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We  propose  the  generalization  of the  Holodiagram  concept  that  has  demonstrated  many  useful  properties
in optics,  to  include  other  metric  measurement,  namely  the  Mahalanobis  distance,  thus  involving  several
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other  optical  possible  uses.  So,  besides  being  useful  in  the  study  of decision  and  classification  problems
it  can  be  used  in  geometric  solutions  involving  Fermat’s  principle  in a rather  wide  range  of situations.

© 2012 Elsevier GmbH. All rights reserved.
irefringence

. Introduction

In 1969 Abramson [1] proposed the use of a diagram, named
y him the Holodiagram (HD), to optimize the use of the limited
oherence length in holography of relatively large objects.

The concept soon proved to encompass several other optical
henomena and some generalizations have been proposed that

nvolve the solutions of reflection and refraction in arbitrary sur-
aces [2–7], both for isotropic and birefringent materials.

Although the HD itself does not provide any new information, it
resents the Fermat principle in a graphic way that gives insight in
he existence of previously unknown situations, such as a spherical
urface inside crystals that conjugates by reflection a point to a
ifferent one, the loci of the surfaces that limit refraction by internal
eflection or the existence of non deviation interfaces between two
irefringent materials.

Some generalizations to include non spherical wavefronts, both
n reflection and refraction were also developed [8,9] and the exis-
ence and geometry of Generalized Fresnel Zone Plates for rather
eneral surfaces were found.

In this work we introduce a generalization that replaces
he Euclidean distance implicit in the HD by the more general

ahalanobis distance [10] and compare the results with optical

eometrical properties.

We  shortly review the mean aspects of the already known HDs
nd the concept of Mahalanobis distance. Then the concept of

∗ Corresponding author.
E-mail addresses: hrabal@ing.unlp.edu.ar (H. Rabal), lilic@ciop.unlp.edu.ar

N.  Cap), c criado@uma.es (C. Criado).

030-4026/$ – see front matter ©  2012 Elsevier GmbH. All rights reserved.
oi:10.1016/j.ijleo.2011.11.077
Mahalanobis based HD (MHD) is proposed and some rather general
possible applications are suggested. Two variations are possible for
the HD: the locus of points where the sum S of the distances to
two fixed points called foci is a constant and the locus of the points
where the difference D of the distances is a constant. We  are going
to show these loci through plots of cos(kS)  or cos(kD)  so that they
will appear as fringes, the geometry and spacing of which will indi-
cate the corresponding properties. We are going to show also the
sensitivity to the changes in the variables in both cases.

2. Theory

Abramson’s HD is a plot of the loci of equal sum of (Euclidean)
distances to two fixed points F1 and F2. It can be shown as the cos(kS)
in the shape of fringes. Along one of such fringes the total distance
D1 + D2 is a constant so that changing the variables along it does
not modify the value of S, while the normal to the fringes is the
direction where the change of the variables produces the maxi-
mum variation in S. These properties make the HD an appropriate
tool for graphically solving variational problems in optics, namely
finding points that obey Fermat’s Principle or the geometry of the
interference fringes, among others. The concept describes also the
case of virtual sources or images, that can be modified to include
refraction, Snell’s law, partial coherence and can also be generalized
to wavefronts other than spherical.

In the ellipse, the sum of the (Euclidean) distances between a

point on the curve and two  fixed points F1 and F2 named foci is the
same value for all points.

The ellipse permits the finding of stationary points when a cer-
tain solution requires the fulfilling of an additional condition or

dx.doi.org/10.1016/j.ijleo.2011.11.077
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
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where D1 is the distance from a generic point P in the plane of the
variables to a focus F1, D2 is the distance of the same point to the
other focus F2 and n1 and n2 are coefficients.
726 H. Rabal et al. / Opt

onstrain. Stationary optical path of light via Fermat’s principle
rom a point to another being reflected in a mirror is one example.

The loci of equal path difference of light in a point coming from
wo coherent light sources at F1 and F2, depicted by hyperbolas,
efines interference (Young) fringes.

Holodiagrams have been motivated by using the Moiré effect
1] between two families of curves, representing the families of
oci where weighted distance to a point is a constant. As Moiré pat-
erns form group in the mathematical sense, it is, given two  families
f curves additive and subtractive Moiré give rise to new families
rom which the original ones can be re obtained fulfilling the group
onditions, Holodiagrams, when described as Moiré patterns also
ehave in this way.

In 1936 P.C. Mahalanobis defined a distance based in statistical
onsiderations that takes into account the standard deviation of the
ariables and their mutual correlations.

It reduces to Euclidean distance when the variables are uncorre-
ated and the standard deviations are equal. This distance concept
s usually used to establish similarities between statistical vari-
bles of already classified samples and an unknown one but its
pplication to Holodiagrams for general purpose classification and
ptimization operations will be soon proposed [11].

Mahalanobis distance is a concept that was born in the realm of
tatistics. It can be schematically described in the following way.

Let us assume a set of points characterized by two parameters

 = (x1, x2),

from which we know a random sample of N points, and we want
o estimate the probability that a given point belongs to that set.

It seems natural to estimate that that probability should be pro-
ortional to the Euclidean distance from that point to the vector of
he means

 = (�1, �2),

that is

(x, �) =
√

(x1 − �1)2 + (x2 − �2)2.

The Standard deviations �1 and �2 of the random variables
hould be taken into account and to weight the distribution of each
ariable by means of the reciprocal of the corresponding standard
eviation.

n this way we have d(x, �) =
√(

x1 − �1

�1

)2
+

(
x2 − �2

�2

)2
.

Finally, we should also take into account the possibility that the
andom variables could be correlated, so that an adequate mea-
urement could be:

(x, �) =
√

(x − �)˙−1(x − �)T

here

 =
(

�2
1 �12

�21 �2
2

)
.

This is the Mahalanobis definition that for any two points takes
he form:

(x, y) =
√

(x − y)˙−1(x − y)T
It is easy to verify that this definition fulfills the characteristic
roperties of a distance and that it can be easily generalized to a
pace with N random variables for any N > 2.
 (2012) 1725– 1731

For N = 2 the distance can be written in terms of the correlation
coefficient r = �12/�1�2 thus taking the form:

d(x, y) =

√
1

1 − r2

((
x1 − y1

�1

)2

+
(

x2 − y2

�2

)2

− 2r

(
x1 − y1

�1

)(
x2 − y2

�2

))

Formally, the Mahalanobis distance from a group of values with
mean vector �

is defined as

DM(x) =
√

(x − �)T S−1(x − �).

where

� = (�1, �2, �3, . . . , �N)T

is a vector formed by the mean values of the variables x = (x1, x2,
x3, . . .,  xN)T and S is their covariance matrix.

Mahalanobis distance is used in analysis of clusters, in classifi-
cation techniques by choosing the mean vector that is in the closest
neighborhood to a test point, in supervised learning, to detect out-
liers in linear regressions, as a measure of leverage, etc.

In two dimensions, Mahalanobis distance can be written:

D2 = 1
1 − r2

((
x − x̄

s1

)2

+
(

y − ȳ

s2

)2

− 2r
(

x − x̄

s1

)  (
y − ȳ

s2

))

where s1 and s2 are the standard deviations of the variables x, y with
mean value x̄  and ȳ respectively and r is the correlation coefficient
between the two variables.

In Euclidean geometry, the locus of the points bearing the same
distance to a center is a circumference. These results to be a particu-
lar case of Mahalanobis distance when both variables have the same
standard deviations and are not correlated between them (Fig. 1).

The locus of points in which Mahalanobis distance to a fixed
point has the same value is an ellipse. In Fig. 2 some families of this
ellipses are shown as plots of cos(kD) with k a scale constant.

2.1. Use of Mahalanobis distance in the Holodiagram

To be able to show a graphical description as is the HD the
number of variables has to be two. If more than two  variables are
involved we  will only be able to plot cuts of the surfaces that will
be generated by imposing that the sum or the difference of the
distances be the same value.

We  define as the MHD  to the family of curves that is obtained
when the parameter D in the following expression is continuously
varied.

n1D1 ± n2D2 = D
Fig. 1. An ellipse and the Euclidean distances defining it.
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Fig. 2. Loci of the points with equal Mahalanobis distance to a center: (a) variables
with the same standard deviation and uncorrelated variables (Euclidean distance),
(b)  different standard deviations, uncorrelated variables, (c) different standard devi-
ations, partially correlated variables.
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Fig. 3. (a) Classical Abramson sum holodiagram, (b–d) examples of MHD.

Fig. 4. Sum Mahalanobis holodiagram with a constrain curve.
.2. The sum MHD

The sum MHD  can be shown as cos(kD)  with k a scale constant.
ome examples are shown in Fig. 3.

. The MHD  and variational principles

If we have some constraints on the space of parameters, given
or example by a subset ob this space, or by a level set f (x̄) = C
f a function on this space, or for any other constraint limiting
he possible values of the parameters, the we can look for the

aximum and minimum of d(x) over this set. In Fig. 4 we  show
he HD and an example of constraint given by a function (white
urve) relating a two-dimensional space of parameters. In the case
f the first example this function could link, say for example,
he price of a good with its size (a cost function). Note that the
oints where the curve is tangent to the HD identify the extreme
stationary) values of the function D (maxima and minima) that
atisfy the cost function as light does in mirrors for the optical
ath.

If the variances of the variables are interpreted as speeds, Maha-
anobis distances correspond to times and the points of stationarity
atisfy a (generalized) Fermat’s Principle.

The expression d(x) = pAdA(x, x̄A) + pBdB(x, x̄B) combines two
ifferent Mahalanobis distances and then it could be interpreted
s the total optical path for a refraction of light, where light would

ravel first in a medium with refractive index pA/

√
sA and immedi-

tely in another with refractive index pB/
√

sB. The points P where
(x) is stationary correspond then to points where light coming
rom a source A refracts towards B for an arbitrarily shaped curve.
By choosing the value of pB/
√

sB negative, the effect of a metama-
terial, it is, a material with negative refractive index, is simulated.
The situation is similar to image forming when either the source or
the image is virtual, but not both.

4. Sensitivity vector
In full analogy with the case of holographic interferometry,
when a point moves in the space of the parameters a certain dis-
placement vector d, then the change in the total path L of the ellipses
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Fig. 6. The modulus of vector S shown as gray levels: sensitivity for the classical
Abramson HD. Notice the low sensitivity to displacements in the region between
the foci and the high sensitivity in the opposite regions away of the foci.

Fig. 7. The modulus of vector S for the MHD  shown as gray levels and as fringes
cos(kS).  When compared with the classic case shown in Fig. 6, it can be perceived the
non symmetric deformation in the sensitivity introduced by the correlation between
the variables.
ig. 5. Geometry for the calculation of sensitivity S. The sensitivity vector in the sum
D is defined as the sum of the gradient vectors with respect to the corresponding

 distances.

hanges in S·d (the point indicates dot product of the vectors S and
). Due to the way we chose to show the results as cos(kS),  if the
umber of fringes crossed in the displacement is N, the compo-
ent of vector d in the direction of the sensitivity vector is then the
hange in L from the beginning to the end of the displacement and
s measured in units of S·d = N2�/k.

For a given displacement, this change is bigger when more
ringes are crossed. So that visual inspection of the HD looking
or places where the fringes are more tightly packed indicates loci
f high sensitivity and conversely. Moving along a fringe does not
hange the total path and moving in the direction of the gradi-
nt of S produces the higher changes in its value. We  are going
o look then for that gradient using the geometry shown in Fig. 5.

e first calculate the derivatives of d(x, y) with respect to x and y
Figs. 6–11).

d(x, y) =

√
1

1 − r2

((
x − x0

�1

)2

+
(

y − y0

�2

)2

− 2r

(
x − x0

�1

)(
y − y0

�2

))
∂

∂x
d(x, y) = 1

2d(x, y)

[
1

1 − r2

[
2(x  − x0)

�1
2

− 2r
1
�1

(
y − y0

�2

)]]
∂

∂y
d(x, y) = 1

2d(x, y)

[
1

1 − r2

[
2(y  − y0)

�2
2

]
− 2r

�2

(
x − x0

�1

)]
Now we look for the gradient

d(x, y) = ∂

∂x
d(x, y)

�
i + ∂

∂y
d(x, y)

�
j

And its modulus is

∇d(x, y)
∣∣ =

√(
∂d(x, y)

∂x

)2

+
(

∂d(x, y)
∂y

)2

For the gradient of the sum or difference:

d(x, y) = ∂

∂x
d(x, y)

�
i + ∂

∂y
d(x, y)

�
j = pA∇dA(x, y) ± pB∇dB(x, y)

here

dA(x, y) =

√
1

1 − rA
2

((
x − xA0

�A1

)2

+
(

y − yA0

�A2

)2

− 2rA

(
x − xA0

�A1

)(
y − yA0

�A2

))

dB(x, y) =

√
1

1 − rB
2

((
x − xB0

�B1

)2

+
(

y − yB0

�B2

)2

− 2rB

(
x − xB0

�B1

)(
y − yB0

�B2

))

. Examples

If the variables are uncorrelated and have the same standard
eviation, the classical elliptical Abramson sum HD is obtained and
he locus of points with equal modulus of the sensitivity vector
named k curves in the literature) is composed by circumferences

ontaining the points A and B.

For other more general situations the sensitivity vector distri-
ution is deformed as shown in Fig. 7.
5.1. The difference MHD

In this type of MHD, the classical optical situation (uncorre-
lated variables with the same variances) corresponds to the Young’s
fringes experiment. Fringes show the loci of equal optical path
difference. It also corresponds to the possibility of real image for-
mation at F2 of a real source in F1 in metamaterials. It is, the shape
of the fringe indicates the shape of the interface between a material
and a metamaterial that conjugates one point into the other.

In the classical case there is a straight fringe, that corresponds
to equal optical paths and is called the zero interference order, that
is also a symmetry axis.

It can be seen in the figures that in our case of Mahalanobis dis-
tance, the zero order fringe departs from a straight line, the fringe
tilts in one or other direction and symmetry is broken. This fringe
indicates the locus of points where Mahalanobis distance to both
points has the same value. So, if in a statistical situation we are
classifying a set of samples by minimum distance (nearest neigh-
bor) this fringe shows the decision frontier.

If a point is at one side of this frontier, it should be classified as
nearest neighbor of the corresponding focus

Besides, for any point P, the fringe that contains it defines the

direction where variations in the parameters do not improve or
worsen the classification decision. Traveling along a fringe does
not change the class in definition. Conversely, if point P moves per-
pendicular to the fringes it changes the D value in the fastest way.
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Fig. 8. The difference MHD  shown as fringes cos(k(D1 − D2)). (a) Classical Young’s
fringes. (b) Correlated variables and unequal standard deviations.

Fig. 9. The difference MHD  showing the frontier for nearest neighbor.

Fig. 10. Geometry for the calculation of sensitivity S′ . In this case, the sensitivity
v
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Fig. 11. (a) Sensitivity S′ shown here as gray levels for the classical Young’s fringes

We  are going to see now that Holodiagrams in birefringent
ector in the difference HD is defined as the difference in the gradient vectors with
espect to the corresponding M distances.

t is, the maximum sensitivity to changes in the parameters occurs
n the direction perpendicular to the fringes, and the magnitude of
hat change is given by how tightly packed are the fringes in that
oint as mentioned before.

The wide white region at left is a region where M distance does
ot decide for a classification purpose. Its points are at (approxi-
ately) the same M distance of both foci F1 and F2.

. Refraction

If the correlation coefficients r are both zero and, if both vari-
nces are equal in the first point and also equal in the second (but
ventually a different value), then the MHD  are Cartesian ovals of
he egg and apple types and correspond to the surfaces that con-

ugate one point into the other by refraction between two  media
3,4] and rays from one source obey Snell’s Law in each point of the
D.
HD. Notice how the regions of high and low sensitivity are interchanged when com-
pared with the sum HD. (b) Sensitivity when the variables are correlated. (c) S′ is
here shown as fringes cos(kS′).

In the case of the MHD  then the relative refractive index can be
obtained from the values of the corresponding variances s.

D2
1 =

((
x − x̄

s1

)2

+
(

y − ȳ

s1

)2
)

= 1

s2
1

((x − x̄)2 + (y − ȳ)2) = n2
1r2

1

D2
2 =

((
x − x̄

s2

)2

+
(

y − ȳ

s2

)2
)

= n2
2r2

2

where r1 and r2 are Euclidean distances and we  have called:

n1 ≡ 1
s1

n2 ≡ 1
s2

As the refractive index n = c/v, with c and v the speeds of light in
vacuum and in a medium, variances can be thought as proportional
to that speeds and the ratios inside Mahalanobis distance between
geometrical distances and standard variations s as times of flight.

The result is the exact expression for Cartesian Ovals

n1r1 + n2r2 = �

and Snell’s Law is fulfilled in every point.

7. Comparison between MHD  and RHD for birefringent
materials for the extraordinary ray
media are special cases of MHDs.
To show it we are going to compare the families of curves that

give origin to each of them.
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Fig. 12. Definition of geometrical parameters for the birrefringent crystal.
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If we find that both families are equivalent, as the HD is obtained
y adding or subtracting the families, then the equivalence will be
emonstrated.

We have seen that for the 2D case, Mahalanobis distance is
efined as

2 = 1
1 − r2

((
x − x̄

s1

)2

+
(

y − ȳ

s2

)2

− 2r
(

x − x̄

s1

)  (
y − ȳ

s2

))
ithout loose of generality we can choose:

¯  = ȳ  = 0

The family of curves is then

x

s1

)2
+

(
y

s2

)2
− 2r

(
x

s1

)  (
y

s2

)
= C ′

Besides, the families of curves for the birefringent materials for
he extraordinary ray and arbitrary orientation of the optical axis
an be obtained5 as follows.

The optical axis in the medium, the coordinates origin O and a
eneric point P determine a plane �1 (see Fig. 12).

The plane where the family of curves will be calculated and �1
orm an angle �1.

We are going to use the expression for the extraordinary refrac-
ive index [5–7] in any direction

n′′)2 = n2
e + (n2

o − n2
e )(	uPA

	u1)2

To calculate each family, cos ϕ must be found for any direction
f the axis, where ϕ the angle between PA and the optical axis.

To that end we look for a unit vector uP in the direction joining
 with A and a unit vector u1 in the direction of the optical axis 1
see Fig. 12).

� = (0,  0, a)

�
 = (� cos � sin �1, � cos � cos �1, � sin �)

hen:

A =
√

�2 cos2 � sin2 �1 + �2 cos2 � cos2 �1 + (a − � sin �)2

os ϕ = 	uP
	u1 = −�

PA
cos � cos �1 cos  ̨ + (a − � sin �)

PA
sin ˛
For each family, �1 and  ̨ are constants. Without loss of gener-
lity we can choose a = 0y, and use OA = 0

2
1n′′2

1 = L2 = C
 (2012) 1725– 1731

The family of curves is going to be the plot of

I = cos(kn′′r1)

We  are going to find now the relationship between cos ϕ with
r1, s1 and s2.

n′′2r2
1 = n2

e r2
1 + (n2

o − n2
e )r2

1 cos2 ϕ = C

n2
e r2

1 sin2ϕ + n2
or2

1 cos2 ϕ = C

By using r2
1 = �2 and calculating

cos2 ϕ = cos2 � cos2 �1 cos2
 ̨ + sin2 � sin2

 ̨ + 2 cos � cos �1
cos  ̨ sin � sin ˛

r2
1 cos2 ϕ = x2 cos2 �1 cos2

 ̨ + y2 sin2
 ̨ + 2xy cos �1 sin ˛

r2
1 sin2 ϕ=x2 + y2−(x2 cos2 �1 cos2 ˛+y2 sin2 ˛+2xy cos �1 sin ˛)

= x2(1 − cos2 �1 cos2 ˛) + y2(1 − sin2 ˛) − 2xy cos �1 sin ˛

These results, when replaced in the last equation give

ne
2(x2(1 − cos2 �1 cos2 ˛) + y2(1 − sin2 ˛) − 2xy cos �1 sin ˛)

+n2
o(x2 cos2 �1 cos2

 ̨ + y2 sin2
 ̨ + 2xy cos �1 sin ˛) = C

This result is the equation of an ellipse. We  now compare it with
Mahalanobis ellipse. It is, we  look now for the relationship between
r, s1 and s2 with the parameters of the birefringent HD.

After come calculations we obtain

s2
1 = ((1 − cos2 �1 cos2 ˛)n2

e + (cos2 �1 cos2 ˛)n2
o)

−1

s2
2 = ((1 − sin2 ˛)n2

e + (sin2 ˛)n2
o)

−1

r

s1s2
= cos �1 sin ˛(n2

e − n2
o)

It means that by manipulating the parameters ne, no,  ̨ and �1
we can modify r, s1, s2.

It can also be seen that all the previously known cases are
obtained for particular values.

If ne = no, r results to be zero and s1 = s2 = 1, it is the families are
circumferences (isotropic case).

If  ̨ = 0◦ or if �1 = 90◦ canonical ellipses are obtained for any value
of the refractive indices.

8. Conclusions

We  have applied the Mahalanobis distance concept to general-
ize the classical Abramson Holodiagram. It was  found that reflection
and refraction in both isotropic and birrefringent materials are
obtained as particular cases. Mathematically, if abstraction is done
of its statistical origin, Mahalanobis distance corresponds to a linear
transformation of Euclidean distance, that is to a Euclidean dis-
tance expressed in a different non orthonormal vector basis. This is
expressed in the fact that the variances s do not depend of position
of the point in space. If it would not be so, then it would corre-
spond to a space variable refractive index, or, what is the same, to a
Riemannian metrics, in which light moves along the corresponding
geodesics. All the cases developed in this work are then particular
cases of this more general one.

It was found that two not straightforwardly connected fields can
be linked between them as a consequence of their similar geometry
involved concepts.

The Holodiagram idea can then be extended by including differ-
ent concepts of distance to graphically describe other phenomena.
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