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Abstract

We obtain boundedness results for the higher order commutators of singular integral op-

erators between weighted Lebesgue spaces, including Lp-BMO and Lp-Lipschitz estimates.

The kernels of such operators satisfy certain regularity condition, and the symbol of the

commutator belongs to a Lipschitz class. We also deal with commutators of singular integral

operators with less regular kernels satisfying a Hörmander’s type inequality. Moreover, we

give a characterization result involving symbols of the commutators and continuity results

for extreme values of p. Finally, by extrapolation techniques, we derive different results in

the variable exponent context.

1 Introduction

In [5], A. P. Calderón proved that, if T is certain pseudo-differential operator and b is a Lipschitz

continuous function, then the first order commutator of T with symbol b, [b, T ], is bounded

between Lebesgue spaces. Later, in [7] and [8] the authors proved the same estimate for the

case that T = Tσ, where the function σ belongs to a certain Hörmander class. This result

was obtained by proving that, for each Lipschitz function b, the operator [b, T ] is a Calderón-

Zygmund singular integral operator whose kernel constant is controlled by the Lipschitz norm

of b.
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On the other hand, in [28] the authors considered the commutators of singular integral opera-

tors with Lipschitz symbols and proved the boundedness between Lebesgue spaces, including

the boundedness from Lebesgue spaces into Lipschitz spaces on non-homogeneous spaces. (See

also [35] in the context of variable Lebesgue spaces). Moreover, in [35] the authors give char-

acterizations of Lipschitz symbols by mean of the boundedness of commutators of singular

integral operators between variable Lebesgue spaces.

Nevertheless, there is not enough information about the behavior of the commutators acting

between weighted Lebesgue spaces, even less for extreme values of p, that is, the weighted Lp-

BMO or Lp-Lipschitz boundedness. Hence, one of our main aims is, precisely, to give sufficient

conditions on the weights in order to obtain these continuity properties. Some previous results

in this direction were given in [2] where the authors study the boundedness between Lebesgue

spaces with variable exponent for commutators of singular integral operators with BMO sym-

bols. So, in this paper, we shall be concerned with commutators of singular integral operators

with Lipschitz symbols. Recall that the first order commutator of a Calderón-Zygmund oper-

ator T is formally defined, for b ∈ L1
loc(Rn), by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x).

We prove weighted results of the type described above for higher order commutators of T ,

defined, for m ∈ N, by Tmb = [b, Tm−1
b ]. Inspired in a result in [20], we particularly prove a

characterization result involving symbols of the commutators and continuity results for extreme

values of p. We shall begin with kernels satisfying a Lipschitz type regularity and then we

consider kernels with less regularity properties, associated to a given Young function. These

type of operators include a great variety of operators and were introduced in [27] and [26]. See

section 2.2 for examples and more related facts. (For information about the behavior of the

singular integral operators see for example [1], [6], [9], [10], [13], [19], [20], [27], [30], [32] and

[37]. More recent results related with commutators of singular integral operators can be found

in [25], [21] and [18].)

The results mentioned above allow us to obtain corresponding results in the variable exponent

spaces, which can be derived by extrapolations techniques (See section 3).

The paper is organized as follows. In section §2 we give the preliminaries definitions in order

to state the main results of the article, which are also included in this section, and in section

§3 we give some applications to the variable exponent spaces context by mean of extrapolation

techniques. Then, in §4 we give some auxiliary results which allow us to prove the main results

in §5.
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2 Preliminaries and main results

In this section we give the definitions of the operators we shall be dealing with and the functional

classes of the symbols in order to define the commutators. We also give some preliminaries.

We shall consider singular integral operators of convolution type T with kernel K, that is T is

bounded on L2(Rn) and if x /∈ suppf

Tf(x) =

ˆ
Rn
K(x− y)f(y)dy. (2.1)

The kernel K is a measurable function defined away from 0, satisfying certain smoothness

condition to be described later. We shall also want to point out that the typical size condition

on the kernel K given by

|K(x− y)| ≤ C

|x− y|n
(2.2)

is not be assumed in the Lp − Lq estimates (Theorems 2.1 and 2.12) and, in these cases, we

will be focused on the different smoothness conditions on K.

Related with the singular integral operator T , we can formally define the commutator with

symbol b ∈ L1
loc(Rn), by

[b, T ]f = b Tf − T (bf).

The higher order commutator of order m ∈ N0 = N ∪ {0} of T is defined by

T 0
b = T, Tmb = [b, Tm−1

b ].

Let 0 < δ < 1. We say that a function b belongs to the space Λ(δ) if there exists a positive

constant C such that, for every x, y ∈ Rn

|b(x)− b(y)| ≤ C|x− y|δ. (2.3)

The smallest of such constants will be denoted by ‖b‖Λ(δ). We shall be dealing with commuta-

tors with symbols belonging to this class of functions.

Given a weight w, that is, a non-negative and locally integrable function, we say that a mea-

surable function f belongs to Lpw(Rn) for some 1 < p <∞, if fw ∈ Lp(Rn).

We are interested in studying the boundedness properties of the commutators Tmb on weighted

spaces, where the symbol b ∈ Λ(δ). We shall first consider their continuity on weighted Lebesgue

spaces of the type defined previously. We shall also analyze the boundedness of Tmb from

weighted Lebesgue spaces into certain weighted version of Lipschitz spaces. For a weight w
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and 0 ≤ δ < 1, these spaces are denoted by Lw(δ) and collect the functions f ∈ L1
loc(Rn) that

satisfy

sup
B

‖wχB‖∞
|B|1+δ/n

ˆ
B
|f(x)− fB|dx <∞,

where ‖g‖∞ denotes the essential supremum of a measurable function g. The case δ = 0 of the

space above was introduced in [29] as a weighted version of the space of functions with bounded

mean oscillation. It is well known that, when w = 1 and 0 < δ < 1, this space coincides with

the space Λ(δ) defined in (2.3) and, if w = 1 and δ = 0, this is the well known BMO space.

The classes of weights we will be dealing with are the well-known Ap,q classes of Muckenhoupt

and Wheeden ([29]). For 1 ≤ p, q <∞ these classes are defined as the weights w such that

sup
B

(
1

|B|

ˆ
B
w(x)qdx

)1/q ( 1

|B|

ˆ
B
w(x)−p

′
dx

)1/p′

<∞.

When q =∞, we understand that w ∈ Ap,∞ as w−p
′ ∈ A1.

We classify the operators defined in (2.1) into two different types, according to the smoothness

conditions satisfied by K.

2.1 Singular integral operators with Lipschitz regularity

In addition to the properties of the kernel K given above, we shall first suppose that it satisfies

the smoothness condition H∗∞, which is given by∣∣K(x− y)−K(x′ − y)
∣∣+
∣∣K(y − x)−K(y − x′)

∣∣ ≤ C |x− x′|η
|x− y|n+η ,

for some positive constant C and some 0 < η ≤ 1, whenever |x− y| ≥ 2 |x− x′|.

We now give the boundedness results between weighted Lebesgue spaces for the higher order

commutators of T with Lipschitz symbols. Recall that, in this result, no condition on the size

of the kernel K is imposed. The corresponding result for b ∈ BMO was proved in [34]. In order

to simplify the hypothesis we shall suppose that m ∈ N0 with the convention that β/0 =∞ if

β > 0.

Theorem 2.1. Let 0 < δ < min{η, n/m}. Let 1 < p < n/(mδ), 1/q = 1/p − mδ/n and

b ∈ Λ(δ). If w ∈ Ap,q, then there exists a positive constant C such that(ˆ
Rn
|Tmb f(x)|qw(x)q dx

)1/q

≤ C ‖b‖mΛ(δ)

(ˆ
Rn
|f(x)|pw(x)pdx

)1/p

for every f ∈ Lpw(Rn).
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Remark 2.2. When m = 0 it is well known that the result above holds (see, for example [16]

and, for the unweighted case, [28]). Notice that there are no symbols or parameters δ in the

hypothesis in this case.

The next result gives the continuity properties of Tmb between weighted Lebesgue spaces and

Lw(δ̃) spaces. We additionally suppose that the kernel K satisfies the size condition (2.2).

When the symbol b of the commutator belongs to BMO, H is the Hilbert transform and

m = 1, it was proved in [20] that the boundedness of [b,H] from L∞(R) into BMO implies

that b is a constant function. So, in this sense, our next result is an important contribution.

Theorem 2.3. Let 0 < δ < min{η, n/m}. Let n/(mδ) ≤ r < n/((m−1)δ), if m ≥ 1 or r =∞,

if m = 0. Let δ̃ = mδ − n/r and b ∈ Λ(δ). If w ∈ Ar,∞ if r <∞ or w−1 ∈ A1, if r =∞, then

there exists a positive constant C such that

‖Tmb f‖Lw(δ̃)
≤ C ‖b‖mΛ(δ) ‖fw‖Lr

for every f ∈ Lrw(Rn).

Remark 2.4. When m = 1, w = 1, the result above was proved in [28] in the general context of

non-doubling measures. On the other hand, when m = 0 this result is a generalization of that

obtained in [30] for the Hilbert transform.

Remark 2.5. If r = n/(mδ), then δ̃ = 0 and the space Lw(δ̃) is the weighted version of the

BMO space introduced in [29]. Thus, this is the endpoint value from which the Lebesgue

spaces change into BMO and then into Lipschitz spaces, when the operator Tmb acts.

For the extreme value r = n/((m − 1)δ), m ∈ N and 0 < δ < min{η, n/m}, we obtain

the following endpoint result in order to characterize the symbol b in Λ(δ) in terms of the

boundedness of Tmb in the sense of Theorem 2.3. In order to give this result we introduce

some previous notation. For k = 0, 1, ...,m we denote ck = m!/(k!(m− k)!). In addition, if

x, u ∈ Rn, we denote S(x, u, k) = (b(x) − bB)m−kT ((b − bB)kf2)(u), where f2 = fχRn\B for a

given ball B and a locally integrable function f .

Theorem 2.6. Let m ∈ N, 0 < δ < min{η, n/m} and r = n/((m− 1)δ). If w ∈ An/(mδ),∞ and

b ∈ Λ(δ), the following statements are equivalent.

(i) Tmb : Lrw(Rn) ↪→ Lw(δ);

(ii) There exists a positive constant C such that

‖wχB‖∞
|B|1+ δ

n

ˆ
B

∣∣∣∣∣
m∑
k=0

ck [S(x, u, k)− (S(·, u, k))B]

∣∣∣∣∣ dx ≤ C ‖fw‖r , (2.4)

for every ball B ⊂ Rn, u ∈ B and f ∈ L1
loc(Rn).
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Remark 2.7. The same result holds if we take δ = 0, r = ∞, b ∈ BMO and w−1 ∈ A1 in the

hypothesis of the previous result.

Remark 2.8. In the unweighted case, when m = 1, and consequently, r =∞, the result above

was proved in [28] in a more general context of non-homogeneous spaces. Certainly, their

result was inspired in the article of [20], where the same result is proved for m = 1, w = 1 and

b ∈ BMO.

Remark 2.9. As we said previously, in [20] the authors obtained that, if H is the Hilbert

transform, b ∈ BMO, n = 1, m = 1 and w = 1, the boundedness of the commutator [b,H]

from L∞(R) into BMO implies that b is a constant function. Let us recall that the Hilbert

transform H is defined by

Hf(x) = p.v.

ˆ
R

f(y)

x− y
dy.

In our case, in the same situation on m and w but taking b ∈ Λ(δ), by (2.4) we can deduce

that, if [b,H] is bounded from L∞ into L(δ), then

1

|B|1+ δ
n

ˆ
B

∣∣∣∣∣
1∑

k=0

ck [S(x, u, k)− (S(·, u, k))B]

∣∣∣∣∣ dx ≤ C ‖f‖∞ .
It is not difficult to see that

1

|B|1+ δ
n

ˆ
B

∣∣∣∣∣
1∑

k=0

ck [S(x, u, k)− (S(·, u, k))B]

∣∣∣∣∣ dx =
1

|B|1+ δ
n

ˆ
B
|b(x)− bB| dx

∣∣∣∣∣
ˆ

(2B)c

f(y)

u− y
dy

∣∣∣∣∣ ,
so that

1

|B|1+ δ
n

ˆ
B
|b(x)− bB| dx

∣∣∣∣∣
ˆ

(2B)c

f(y)

u− y
dy

∣∣∣∣∣ ≤ C ‖f‖∞ .
Following the same arguments as in [20] with fN (y) = χB(0,N)(u− y)sig(u− y) for N ∈ N, we

obtain that
1

|B|1+ δ
n

ˆ
B
|b(x)− bB| dx

ˆ
(2B)c∪{|u−y|<N}

dy

|u− y|
≤ C.

Due to the fact that
´

(2B)c∪{|u−y|<N}
dy
|u−y| → ∞ when N → ∞, we have b(x) = bB almost

everywhere, for every ball B, which yields that b is essentially constant.

2.2 Singular integral operators with Hörmander type regularity

Before introducing the smoothness conditions on the kernel that we shall consider in this

section, we give some previous notation.
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By a Young function we mean a function Φ : [0,∞) → [0,∞) that is increasing, convex and

verifies Φ(0) = 0 and Φ(t) → ∞ when t → ∞. The Φ-Luxemburg average over a ball B is

defined, for a locally integrable function f , by

‖f‖Φ,B = inf

{
λ > 0 :

1

|B|

ˆ
B

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

It is well-known that the commutators of singular integral operators can be controlled, in some

sense, by maximal type operators associated to Young functions that involve these averages.

More precisely, if f ∈ L1
loc(Rn), we define the maximal operator associated to a Young function

Φ, by

MΦf(x) = sup
B3x
‖f‖Φ,B,

where the supremum is taken over every ball B that contains x ∈ Rn. The fractional version

of this operator is given, for 0 < α < n, by

Mα,Φf(x) = sup
B3x
|B|α/n‖f‖Φ,B.

Given a Young function Φ, the following Hölder’s type inequality holds for every pair of mea-

surable functions f, g
1

|B|

ˆ
B
|f(x)g(x)|dx ≤ 2‖f‖Φ,B‖g‖Φ̃,B,

where Φ̃ is the complementary Young function of Φ, defined by

Φ̃(t) = sup
s>0
{st− Φ(s)}.

It is easy to see that t ≤ Φ−1(t)Φ̃−1(t) ≤ 2t for every t > 0.

Moreover, given Φ,Ψ and Θ Young functions verifying that Φ−1(t)Ψ−1(t) . Θ−1(t) for every

t > 0, the following generalization holds

‖fg‖Θ,B . ‖f‖Φ,B‖g‖Ψ,B.

The expression A . B means that there exists a positive constant C such that A ≤ CB. With

A ≈ B we mean A . B and B . A.

We are now in position to define the smoothness condition on K. These definitions were

introduced in [27]. We say that K ∈ HΦ if there exist c ≥ 1 and C > 0 such that for every

y ∈ Rn and R > c|y|

∞∑
j=1

(2jR)n‖ (K(· − y)−K(·))χ|·|∼2jR‖Φ,B(0,2j+1R) ≤ C, (2.5)
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where | · | ∼ s means the set {x ∈ Rn : s < |x| ≤ 2s}.

For example, when Φ(t) = tq, 1 ≤ q <∞, we denote this class by Hq and it can be written as

∞∑
j=1

(2jR)n

(
1

(2jR)n

ˆ
|x|∼2jR

|K(x− y)−K(x)|qdx

)1/q

≤ C.

We say thatK ∈ H∞ ifK satisfies condition (2.5) with ‖.‖L∞,B(0,2j+1R) in place of ‖.‖Φ,B(0,2j+1R).

The kernels given above are, a priori, less regular than the kernel of the singular integral

operator T defined previously and they have been studied by several authors. For example, in

[26], the author studied singular integrals given by a multiplier. If m : Rn → R is a function,

the multiplier operator Tm is defined, through the Fourier transform, as T̂mf(ζ) = m(ζ)f̂(ζ)

for f in the Schwartz class. Under certain conditions on the derivatives of m, the multiplier

operator Tm can be seen as the limit of convolution operators TNm , having a simpler form. Their

corresponding kernels KN belong to the class Hr with constant independent of N , for certain

values of r > 1 given by the regularity of the function m.

The classes Hq, 1 ≤ q < ∞, appeared implicit in [24] where it is shown that the classical

Lq-Dini condition for K implies K ∈ Hq (see also [37] and [38]).

Other examples of this type of operators are singular integrals operators with rough kernels,

that is, with kernel K(x) = Ω(x)|x|−n where Ω is a function defined on the unit sphere Sn−1 of

Rn, extended to Rn \ {0} radially. The function Ω is an homogeneous function of degree 0. In

[26, Proposition 4.2], the authors showed that K ∈ HΦ, for certain Young function Φ, provided

that Ω ∈ LΦ(Sn−1) with ˆ 1

0
ωΦ(t)

dt

t
<∞,

where ωΦ is the LΦ-modulus of continuity of Ω given by

ωΦ(t) = sup
|y|≤t
||Ω(·+ y)− Ω(·)||Φ,Sn−1 <∞,

for every t ≥ 0.

Let T+ be the differential transform operator studied in [3], [22] and [26] and defined by

T+f(x) =
∑
j∈Z

(−1)j (Djf(x)−Dj−1f(x)) ,

where

Djf(x) =
1

2j

ˆ x+2j

x
f(t) dt
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The operator above appears when dealing with the rate of convergence of the averages Djf ,

and it is a one-sided singular integral of convolution type with a kernel K supported in (0,∞)

given by

K(x) =
∑
j∈Z

(−1)j
(

1

2j
χ(−2j ,0)(x)− 1

2j−1
χ(−2j−1,0)(x)

)
.

In [26] the authors proved that K ∈
⋂
r≥1Hr but K /∈ H∞. Moreover, K ∈ Hψ, where

ψ(t) = exp t1/1+ε − 1.

As we said previously, we are interested in studying the higher order commutators of T . Since

we are dealing with symbols of Lipschitz type, the smoothness condition associated to these

commutators is defined as follows.

Definition 2.10. Let m ∈ N0, 0 ≤ δ < min{1, n/m} and let Φ be a Young function. We say

that K ∈ HΦ,m(δ) if

∞∑
j=1

(2j)mδ(2jR)n‖ (K(· − y)−K(·))χ|·|∼2jR‖Φ,B(0,2j+1R) ≤ C.

for some constants c ≥ 1 and C > 0 and for every y ∈ Rn with R > c|y|.

Clearly, when δ = 0 or m = 0, HΦ,m(δ) = HΦ.

Remark 2.11. It is easy to see that HΦ,m(δ2) ⊂ HΦ,m(δ1) ⊂ HΦ whenever 0 ≤ δ1 < δ2 <

min{1, n/m}.

As we have mentioned above, Fourier multipliers and singular integrals with rough kernels

are examples of singular integral operators with K ∈ HΦ for certain Young function Φ. By

assuming adequate conditions depending on δ on the multiplier m, or on the LΦ-modulus of

continuity ωΦ, we can obtain kernels K ∈ HΦ,m(δ). This fact can be proved by adapting

Proposition 4.2 and 6.2 in [26].

We shall also deal with a class of Young functions that arises in connection with the boundedness

of the fractional maximal operator MΨ on weighted Lebesgue spaces (see §4). Given 0 < θ < n,

1 ≤ β < p < n/θ and a Young function Ψ, we shall say that Ψ ∈ Bθ,β if t−θ/nΨ−1(t) is the

inverse of a Young function and Ψ1+ ρθ
n ∈ Bρ for every ρ > nβ/(n− θβ), that is, there exists a

positive constant c such that ˆ ∞
c

Ψ1+ ρθ
n

tρ
dt

t
<∞

for each of those values of ρ.

We now state the following generalizations of Theorems 2.1 and 2.3. We shall consider again

m ∈ N0. Recall that, as in Theorem 2.1, no condition on the size of K is assumed.
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Theorem 2.12. Let 0 < δ < min{1, n/m}. Let 1 < p < n/(mδ), 1/q = 1/p −mδ/n and b ∈
Λ(δ). Assume that T has a kernel K ∈ HΦ for a Young function Φ such that its complementary

function Φ̃ ∈ Bmδ,β for some 1 ≤ β < p. Then, if w is a weight verifying wβ ∈ A p
β
, q
β

, there

exists a positive constant C such that(ˆ
Rn
|Tmb f(x)|qw(x)qdx

)1/q

≤ C‖b‖mΛ(δ)

(ˆ
Rn
|f(x)|pw(x)pdx

)1/p

for every f ∈ Lpw(Rn).

Remark 2.13. If we consider, for example, Φ(t) = et
1/γ−e with γ > 0, then Φ̃(t) ≈ t(1+log+ t)γ

and this function verifies condition Bmδ,1. Thus, Φ satisfies the hypothesis of the theorem

above and, in this case, we can take w ∈ Ap,q. As we have mentioned before, condition Bmδ,β is

related with the boundedness of the corresponding fractional maximal operator M
mδ,Φ̃

between

Lpw and Lqw when wβ ∈ A p
β
, q
β

(see Theorem 4.5 below). When β > 1, a typical example is

Φ̃(t) = tβ(1+log+ t)γ for γ ≥ 0. In this case, the Young function Φ related with the smoothness

condition on the kernel K given in the theorem above is Φ(t) = tβ
′
(1 + log+ t)−γ/(β−1), where

β′ = β/(β − 1).

Theorem 2.14. Let 0 < δ < min{1, n/m}, n/(mδ) ≤ r < n/((m − 1)δ) and δ̃ = mδ − n/r.
Let w be a weight such that wβ ∈ Ar/β,∞ for some 1 < β < r. Assume that T has a kernel

K ∈ HΦ,m(δ) for a Young function Φ such that Φ−1(t) . t
β−1
r for every t > 0. If b ∈ Λ(δ),

then there exists a positive constant C such that

‖Tmb f‖Lw(δ̃)
≤ C ‖b‖mΛ(δ) ‖fw‖Lr

for every f ∈ Lrw(Rn).

Theorem 2.15. Let m ∈ N, 0 < δ < min{1, n/m} and r = n/((m − 1)δ). Let w be a weight

such that wβ ∈ Ar/β,∞ for some 1 < β < r. Let T be a singular integral operator with kernel

K ∈ HΦ,m(δ) where Φ is a Young function verifying Φ−1(t) . t
β−1
r for every t > 0, and

Φ̃ ∈ Bmδ,β. If b ∈ Λ(δ), the following statements are equivalent,

(i) Tmb : Lrw(Rn) ↪→ Lw(δ);

(ii) There exists a positive constant C such that

‖wχB‖∞
|B|1+ δ

n

ˆ
B

∣∣∣∣∣
m∑
k=0

ck [S(x, u, k)− (S(·, u, k))B]

∣∣∣∣∣ dx ≤ C ‖fw‖r , (2.6)

for every ball B ⊂ Rn, u ∈ B and f ∈ L1
loc(Rn).
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3 Extrapolation to variable Lebesgue spaces

We are now interested in obtaining results of the type described above in the variable Lebesgue

space context by using extrapolation techniques. In order to establish the main theorems we

give some definitions and notations.

Let p(·) : Rn → [1,∞) be a measurable function. For A ⊂ Rn we define

p−A = ess inf
x∈A

p(x) p+
A = ess sup

x∈A
p(x).

For simplicity we denote p+ = p+
Rn and p− = p−Rn .

We say that p(·) ∈ P(Rn) if 1 < p− ≤ p(·) ≤ p+ < ∞ and we say that p(·) ∈ P log(Rn) if

p(·) ∈ P(Rn) and it satisfies the following inequalities

|p(x)− p(y)| ≤ C

log(e+ 1/|x− y|)
, for every x, y ∈ Rn.

and

|p(x)− p(y)| ≤ C

log(e+ |x|)
, with |y| ≥ |x|.

The variable exponent Lebesgue space Lp(·)(Rn) is the set of the measurable functions f defined

on Rn such that, for some positive λ, the convex functional modular

%(f/λ) =

ˆ
Rn
|f(x)/λ|p(x) dx

is finite. A Luxemburg type norm can be defined in Lp(·)(Rn) by taking

‖f‖Lp(·) = ‖f‖p(·) = inf{λ > 0 : %(f/λ) ≤ 1}.

These spaces are special cases of Museliak-Orlicz spaces (see [31]), and generalize the classical

Lebesgue spaces. For more information see, for example [23], [12], [15].

Let p(·) ∈ P(Rn) be an exponent such that 1 < β ≤ p− ≤ p(·) ≤ p+ < nβ
(n−β)+

and let
δ(·)
n = 1

β −
1
p(·) . The space L(δ(·)) is defined by the set of the measurable functions f such that

|||f |||L(δ(·)) = sup
B

1

|B|
1
β ‖χB‖p′(·)

ˆ
B
|f −mBf | <∞.

When p(·) is equal to a constant p, this space coincide with the space L1(n/β − n/p), which is

also the same as Λ(n/β − n/p).
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The spaces L(δ(·)) were δ(·)
n = 1

β −
1
p(·) were introduced in [36]. In that article, the authors

give conditions on the exponent p(·) that guarantee the boundedness of the fractional integral

operator Iα from Lp(·) spaces into L(δ(·)) spaces.

We say that (p(·), v) is an M -pair if and only if the Hardy-Littlewood maximal operator M

is bounded on L
p(·)
v (Rn) and L

p′(·)
v−1 (Rn), where L

p(·)
w (Rn) denotes the space of all measurable

functions f such that fw ∈ Lp(·)(Rn).

Let 0 ≤ θ < n and p(·), q(·) ∈ P(Rn) such that 1/q(·) = 1/p(·)− θ/n, p+ < n/θ. We say that

a weight w ∈ Ap(·),q(·) if there exists a positive constant C such that for every ball B

‖wχB‖q(·)‖w−1χB‖p′(·) ≤ C|B|1−θ/n.

When p(·) = q(·) we denote this class by Ap(·). It is well know that w ∈ Ap(·) if and only if

M : L
p(·)
w ↪→ L

p(·)
w ([11]).

In [14] the authors proved the following extrapolation results.

Theorem 3.1 ([14]). Suppose that for some p0, q0, 1 < p0 ≤ q0 < ∞, and every w0 ∈ Ap0,q0,

the inequality

‖fw0‖q0 ≤ C ‖gw0‖p0 ,

holds for some positive constant C.

Given p(·), q(·) ∈ P(Rn), suppose that

1

p(·)
− 1

q(·)
=

1

p0
− 1

q0
=

1

σ′
.

If w ∈ Ap(·),q(·) and (q(·)/σ, wσ) is an M -pair, then

‖fw‖Lq(·) ≤ C ‖gw‖Lp(·) .

The theorem holds for p0 = 1 if we assume only that the maximal operator is bounded on

L
(q(·)/q0)′

w−q0
(Rn).

It is easy to see that, if 0 < δ < min{η, n/m}, 1/p(·) − 1/q(·) = mδ/n, then w ∈ Ap(·),q(·) is

equivalent to wσ ∈ Aq(·)/σ, with σ = n/(n−mδ). This fact allows us to say that (q(·)/σ, wσ)

is an M -pair. Thus, as a consequence of Theorem 2.1, if T is defined as in this theorem, we

have that the pair (g, Tmb g) satisfies the hypothesis of Theorem 3.1. Therefore we obtain the

following result.
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Theorem 3.2. Let T be the operator defined in (2.1) with kernel K satisfying condition H∗∞.

Let 0 < δ < min{η, n/m} and b ∈ Λ(δ). Given p(·), q(·) ∈ P(Rn) such that

1

p(·)
− 1

q(·)
=
mδ

n
,

if w ∈ Ap(·),q(·) then

‖Tmb fw‖Lq(·) ≤ C ‖fw‖Lp(·) .

An analogous result can be obtained by extrapolation when the kernel K satisfies a Hörmander

type condition. Thus, by Theorem 2.12 we obtain the following theorem.

Theorem 3.3. Let T be the operator defined in (2.1). Let 0 < δ < min{1, n/m} and b ∈ Λ(δ).

Let us also suppose that K ∈ HΦ for a Young function Φ such that its complementary function

Φ̃ ∈ Bmδ,1. Given p(·), q(·) ∈ P(Rn) such that

1

p(·)
− 1

q(·)
=
mδ

n
,

if w ∈ Ap(·),q(·) then

‖Tmb fw‖Lq(·) ≤ C ‖fw‖Lp(·) .

In [4] the authors proved the following theorem, which exhibit an extrapolation result starting

from a -hypothesis that involves inequalities of the type Lsw−Lw(δ), and obtaining unweighted

estimates in the variable context of the type Lp(·) − L(δ̃(·)).

Theorem 3.4 ([4]). Let 1 < θ < ∞, 0 ≤ δ < 1, and let s be such that δ/n = 1/θ − 1/s.

Suppose that p(·) ∈ P log(Rn) and δ̃(·)/n = 1/θ − 1/p(·) with δ ≤ δ̃(·). If f and g are two

measurable functions such that the inequality

||f ||Lw(δ) ≤ C ‖gw‖s ,

holds for every weight w in As,∞ and some positive constant C = C(w), then there exits a

positive constant C such that the inequality

||f ||L(δ̃(·)) ≤ C ‖g‖p(·)

holds.

Thus, from Theorem 2.3 we can derive the following result in the variable exponent context.

Theorem 3.5. Let T be the operator defined in (2.1) with kernel K satisfying conditions (2.2)

and H∗∞. Let 0 < δ < min{η, n/m} and b ∈ Λ(δ). Let p(·) ∈ P(Rn) such that n/mδ ≤ p− ≤
p(·) ≤ p+ < n/((m− 1)δ) and δ̃(·)/n = mδ/n− 1/p(·).Then there exists a positive constant C

such that

||Tmb f ||L(δ̃(·)) ≤ C ‖f‖p(·) .

13



4 Auxiliary results

In this section we give some previous results. We begin with some inequalities involving func-

tions in Λ(δ).

Lemma 4.1. Let 0 < δ < 1 and B ⊂ Rn a ball. If b ∈ Λ(δ), then

(i) for every y ∈ λB, λ ≥ 1,

|b(y)− bB| ≤ C‖b‖Λ(δ)|λB|
δ
n .

(ii) for every j ∈ N
|b2j+1B − b2B| ≤ 2nj|2j+1B|

δ
n ‖b‖Λ(δ).

In order to obtain the boundedness result between Lebesgue spaces, we prove the follow-

ing key estimate, which shows how can we control the higher order commutators of T by

a fractional maximal function via the sharp maximal operator M ]
0,γ , 0 < γ < 1, given by

M ]
0,γf := M ]

0(|f |γ)1/γ where

M ]
0f(x) = sup

B3x
inf
a∈R

1

|B|

ˆ
B
|f(y)− a| dy.

Lemma 4.2. Let m ∈ N, 0 < γ < 1/m and 0 < δ < min{1, n/m}. Let b ∈ Λ(δ) and T a

singular integral operator with kernel K. Then, there exists a positive constant C such that

(i) if K ∈ H∗∞,

M ]
0,γ(Tmb f)(x) . ‖b‖mΛ(δ)

m−1∑
j=0

Mθj ,γ(|T jb f |)(x) +Mθ0f(x)

 ,

where θj = δ(m− j), j = 0, . . . ,m.

(ii) if K ∈ HΦ for some Young function Φ,

M ]
0,γ(Tmb f)(x) . ‖b‖mΛ(δ)

m−1∑
j=0

Mθj ,γ(|T jb f |)(x) +M
θ0,Φ̃

f(x)

 ,

where θj = δ(m− j), j = 0, . . . ,m, and Φ̃ is the complementary function of Φ.

Remark 4.3. For 0 < δ < 1, m = 1 and K ∈ H∗∞ and homogeneous of degree −n, the proof of

(i) can be found in [35] for a larger class of Lipschitz spaces with variable parameter.
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Proof of Lemma 4.2: Fix B a ball containing x, and decompose the commutator in the follow-

ing way (see, for instance, [17] or [33])

Tmb f(x) =
m−1∑
j=0

Cj,m(b(x)− b2B)m−jT jb f(x) + T ((b− b2B)mf)(x).

If we split f = f1 + f2 where f1 = fχ2B, it is sufficient to estimate, for 0 < γ < 1/m, the

average (
1

|B|

ˆ
B
|Tmb f(y)− T ((b− b2B)mf2)(xB)|γdy

)1/γ

≤ I + II + III,

where xB denotes the center of B, and

I =
m−1∑
j=0

(
1

|B|

ˆ
B

(b(y)− b2B)(m−j)γ |T jb f(y)|γdy
) 1
γ

,

II =

(
1

|B|

ˆ
B
|T ((b− b2B)mf1)(y)|γdy

) 1
γ

,

III =

(
1

|B|

ˆ
B
|T ((b− b2B)mf2)(y)− T ((b− b2B)mf2)(xB)|γdy

) 1
γ

.

For simplicity, we will assume ‖b‖Λ(δ) = 1. We shall first estimate I. From Lemma 4.1 (i) we

have

I .
m−1∑
j=0

‖b‖m−jΛ(δ) |B|
δ(m−j)

n

(
1

|B|

ˆ
B
|T jb f(y)|γdy

) 1
γ

= C
m−1∑
j=0

(
1

|B|1−
(m−j)δγ

n

ˆ
B

∣∣∣T jb f(y)
∣∣∣γ)1/γ

.
m−1∑
j=0

Mθj ,γ(|T jb f |)(x)

where θj = (m− j)δ. Note that the last maximal operator is of fractional-type since 0 < θj <

(m− j)n/m ≤ n for every 0 ≤ j ≤ m− 1.

We will now estimate II. Since T is of weak type (1, 1) and 0 < γ < 1, from Kolmogorov

inequality and the fact that y, z ∈ B we obtain

II ≤ 1

|B|

ˆ
2B
|b(z)− b2B|m|f(z)|dz

≤ |B|mδ/n 1

|B|

ˆ
2B
|f(z)|dz

.Mθ0f(x).
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Since 0 < δ < n/m, it is clear that 0 < θ0 < n, so Mθ0 is a fractional-type maximal operator.

In order to estimate III, we first observe that, by Jensen’s inequality

III ≤ 1

|B|

ˆ
B
|Tmb ((b− b2B)mf2) (y)− T ((b− b2B)mf2)(xB)|dy,

and, setting Bj = 2jB, the integrand can be estimated, using Lemma 4.1 (i), as follows

|Tmb ((b− b2B)mf2) (y)− T ((b− b2B)mf2)(xB)| (4.1)

≤
∞∑
j=1

ˆ
Bj+1\Bj

|K(y − z)−K(xB − z)||b(z)− b2B|m|f(z)|dz

. ‖b‖mΛ(δ)

∞∑
j=1

|Bj+1|
mδ
n

ˆ
Bj+1\Bj

|K(y − z)−K(xB − z)||f(z)|dz.

Here, we must distinguish the cases K ∈ H∗∞ and K ∈ HΦ.

If K ∈ H∗∞,

|Tmb ((b− b2B)mf2)(y)− T ((b− b2B)mf2)(xB)|

. ‖b‖mΛ(δ)

∞∑
j=1

|Bj+1|
δm
n

ˆ
Bj+1\Bj

|y − xB|η

|y − z|n+η
|f(z)|dz

. ‖b‖mΛ(δ)

∞∑
j=1

|Bj+1|
mδ
n 2−jη

1

|Bj+1|

ˆ
Bj+1

|f(z)|dz

≈ ‖b‖mΛ(δ)

∞∑
j=1

2−jη
1

|Bj+1|1−
θ0
n

ˆ
Bj+1

|f(y)|dy

≤ ‖b‖mΛ(δ)Mθ0f(x)

∞∑
j=1

2−jη . ‖b‖mΛ(δ)Mθ0f(x),

since η > 0. Therefore

III . ‖b‖mΛ(δ)Mθ0f(x).

Let us now consider the case K ∈ HΦ. Applying Hölder’s inequality with Φ and Φ̃ in (4.1), we

obtain

|Tmb ((b− b2B)mf2)(y)− T ((b− b2B)mf2)(xB)|

. ‖b‖mΛ(δ)

∞∑
j=1

|Bj+1|
mδ
n

+1‖ (K(· − (y − xB))−K(·))χ|·|∼2jR‖Φ,Bj+1‖f‖Φ̃,Bj+1

. ‖b‖mΛ(δ)

∞∑
j=1

|Bj+1|‖ (K(· − (y − xB))−K(·))χ|·|∼2jR‖Φ,Bj+1 |Bj+1|
mδ
n ‖f‖

Φ̃,Bj+1
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. ‖b‖mΛ(δ)Mθ0,Φ̃
f(x)

∞∑
j=1

(2jR)n‖ (K(· − (y − xB))−K(·))χ|·|∼2jR‖Φ,Bj+1

. ‖b‖mΛ(δ)Mθ0,Φ̃
f(x).

Therefore,

III . ‖b‖mΛ(δ)Mθ0,Φ̃
f(x).

Combining all these estimates, we obtain the desired pointwise inequalities.

The following result is a variant of the well-known Fefferman-Stein’s inequality (see [16]) and

it will be a key estimate to prove Theorem 2.1.

Lemma 4.4 ([34]). Let 0 < p <∞ and 0 < γ < 1. Let w be a weight in the A∞ class. Then,

there exists a positive constant C such thatˆ
Rn
Mγf(x)pw(x)dx ≤ C[w]A∞

ˆ
Rn
M ]

0,γf(x)pw(x)d (4.2)

holds for every function f for which the left hand side is finite.

We shall also need two results involving the boundedness of fractional maximal operators

associated with Young functions, that can be found in [2].

Theorem 4.5 ([2]). Let 0 < α < n, 1 ≤ β < p < n/α and 1/q = 1/p−α/n. Let w be a weight

such that wβ ∈ Ap/β,q/β. Let Ψ be a Young function that satisfies Ψ ∈ Bα,β. Then, Mα,Ψ is

bounded from Lp(wp,Rn) into Lq(wq,Rn).

Note that if Ψ = tβ(1 + log+ t)γ for any γ ≥ 0, then Ψ ∈ Bα,β and the following result holds.

Theorem 4.6 ([2]). Let 0 < α < n, 1 < p < n/α and 1/q = 1/p−α/n. Let w be a weight and

Ψ(t) = tβ(1 + log+ t)γ where 1 ≤ β < p and γ ≥ 0. Then, Mα,Ψ is bounded from Lp(wp,Rn)

into Lq(wq,Rn) if and only if wβ ∈ Ap/β,q/β.

In order to prove Theorem 2.6, we shall need the following estimate.

Lemma 4.7. Let 0 < δ < min{η, n/(m− 1)}, for 0 < η ≤ 1. Let r = n/((m− 1)δ), w ∈ Ar,∞,

b ∈ Λ(δ) and f ∈ Lrw(Rn). Let B ⊂ Rn be a ball and f2 = fχRn\2B. If T is a singular integral

operator with kernel K ∈ H∗∞, then, for every x, u ∈ B,

∣∣∣T ((b− bB)kf2)(x)− T ((b− bB)kf2)(u)
∣∣∣ . ‖b‖kΛ(δ) ‖fw‖r |B|

δ(k−m+1)
n

‖wχB‖∞
for each k = 0, ...,m.
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Proof of Lemma 4.7. If K ∈ H∗∞, by taking x, u ∈ B, and 0 ≤ k ≤ m, and setting Bj = 2jB,

we have from Lemma 4.1 (i) that

|T ((b− bB)kf2)(x)− T ((b− bB)kf2)(u)|

≤
ˆ

(2B)c
|K(x− y)−K(u− y)| |b(y)− bB|k |f(y)| dy

. ‖b‖kΛ(δ)

∞∑
j=1

|Bj+1|
δk
n

ˆ
Bj+1\Bj

|x− u|η

|y − u|n+η |f(y)| dy

. ‖b‖kΛ(δ)

∞∑
j=1

|Bj+1|
δk
n |B|

η
n

|Bj+1|
n+η
n

ˆ
Bj+1\Bj

|f(y)| dy.

Now by Hölder’s inequality and the fact that w ∈ Ar,∞ with r = n/((m− 1)δ), we get

|T ((b− bB)kf2)(x)− T ((b− bB)kf2)(u)|

. ‖b‖kΛ(δ) ‖fw‖r
∞∑
j=1

|Bj+1|
δk
n

|Bj+1| 2jη
∥∥w−1χBj+1

∥∥
r′

. ‖b‖kΛ(δ) ‖fw‖r ‖wχB‖
−1
∞

∞∑
j=1

|Bj+1|
δ(k−m+1)

n

2jη

. ‖b‖kΛ(δ) ‖fw‖r ‖wχB‖
−1
∞ |B|

δ(k−m+1)
n

∞∑
j=1

2j(δ(k−m+1)−η)

. ‖b‖kΛ(δ) ‖fw‖r ‖wχB‖
−1
∞ |B|

δ(k−m+1)
n

where the series is summable since 0 ≤ k ≤ m and δ < η.

Lemma 4.8. Let m ∈ N, 0 < δ < min{1, n/(m − 1)}, r = n/((m − 1)δ), b ∈ Λ(δ) and

f ∈ Lrw(Rn) where w is a weight such that wβ ∈ Ar/β,∞ for some 1 < β < r. Let B ⊂ Rn be a

ball and f2 = fχRn\2B. If T is a singular integral operator with kernel K ∈ HΦ,m(δ), where Φ

is a Young function verifying Φ−1(t) . t
β−1
r for every t > 0, then, for every x, u ∈ B,

∣∣∣T ((b− bB)kf2)(x)− T ((b− bB)kf2)(u)
∣∣∣ . ‖fw‖r ‖b‖kΛ(δ) |B|

δ(k−m+1)
n

‖wχB‖∞

for each k = 0, ...,m.

Proof. Fix x, u ∈ B and 0 ≤ k ≤ m. Setting Bu = B(u,R) which satisfies B ⊂ 2Bu ⊂ 4B, and

using Lemma 4.1 (i) we have

|T ((b− bB)kf2)(x)−T ((b− bB)kf2)(u)|
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.
ˆ
Rn\Bu

|b(y)− bBu |k|K(x− y)−K(u− y)||f(y)|dy

.
∞∑
j=0

ˆ
2j+1Bu\2jBu

|b(y)− bBu |k|K(x− y)−K(u− y)||f(y)|dy

. ‖b‖kΛ(δ)

∞∑
j=0

|2j+1Bu|
δk
n

ˆ
2j+1Bu\2jBu

|K(x− y)−K(u− y)||f(y)|dy.

Since 1/r+1/(r/β)′ = 1− (β−1)/r, we can use Hölder’s inequality with Φ−1(t)t1/rt1/(r/β)′ . t

and the fact that wβ ∈ Ar/β,∞, to get

|T ((b− bB)kf2)(x)− T ((b− bB)kf2)(u)| (4.3)

. ‖b‖kΛ(δ)‖fw‖r
∞∑
j=0

|2j+1Bu|
δk
n

+ 1
r′ ‖|K(· − (u− x))−K(·)|χ|·|∼2jR‖Φ,2j+1Bu

‖w−1χ2j+1Bu‖(r/β)′

|2j+1Bu|1/(r/β)′

.
‖b‖kΛ(δ)|B|

δk
n
− 1
r ‖fw‖r

‖wχ2Bu‖∞

∞∑
j=1

(2jR)n2j(δk−
n
r

)‖|K(· − (u− x))−K(·)|χ|·|∼2jR‖Φ,2j+1Bu

≤
‖b‖kΛ(δ)|B|

δ(k−m+1)
n ‖fw‖r

‖wχB‖∞

∞∑
j=1

2jmδ(2jR)n‖|K(· − (u− x))−K(·)|χ|·|∼2jR‖Φ,2j+1Bu

.
‖b‖kΛ(δ)|B|

δ(k−m+1)
n ‖fw‖r

‖wχB‖∞
,

where we have used that δk − n/r ≤ mδ for m ∈ N, and that K ∈ HΦ,m(δ).

5 Proofs of main results

Proof of Theorem 2.1: The proof will be done by induction. Notice that when m = 0, p = q

and it is known that the boundedness result holds for Ap,p weights (see, for example, [16]). By

homogeneity we can also supposse that ‖b‖Λ(δ) = 1.

Fix m ∈ N and define the following auxiliary exponents

1

pj
=

1

q
+
δ(m− j)

n
=

1

p
− jδ

n
, j = 0, . . . ,m.

Clearly, pm = q and, if θj = (m− j)δ, we have that

1

pj
=

1

q
+
θj
n

=
1

p
− jδ

n
, j = 0, . . . ,m.

Notice also that p ≤ pj ≤ pl ≤ q for every 0 ≤ j ≤ l ≤ m.
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It is easy to see that w ∈ Ap,q yields wγ ∈ A p
γ
, q
γ

for every 0 < γ < 1, for. Moreover, from the

properties of these classes, we have that wγ ∈ A pj
γ
,
pl
γ

for every 0 ≤ j ≤ l ≤ m.

By applying Fefferman-Stein’s inequality (4.2) with wq ∈ A1+q/p′ ⊂ A∞, we get

‖wTmb f‖q ≤ ‖wMγ(Tmb f)‖q . ‖wM ]
0,γ(Tmb f)‖q.

Now, by taking 0 < γ < 1/m and since K ∈ H∗∞, from Lemma 4.2 we have that

‖wTmb f‖q .
m−1∑
j=0

‖wMθj ,γ(|T jb f |)‖q + ‖wMθ0f‖q.

Since w ∈ Ap,q and 1/q = 1/p− θ0/n, we have that

‖wTmb f‖q .
m−1∑
j=0

‖wMθj ,γ(|T jb f |)‖q + ‖fw‖p.

On the other hand, since wγ ∈ A pj
γ
, q
γ

for every j = 1, . . . ,m − 1, then the fractional maximal

operator Mθjγ is bounded from L
pj
γ (Rn) to L

q
γ (Rn). Thus, we have that

‖wTmb f‖q .
m−1∑
j=0

‖wγMθjγ(|T jb f |
γ)‖1/γq/γ + ‖wf‖p

.
m−1∑
j=0

‖wγ(T jb f)γ‖1/γpj/γ
+ ‖wf‖p

.
m−1∑
j=0

‖wT jb f‖pj + ‖wf‖p.

Since 1/pj = 1/p− (jδ)/n and w ∈ Ap,pj , we apply the inductive hypothesis to get

‖wTmb f‖q .
m−1∑
j=0

‖wf‖p + ‖wf‖p . ‖wf‖p.

Proof of Theorem 2.3: Fix f ∈ Lrw(Rn). For a ball B ⊂ Rn, set f1 = fχ2B, f2 = f − f1 and

aB = 1
|B|
´
B T

m
b f2. Then,

‖wχB‖∞
|B|

ˆ
B
|Tmb f(x)− aB| dx ≤

‖wχB‖∞
|B|

ˆ
B
|Tmb f1(x)| dx+

‖wχB‖∞
|B|

ˆ
B
|Tmb f2(x)− aB| dx

= I1 + I2.

Let us first notice that, since w ∈ Ar,∞, there exists 1 < s′ < r such that w ∈ As′,∞ and we

can choose 1 < p < n/(mδ) ≤ r such that 1
s = 1

p −
mδ
n .
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Thus, from theorem 2.1, the estimate of I1 is as follows

I1 =
‖wχB‖∞
|B|

ˆ
B
|Tmb f1(x)| dx

≤
‖wχB‖∞
|B|

‖Tmb f1w‖s‖w−1χB‖s′

≤ C‖b‖mΛ(δ)

1

|B|1/s
‖fwχB‖p

≤ C‖b‖mΛ(δ)

|B|mδ/n

|B|1/p
‖fwχB‖p

≤ C‖b‖mΛ(δ)|B|
mδ/n−1/r‖fw‖r

≤ C‖b‖mΛ(δ)|B|
δ̃/n‖fw‖r.

For I2, we first estimate the difference |Tmb f2(x)− (Tmb f2)B| for every x ∈ B. Since

|Tmb f2(x)− (Tmb f2)B| ≤
1

|B|

ˆ
B
|Tmb f2(x)− Tmb f2(y)| dy,

we analyze A = |Tmb f2(x)− Tmb f2(y)|. If x, y ∈ B

A ≤
ˆ

(2B)c
|(b(x)− b(z))mK(x− z)− (b(y)− b(z))mK(y − z)| |f(z)| dz

≤
ˆ

(2B)c
|b(x)− b(z)|m |K(x− z)−K(y − z)| |f(z)| dz

+

ˆ
(2B)c

|(b(x)− b(z))m − (b(y)− b(z))m| |K(y − z)| |f(z)| dz

≤
ˆ

(2B)c
|b(x)− b(z)|m |K(x− z)−K(y − z)| |f(z)| dz

+ |b(x)− b(y)|
m−1∑
k=0

ˆ
(2B)c

|b(x)− b(z)|m−1−k |b(y)− b(z)|k |K(y − z)| |f(z)| dz

= I3 + I4.

By the definition of Λ(δ), we get that

I3 . ‖b‖mΛ(δ)

ˆ
(2B)c

|x− z|δm |K(x− z)−K(y − z)| |f(z)| dz

. ‖b‖mΛ(δ)

∞∑
j=1

ˆ
2j+1B\2jB

|x− z|δm |x− y|η

|x− z|n+η |f(z)| dz

. ‖b‖mΛ(δ)

∞∑
j=1

2jδm|B|
δm
n

2j(n+η)|B|

ˆ
2j+1B\2jB

|f(z)| dz

. ‖b‖mΛ(δ) ‖fw‖r
∞∑
j=1

2jδm|B|
δm
n

2jη|2jB|
∥∥w−1χ2j+1B

∥∥
r′
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.
Then, by Hölder’s inequality, the definition of δ̃ and the fact that w ∈ Ar,∞, we deduce that

I3 . ‖b‖mΛ(δ) ‖fw‖r |B|
δ̃
n

∞∑
j=1

2j(δ̃−η)

∥∥w−1χ2j+1B

∥∥
r′

|2j+1B|1/r′
. [w]Ar,∞

‖b‖mΛ(δ) ‖fw‖r |B|
δ̃
n

‖wχB‖∞
.

In order to estimate I4, we use that b ∈ Λ(δ) to get that

I4 . ‖b‖Λ(δ) |x− y|
δ ‖b‖m−1

Λ(δ)

m−1∑
k=0

∞∑
j=1

ˆ
2j+1B\2jB

|x− z|δ(m−1−k) |y − z|δk |K(x− z)| |f(z)| dz

. ‖b‖mΛ(δ) |B|
δ
n

∞∑
j=1

|2j+1B|
δ(m−1)

n
−1

ˆ
2j+1B\2jB

|f(z)| dz

. ‖b‖mΛ(δ) ‖fw‖r|B|
δ
n

∞∑
j=1

|2j+1B|
δ(m−1)

n
−1‖w−1χ2j+1B‖r′

.
‖b‖mΛ(δ) ‖fw‖r|B|

δ̃
n

‖wχB‖∞

∞∑
j=1

2j(δ̃−δ)

.
‖b‖mΛ(δ) ‖fw‖r|B|

δ̃
n

‖wχB‖∞
.

We are done.

Proof of Theorem 2.6 . Let B ⊂ Rn be a ball and x ∈ B. Let f = f1 + f2 with f1 = fχ2B.

Then,

Tmb f(x)− (Tmb f)B =Tmb f1(x)− (Tmb f1)B

+
m∑
k=0

ck

[
(b(x)− bB)m−kT ((b− bB)kf2)(x)

− 1

|B|

ˆ
B

(b(z)− bB)m−kT ((b− bB)kf2)(z)dz

]
.

We can rewrite the above identity in the following form

Tmb f(x)− (Tmb f)B = σ1(x)− (σ1)B

+

m∑
k=0

ck [σ2(x, u, k)− (σ2(·, u, k))B + σ3(x, u, k)− (σ3(·, u, k))B] ,

where

σ1(x) = Tmb f1(x),

σ2(x, u, k) = (b(x)− bB)m−k
(
T ((b− bB)kf2)(x)− T ((b− bB)kf2)(u)

)
,
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σ3(x, u, k) = (b(x)− bB)m−kT ((b− bB)kf2)(u).

For σ1, since w ∈ A n
mδ

,∞, there exists 1 < p < n
mδ such that w ∈ Ap,∞. We take 1

q = 1
p −

mδ
n ,

so q > p and w ∈ Aq,∞ and, moreover, w ∈ Ap,q. By applying Hölder’s inequality and the

boundedness of Tmb from Lpw(Rn) to Lqw(Rn) (Theorem 2.1) we obtain that

1

|B|

ˆ
B
|σ1(x)|dx ≤ C

|B|

(ˆ
B
|Tmb f1(x)w(x)|q

)1/q ∥∥w−1χB
∥∥
q′

. ‖b‖mΛ(δ)

‖fwχB‖p
|B|

∥∥w−1χB
∥∥
q′
.

Since 1
p = (m−1)δ

n + 1
q + δ

n , we can apply again Hölder’s inequality and the fact that w ∈ Aq,∞
to get

1

|B|

ˆ
B
|σ1(x)|dx . ‖b‖mΛ(δ) ‖fw‖ n

(m−1)δ
|B|δ/n

∥∥w−1χB
∥∥
q′

|B|1/q′

. ‖b‖mΛ(δ) ‖fw‖ n
(m−1)δ

|B|δ/n ‖wχB‖−1
∞ .

In order to estimate σ2 we use the inequality

1

|B|

ˆ
B
|b(x)− bB|m−k dx ≤ ‖b‖m−kΛ(δ) |B|

δ(m−k)
n

and Lemma 4.7 to obtain

1

|B|

ˆ
B
|σ2(x, u, k)| dx . ‖b‖kΛ(δ) ‖fw‖ n

(m−1)δ
‖wχB‖−1

∞
|B|

δ(k−m+1)
n

|B|

ˆ
B
|b(x)− bB|m−k dx

. ‖b‖mΛ(δ) ‖fw‖ n
(m−1)δ

‖wχB‖−1
∞ |B|

δ/n.

Consequently, since

m∑
k=0

ck [σ3(x, u, k)− (σ3(·, u, k))B] = [Tmb f(x)− (Tmb f)B]− [σ1(x)− (σ1)B]

−
m∑
k=0

ck [σ2(x, u, k)− (σ2(·, u, k))B]

by first assuming that Tmb f : L
n

(m−1)δ
w ↪→ Lw(δ), then

1

|B|

ˆ
B

∣∣∣∣∣
m∑
k=0

ck [σ3(x, u, k)− (σ3(·, u, k))B] dx

∣∣∣∣∣
≤ 1

|B|

ˆ
B
|Tmb f(x)− (Tmb f)B| dx+

2

|B|

ˆ
B
|σ1(x)|dx

+

m∑
k=0

ck
2

|B|

ˆ
B
|σ2(x, u, k)| dx
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. ‖b‖mΛ(δ) ‖fw‖ n
(m−1)δ

‖wχB‖−1
∞ |B|

δ/n.

On the other hand, if we suppose that (2.4) holds, it is easy to see that Tmb f : L
n

(m−1)δ
w (Rn) ↪→

Lw(δ).

Proof of Theorem 2.12: We proceed by induction. By homogeneity we shall supposse that

‖b‖Λ(δ) = 1. We must point out that the case m = 0 was already proved in [2]. As in the proof

of Theorem 2.1 we have that

‖wTmb f‖q . ‖wM
]
0,γ(Tmb f)‖q.

We shall now use the second part of Lemma 4.2, since we have that K ∈ HΦ. Thus, we obtain

that

‖wTmb f‖q .
m−1∑
j=0

‖wMθj ,γ(|T jb f |)‖q + ‖wM
mδ,Φ̃

f‖q.

From the hypothesis on the weight w and the Young function Φ̃, by Theorem 4.5 we know that

‖wM
mδ,Φ̃

f‖q . ‖fw‖p.

The proof now follows similar arguments as in the proof of Theorem 2.1.

Proof of Theorem 2.14: Take f, f1, f2 and aB as in the proof of Theorem 2.3, and define I1 and

I2 likewise.

Since in I1 we have only used the size condition S0, the estimation is the same, by taking into

account that wβ ∈ Ar/β,∞ yields w ∈ Ar,∞ for any β ≥ 1.

For I2 we proceed similarly but we have to use now that K ∈ HΦ,m(δ) with Φ−1(t) . t
β−1
r for

some 1 < β < r and all t > 0. We split the average into I3 and I4 as in the proof of Theorem

2.3. The last one can be controlled in the same form. The difference will be in I3. Recall that

I3 =

ˆ
(2B)c

|b(x)− b(z)|m |K(x− z)−K(y − z)| |f(z)| dz,

for x ∈ B.

By the definition of Λ(δ), we get that

I3 . ‖b‖mΛ(δ)

ˆ
(2B)c

|x− z|δm |K(x− z)−K(y − z)| |f(z)| dz
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. ‖b‖mΛ(δ)

∞∑
j=1

|2j+1B|
δm
n

ˆ
2j+1B\2jB

|K(x− z)−K(y − z)| |f(z)| dz.

Now, since K ∈ HΦ,m(δ), wβ ∈ Ar/β,∞ and Φ−1(t)t1/rt1/(r/β)′ . t, we can prodeed as in (4.3)

with k = m to obtain

I3 .
‖b‖mΛ(δ) |B|

δ̃
n ‖fw‖r

‖wχB‖∞
.

Proof of Theorem 2.15: We proceed as in the proof of Theorem 2.6. We must only use the

corresponding hypothesis on the kernel, that guarantees the validity of Theorem 2.12 and

Lemma 4.8, which are immediate from the fact that S0 ∩ HΦ,m(δ) ⊂ S0 ∩ HΦ (see Remark

2.11).
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