a RCIS of system (1), whichmeans that it can be used as
TS for problem Pexc

N (·).

Property 1. Let p ∈ (0, 1] and γ ∈ (0, 1]. Let Ω ⊆ X be a Rγ -OSPIS
with probability p for system (16). Then, Ω is a RCIS for system (1).

Proof. Let xk ∈ Ω . Then, Pr[A(θ )x + B(θ )v ∈ γΩ] ≥ p, where
v ∈ V ⊆ U is a persistent excitation signal. The fact that p > 0
means that some v̄ ∈ V exists such that A(θ )x+B(θ )v̄ ∈ γΩ since,
otherwise, Pr[A(θ )x + B(θ )v ∈ γΩ] = 0. Furthermore, V ⊆ U and
γΩ ⊆ Ω , which means that Ω is a RCIS for system (1). ■

To collect enough input–output data for a proper identification
(say a data vector of length q), the system under the excitation
must remain inside the TS – for the next q time steps – with some
high probability. The following property of the ROSPIS helps us to
estimate this probability:

Property 2. Let p ∈ (0, 1]. Let Ω be a ROSPIS with probability p for
System (16). Then, provided that zk ∈ Ω , it results that Pr[zk+1 ∈

Ω ∧ zk+2 ∈ Ω ∧ · · · ∧ zk+q ∈ Ω] ≥ pq, for all θ ∈ Θ .

Proof. The fact that vk is a persistent excitation signal and θ is an
unknown fixed parameter implies that zk has theMarkov property,
i.e., given zk, the value of zk+1 does not depend on past values of the
state prior to time k. This way, the ROSPIS property that ensures
Pr[zk+2 ∈ Ω | zk+1 ∈ Ω] > p is accomplished independently on
the fact that zk ∈ Ω . Thus, Pr[zk+2 ∈ Ω | zk+1 ∈ Ω ∧ zk ∈ Ω] > p.

Then, given that zk ∈ Ω , it results that

Pr[zk+2 ∈ Ω ∧ zk+1 ∈ Ω]

= Pr[zk+2 ∈ Ω | zk+1 ∈ Ω] · Pr[zk+1 ∈ Ω] ≥ p2,

and the proof concludes by the recursive use of this reasoning. ■

4.2. Characterization of the OSPIS

In this section several propositions are introduced, in order to
provide a method to compute one step probabilistic invariant sets.

4.2.1. Computation of the OSPIS
An easyway to characterize an OSPIS is presented in the follow-

ing proposition.
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Proposition 2. Let p ∈ (0, 1]. Let v ∈ V ⊂ U the persistent
excitation signal from system (16). Consider a set Υ ⊆ V such that
Pr[v ∈ Υ ] ≥ p. If Ω ⊂ X is a set fulfilling the following condition4

z ∈ Ω ⇒ Āz + B̄v ∈ Ω ∀ v ∈ Υ . (17)

Then, Ω is an OSPIS with probability p for system (16).

Proof. Consider a state zk ∈ Ω . If vk falls inside Υ then zk+1 ∈ Ω .
Therefore

Pr[zk+1 ∈ Ω] ≥ Pr[vk ∈ Υ ] ≥ p,

concluding the proof. ■

Notice that in this context, given a set Υ ⊆ V ⊂ U such
that Pr[vk ∈ Υ ] ≥ p, an OSPIS for system (16) can be computed
as Ω =

⨁
∞

i=0Ā
iB̄Υ (provided that this computation is possible).

This latter set is known as the minimal robust invariant set, if the
persistent excitation is considered as a disturbance.

Remark 3. From Proposition 2, it is easy to see that an OSPIS with
p < 1, is smaller than an OSPIS with p = 1 (one set contains the
other), being this latter set the ISI set presented in [8]. If a smaller
TS is desired, a smaller value for p must be selected.

Notice that having a smaller OSPIS implies that the state re-
mains in a small region during the identification procedure im-
proving the control performance. However, according to Prop-
erty 2, a large value for p is required in order to ensure that the state
remains inside the target set during the time required to finish the
identification process. Thus, selecting a right value for p involves a
trade-off between the control goal of reducing the size of the OSPIS
and the requirements of the identification procedure.

4.2.2. Computation of the γ -OSPIS
Based on the OSPIS computed in the last section, a γ -OSPISwith

γ < 1, is obtained in the following proposition.

Proposition 3. Let p ∈ (0, 1] and λ ∈ (0, 1). Let a proper C-set
Φ ⊂ X be an OSPIS with probability p for system (16), and a proper
C-set Ψ ⊂ X such that

x ∈ Ψ ⇒ Āx ∈ λΨ . (18)

Then, the set Ω = Φ ⊕ Ψ is a γ -OSPIS with probability p of system
(16) with γ < 1.

Proof. Suppose that xk ∈ Ω . This means that there exists zk ∈ Φ

and yk ∈ Ψ such xk = zk + yk. Then,

xk+1 = Āxk + B̄vk

= Āzk + B̄vk + Āyk
= zk+1 + yk+1

where zk+1 = Āzk + B̄vk, yk+1 = Āyk. Note that Pr[zk+1 ∈ Φ] > p
and yk+1 ∈ λΨ .

Since λ < 1 it fulfills that Φ ⊕ λΨ ⊂ Φ ⊕ Ψ . So, we can find
a constant γ < 1 such that Φ ⊕ λΨ ⊆ γ (Φ ⊕ Ψ ) (such γ exists
provided that Ψ and Φ are proper C-sets). Then,

Pr[xk+1 ∈ γΩ] ≥ Pr[xk+1 ∈ Φ ⊕ λΨ ]

= Pr[zk+1 + yk+1 ∈ Φ ⊕ λΨ ]

≥ Pr[zk+1 ∈ Φ] > p.

Then, Ω is a γ -OSPIS with probability p and γ < 1 for system
(16). ■

4 In [22] a form to compute this type of set is provided.

4.2.3. Computation of the robust OSPIS
Finally, based on the latter computed γ -OSPIS, the Robust OSPIS

that will be used as TS of problem Pexc
N (·), is presented in the

following proposition.

Proposition 4. Let a proper C-set Ω ⊂ X be a γ -OSPIS with
probability p ∈ (0, 1] and γ < 1 for system (16). Then, there exists
a proper C-set Θ̄ ⊆ Rl such that the set Ω is a robust OSPIS with
probability p for system (16), with the uncertainty set Θ ≜ Θ̄ .

Proof. Let zk ∈ Ω . Compute the nominal system z̄k+1 = Āzk + B̄vk,
and the uncertain system zk+1 = A(θ )zk+B(θ )vk. Then, subtracting
both future values of the state we obtain

zk+1 − z̄k+1 = [A(θ ) − Ā]zk + [B(θ ) − B̄]vk

applying norms and triangular inequality, it results that

∥zk+1 − z̄k+1∥ = ∥[A(θ ) − Ā]zk + [B(θ ) − B̄]vk∥

≤ ∥A(θ ) − Ā∥ · ∥zk∥ + ∥B(θ ) − B̄∥ · ∥vk∥

≤ LA · ∥θ∥ · ∥zk∥ + LB · ∥θ∥ · ∥vk∥

where LA and LB are the Lipschitz constants of A(θ ) and B(θ ) on R.
Then,

∥zk+1 − z̄k+1∥ ≤ (LA · rz + LB · rv) · ∥θ∥ ≜ α · ∥θ∥ (19)

where rz ≜ maxz∈Ω∥z∥ and rv ≜ maxv∈V∥v∥.
Let d ≜ infz ̸∈ΩdγΩ (z), i.e., the minimum distance from the

border of Ω to set γΩ . Then, consider the set

Θ̄ ≜ {θ ∈ Rl
: ∥θ∥ ≤

d
α

}. (20)

Thus, θ ∈ Θ̄ implies that α∥θ∥ ≤ d, and, from Eq. (19), we have

θ ∈ Θ̄ ⇒ ∥zk+1 − z̄k+1∥ ≤ d.

Taking into account that d is the minimum distance from the
border of Ω to the set γΩ , the latter condition establishes that
z̄k+1 ∈ γΩ ⇒ zk+1 ∈ Ω . Then,

Pr[zk+1 ∈ Ω] ≥ Pr[z̄k+1 ∈ γΩ] ≥ p ∀ θ ∈ Θ̄

which proves thatΩ is a robust OSPISwith probability p for system
(16) for the uncertain set Θ̄ . ■

Remark 4. Note that the size of the set Θ̄ depends on d/α,
according to (20). d depends on the contractivity of the TS Ω , but
α is proportional to the size of the TS Ω , which means that the size
of Θ̄ is inversely proportional to the size of the TS. This means that
a smaller TS implies a larger uncertainty set Θ̄ , which accounts for
larger model families.5 This is a crucial benefit of using OSPIS as
TS, with p < 1, since in this case, a significant reduction is obtained
compared to the case of p = 1 (the ISI set of [8]).

5. Summary of the proposed strategy

The proposed robust MPC suitable for re-identification is the
one presented in (14), where the TS is a robust OSPIS for system
(16). This controller has the following benefits in comparison with
the nominal MPC based on the ISI set [8]: (i) The proposed MPC
ensures the robust stability of the TS for the entire family (1). This
is a crucial point in the context of a re-identification scenario,when
there is a significant model deterioration. (ii) The new TS is now
significantly smaller (Remark 3), depending on the probability p,
which is selected a priori. Given that inside TS the system is in

5 That is, if we want larger robustness for model family (1), wemust sacrifice the
probability of permanence.
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open-loop (to perform the re-identification), this reduction derives
in a safer control operation. (iii) The set Θ accounting for the
system uncertainty is significantly larger, for p < 1, as stated in
Remark 4. This implies that a bigger model family can be consid-
ered for robustness. (iv) The persistent excitation of the system
is ensured – with certain probability – for a large enough time,
in such a way that output–input uncorrelated data are obtained,
which is a main advantage from the identification theory point
of view. This property comes from the fact that inside the TS no
control actions are taken by the robust MPC.

An algorithm of the proposed strategy can be resumed by the
followings steps.

• Select a suitable persistent excitation signal, vk, for re-
identifying the model (see Definition 2).

• Select a value of the probability p for the target set (see
Remarks 3 and 4).

• For the selected vk and p, compute the robust OSPIS, Ω ,
and its corresponding input set, Π , for system (16) (see
Proposition 4).

• Formulate Problem Pexc
N (x, Ω̄, vk) presented in (14).

• Provided the nominal MPC performance is deteriorated, re-
place it by Pexc

N (x, Ω̄, vk) until the parameters of the model
are estimated and validated. Then return to the nominal
MPC with the updated model.

6. Simulation results

In order to test the proposed methodology, an uncertain and
disturbed second order continuous-time system is considered. The
discrete-time version of the system for a sampling time of Ts = 1
reads:6

xk+1 = A(θ )xk + B(θ )uk (21)
yk = Cxk + dk,

where

A(θ ) =

[
0.42 −0.28
0.02 0.6

]
+ θ

[
−0.13 0.12
−0.1 −0.11

]
,

B(θ ) =

[
0.3

−0.4

]
+ θ

[
−0.1
0.1

]
,

(22)

C = [−0.3 0.6], θ ∈ Θ = [−0.15, 0.15] ⊆ R and dk is an
output white noise, with zeromean and variance σd = 0.0052. The
unknown real system is one of the latter family, corresponding to
some θ ̸= 0,while the nominalmodel is given byA(0) and B(0). The
constraints of the system are given by X =

{
x ∈ R2

: ∥x∥∞ ≤ 10
}

and U = {u ∈ R : ∥u∥∞ ≤ 4}.

6.1. Normal operation

We start the simulation with a Normal Operation, by con-
trolling the output of the real system to three given operating
zones, Y1 = {y ∈ R : 2.6 ≤ y ≤ 2.8} for time 0 ≤ t ≤ 20,
Y2 = {y ∈ R : −1.2 ≤ y ≤ −1} for time 20 < t ≤ 35 and
Y3 = {y ∈ R : −2.8 ≤ y ≤ −2.6} for time 35 < t ≤ 50, by
means of a nominal MPC based on the nominal model (A(0), B(0)).
The nominal controller is a zone MPC (as the one shown in [8],
subsection 4.1), with N = 7, Q = diag([1000 1000]), R = 10 and
an equality terminal constraint. The selected simulation scenario
consists in an initial state of [0, 0], and a simulation time of 50
time steps. Furthermore, a properly tuned Kalman filter is used to
estimate the states from the output.

6 This system is very similar to the one introduced in [8].

Fig. 1. Output evolution (in blue) to the operating zones (in black) of the nominal
zone MPC controller based on the nominal model. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

To measure the performance of this controller, the following
index is proposed:

Iperf ≜

50∑
t=0

[dYi (yt ) + dUi (κMPC (xt ))]

where Yi is the operating zone depending on the time t and Ui =

(C(I − A)−1B)−1Yi is the input set corresponding to Yi, xt is the
measured state of the closed-loop systemand κMPC (·) is the implicit
nominal MPC control law. If we define Iref as a reference index —
and index computed just after a proper identification, and denoting
the best possible value of the index Iperf for the given scenario, then
the following standard index can be used to assess the closed-loop
performance: Istd ≜ Iref /Iperf .

The closed-loop system evolution of the output can be seen in
Fig. 1. The standard Index corresponding to the current scenario
is given by Istd = 0.706. Although many other methods could be
considered to diagnose a model deterioration, a standard Index
value far from 1 can be interpreted as an alarm indicating that
the nominal model parameters fail to describe those of the real
system. As a consequence, not only a poor performance is achieved,
but also neither recursive feasibility nor stability can be properly
ensured, as it can be seen in Fig. 1 where the output fails to reach
the operating zone.7

Under the suspicion of a model deterioration twomain alterna-
tives arise. The first – mainly to account for feasibility and stability
issues – is to replace the nominalMPC by some robust formulation.
This way, a tube-based RMPC (as the one presented in [10]) is used.
The standard Index, however, is significantly smaller, as it is usually
the case of robust MPC controllers: Istd = 0.1771. The reason
why a poor performance is obtained is the conservativeness of the
strategy, which is the price we have to pay to ensure feasibility and
stability. Fig. 2 shows the state evolution in this case.

The second alternative – that we find a better option for real
life applications and it is the main objective of this work – is to
make a re-identification to obtain a new accurate model, and so
continuing using the nominal zoneMPC controller. In order to have

7 This problem can be solved by means of an offset-free, even so, indicates a
failure of the nominal model.
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Fig. 2. Output evolution of the Robust tube-based zone MPC controller. The output
(in blue) is steered to the set Yi ⊕ CZ (in red), depending on the time, where Z is a
robust invariant set as the one in Proposition 1. (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

proper input–output data in a safe closed-loop fashion andwithout
stopping the operation of the plant, this will be made by using the
proposed robust MPC for re-identification.

6.2. Re-identification operation

To perform the re-identification, the system is first steered to
y = 0, and there, the controller of the latter section is replaced by
theproposedRobustMPC for re-identification. In this case, the sim-
ulation time is extended to 500 time steps to have enough input–
output data to identify and validate a newmodel and, furthermore,
state disturbances (x = [−9, 9] at time step k = 0 and x = [2, −6]
at time step k = 30) are included to test the regulatory benefits of
the strategy.

The proposed RMPC for re-identification (derived from prob-
lem Pexc

N in Section 3.4) is strongly dependent on a proper target
set (TS). The TS Ω is computed according to the procedure de-
scribed in Section 4.2, with probability p = 0.99 (see Fig. 4), and
taking into account the persistent excitation signal vk, which is
assumed to have a truncated normal distribution, and lies within
V = {v ∈ R : ∥v∥∞ ≤ 3.5}, with mean E[vk] = 0 and covariance
cov[vk] = 1.642 (Fig. 3 shows the persistent excitation signal for
the first 100 time steps). Furthermore, the terminal constraint is
given by Ω̄ = Ω ⊖ Z , where Z is a robust invariant set as the one
defined in Proposition 1.

Fig. 4 shows the state evolution under the Robust MPC suitable
for closed-loop re-identification (for first 50 time instances). As
it can be seen, the real state evolves inside the tube (as stated
in Proposition 1) with center on the nominal state. The real state
converges to the TS Ω and, once inside it, the control switch to the
persistent excitation of the system. Note that even though the TSΩ
is not a robust deterministic invariant set, but only a robust proba-
bilistic one, there is not a state leaving the TS. This occurs due to the
fact that the TS is a probabilistic invariant set for all the models in
the family, and the one been excited is the unknown real one. The
first 300 excited states are collected for re-identification purpose,
and the last 200 to validate the estimated system, excluding those
data corresponding to the disturbance rejection, where the system
is not excited. Fig. 5 shows the output signal – for the first 100
time steps – during the excitation procedure, which is assumed to
be noisy.

Fig. 3. Persistent excitation signal used for the identification.

Fig. 4. State evolution of the Robust MPC for re-identification. The real system
is steered to the TS Ω . Once the real system enters Ω , however, the excitation
procedure is started. Note also that when the disturbance enters the system, the
excitation is aborted, and the system is driven back to TS.

Fig. 5. Output evolution under the excitation procedure.
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Fig. 6. Autocorrelation of the output residual and cross correlation for input and
output residuals. Proposed strategy.

6.3. Identification characteristics

The new model is obtained based on the uncorrelated input–
output data. The selected method was the N4SID identification
method, and the obtained model FIT is of 99.6%. Given that the
input–output data are uncorrelated, the FIT is not 100% exclusive
because of the output noise dk. To analyze the re-identification
characteristics, theMatlab function ident is used. Fig. 6 shows both,
the autocorrelation of the output residual and cross correlation
for input and output residuals. As it can be seen, the first plot
approximates an impulsive signal (as desired) while the last one
shows values inside the confidence region, which means there
exists no input–output correlation (out of the one explained by the
identified model).

To highlight the benefits of the proposal – in terms of the un-
correlated data – we simulated the same closed loop, but exciting
the system by superposing the persistent excitation signal to the
input computed by the controller (instead of separating the tasks
of control and excitation of the system). As a result, a FIT of 99.37%
is obtained when the N4SID identification method is used (the FIT
is similar to the first one because of the simplicity of the model
and the excitation scenario). Fig. 7 shows the autocorrelation of
the output residual and cross correlation for input and output
residuals, where it can be seen that now, two points of the cross
correlation are out of the confidence region, denoting an input–
output correlation.

6.4. Normal operation with estimated model

Once the new model is identified, the Normal Operation is
performed with a nominal MPC based on the new model. The
standard Index is now given by Istd = 0.9795, and Fig. 8 shows
the output evolution under the same disturbances described in
Section 6.1.

The performance of the MPC based on the identified model
shows an improvement of 27% compared to the one based on
the original nominal model, besides the recursive feasibility and
stability assured; and an improvement of 80% with respect to
the Robust MPC. As it was expected, a significant improvement
in the performance was obtained regarding the two alternatives
scenarios.

Fig. 7. Autocorrelation of the output residual and cross correlation for input and
output residuals. Classical closed-loop identification.

Fig. 8. Output evolution of the nominal zoneMPC controller based on the identified
model.

7. Conclusion

In this work a robust extension of an MPC suitable for closed-
loop re-identification – which takes into account the knowledge
of the persistent excitation probability distribution – is proposed.
The main benefits of the strategy – out of the robust properties
– come from the use of a reduced target set, that is computed
taking into account the probabilistic invariance concepts. Thisway,
the persistent excitation of the closed-loop system is ensured, and
furthermore, output–input uncorrelated data can be obtained, us-
ing only a reduced state space region around the equilibrium. This
represents – from the control point of view – a less conservative
and more flexible formulation, which considerably increases the
applicability of the proposed methodology.
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