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In this workwe offer linear regressionmodels on a set of aryl-piperazine derivatives that are obtained by explor-
ing a pool containing 1497 Dragon molecular descriptors, in order to establish the best relationships linking the
molecular structure characteristics to their exhibited potencies against chloroquine resistant and chloroquine
sensitive strains of Plasmodium falciparum parasite. The adjustment of the training molecular set together with
the performance achieved during the internal and external validation processes leads to predictive QSARmodels.
In addition, we derive alternative linearmodels based on the Coral methodology, which lead to satisfactory results.
We apply the final equations to predict the activity on some unknown compounds having non-observed activities.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Malaria is a vector-borne infectious disease caused by protozoan
parasites. It is widespread in tropical and subtropical regions, includ-
ing parts of the Americas, Asia, and Africa. Every year, there are ap-
proximately 350–500 million cases of malaria [1], killing between
one and three million people, the majority of whom are young chil-
dren in Sub-Saharan Africa [2]. Ninety percent of malaria-related
deaths occur in Sub-Saharan Africa. The advent of long-lasting insec-
ticidal nets and Artemisinin-based combination therapy, plus a reviv-
al of support for indoor residual spraying of insecticide, presents a
new opportunity for large-scale malaria control. Malaria is commonly
associated with poverty, but is also a cause of poverty and a major
hindrance to economic development [3].

People usually get malaria from the bite of Anophelesmosquitoes, the
disease being caused by protozoan parasites of the genus Plasmodium.
Five species of the Plasmodium parasite can infect humans; the most se-
rious forms of the disease are caused by Plasmodium falciparum. Malaria
caused by Plasmodium vivax, Plasmodium ovale and Plasmodiummalariae
causesmilder disease in humans that is not generally fatal. A fifth species,
Plasmodium knowlesi, causes malaria in macaques but can also infect
humans. This group of human-pathogenic Plasmodium species is usually
referred to as malaria parasites.

Several antimalarial drugs have been formulated for the treatment
and prevention of the disease, but these have led to development of
resistance by the parasites to most of the drugs in use. Specifically,
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there is reportedly, rapid spread of P. falciparum resistance to avail-
able antimalarial drugs [4]. Thus, there is a constant need for develop-
ing new antimalarial compounds. Ethnic medicine has provided two of
themost efficacious drugs, Quinine andArtemisinin (and its analogs) and
the ongoing screening of medicinal plants yields new lead compounds
[5]. Work has been done on malaria vaccines with limited success and
more exotic controls, such as genetic manipulation of mosquitoes to
make them resistant to the parasite, have also been considered [6].

Although some vaccines are under development, none is currently
available for malaria that provides a high level of protection [7]; pre-
ventive drugs must be taken continuously to reduce the risk of infec-
tion. These prophylactic drug treatments are often too expensive for
most people living in endemic areas. Most adults from endemic
areas have a degree of long-term infection, which tends to recur,
and also possess partial immunity (resistance); the resistance reduces
with time, and such adults may become susceptible to severe malaria
if they have spent a significant amount of time in non-endemic areas.

In last decades, Quantitative Structure-Activity Relationships
(QSAR) [8], have been applied in many areas enabling to prevent
time consuming and cost during the analysis of biological activities
of interest. The main hypothesis involved in any QSAR is the assump-
tion that the variation of the behavior of chemical compounds, as
expressed by any experimentally measured biological or physico-
chemical property, can be correlated with numerical entities related to
some aspect of the chemical structure termed molecular descriptors [9,
10]. Descriptors are generally used to describe different characteristics/
attributes of the chemical structure in order to yield information about
the activity/property being studied. In general, QSAR studies are effected
by various factors from which the most relevant are: (a) the selection of
the bestmolecular descriptors that should includemaximum information
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of molecular structures and a minimum overlap between them; (b) the
optimal number of descriptors to be included in the model; (c) the use
of suitable modeling methods; (d) the composition of the training and
test sets; and (e) the employment of validation techniques to verify the
predictive performance of the developed models.

We consider that the linear methodology is the best statistical
technique for analyzing present dataset of aryl-piperazines, as few
experimental observations are available on it and thus it is necessary
to employ the lowest number of optimized parameters during the
model development. In this way, we resort to the ReplacementMethod
(RM) as variable subset selection approach applied on a pool containing
more than a thousand of descriptors, as this technique has been suc-
cessful for selecting relevant structural descriptors [11–15]. Finally, an-
other main interest of present research is to apply the so derived QSAR
models for estimating the antimalarial potency on somenew structures,
for which there still are no experimental activities.

2. Materials and methods

2.1. Experimental data set

The experimental inhibitory concentrations (IC50) in micromolar
units of aryl-piperazine derivatives against the chloquine resistant
strains W2 and FCR3 and against the chloroquine-sensitive strains
D10 and NF54 are extracted from a recent publication [4]. In Table 1
we provide the experimental activities, and for modeling purposes
these values are converted into logarithm units (log 10IC50).

A previous SAR study [4] has established that aryl-piperazines in
which the terminal secondary amino group is unsubstituted are
found to display a mefloquine-type antimalarial behavior in being
significantly more potent against the chloroquine-resistant (W2 and
FCR3) strains of P. falciparum than against the chloroquine-sensitive
(D10 and NF54) strains. The substitutions at the secondary amino
Table 1
Experimental antiplasmodial activity values (IC50) for aryl-piperazine derivatives in
micromolar units.

NNR Ar

ID R Ar W2 FCR3 NF54 D10

1 Hydrogen Phenyl 24.8 13.8 92.5 152.7
2 Hydrogen 2-fluorophenyl 68.7 44.61 103.2 105.6
3 Hydrogen 4-fluorophenyl 24.9 19.8 95.2 135.0
4 Hydrogen 2-chlorophenyl 18.1 11.8 78.7 152.2
5 Hydrogen 3-chlorophenyl 4.67 4.69 59.1 67.7
6 Hydrogen 4-chlorophenyl 11.53 7.13 64.8 74
7 Hydrogen 3-trifluoromethylphenyl 11.49 9.56 92.9 112.8
8 Hydrogen 2-methoxyphenyl 35.75 30.33 83.7 151.2
9 Hydrogen 3-methoxyphenyl 26.5 32.3 85.3 228
10 Hydrogen 4-methoxyphenyl 66.2 61.6 115.7 167
11 Hydrogen 2-ethoxyphenyl 16.8 10.96 93.1 143.3
12 Hydrogen 2,8-di(trifluoromethyl)

quinoline
11.2 2.03 15.0 7.8

13 Hydrogen 7-chloroquinoline 1.21 1.36 1.02 2.02
14 2-bromobenzyl Phenyl 69.6 62.1 58 101.3
15 2-bromobenzyl 4-fluorophenyl 41.5 62.9 63.1 103.1
16 2-bromobenzyl 2-chlorophenyl 56.0 75.1 52.4 104.1
17 2-bromobenzyl 2-ethoxyphenyl 52.6 54.2 46.9 79.7
18 2-bromobenzyl 2,8-di(trifluoromethyl)

quinoline
43.0 36.1 23.6 47.3

19 Ciclohexylmethyl 7-chloroquinoline 15.6 4.12 8.06 19.2
20 Benzyl 7-chloroquinoline 16.9 13.5 11.62 9.04
21 2-bromobenzyl 7-chloroquinoline 58.1 20.1 11.46 18.3
22 2-iodobenzyl 7-chloroquinoline 13.0 6.49 3.9 12.3
group lead to a dramatic drop in activity across all strains as well as
disappearance of the preferential potency against resistant strains
that are observed for the unsubstituted counterparts.

2.2. Geometry optimization and molecular descriptors calculation

The initial conformations of the compounds are drawn by means
of the “Model Build” modulus of the HyperChem 6.03 program for
Windows [16]. We pre-optimize the molecular structures with the
Molecular Mechanics Force Field (MM+) procedure included in the
HyperChem, and refine the resulting geometries by means of the
Semiempirical Method PM3 from the Molecular Orbitals Theory
using the Polak–Ribiere algorithm and a gradient norm limit of
0.01 kcal.Å−1.

Afterwards,we compute 1497molecular descriptors using theDragon
program [9], including descriptors of all types such as Constitutional,
Topological, Geometrical, Charge, GETAWAY (Geometry, Topology
and Atoms-Weighted AssemblY), WHIM (Weighted Holistic Invariant
Molecular descriptors), 3D-MoRSE (3D-Molecular Representation of
Structure based on Electron diffraction), Molecular Walk Counts, BCUT
descriptors, 2D-Autocorrelations, Aromaticity Indices, RandicMolecular
Profiles, Radial Distribution Functions, Functional Groups, Atom-
Centred Fragments, Empirical and Properties [17]. We also include in
the analysis 5 descriptors obtained from the semiempirical calculation
(molecular dipole moment, total energy, energy of the HOMO and
LUMO molecular orbitals, and HOMO-LUMO gap).

In addition, we calculate atomic charge density-based descriptors
encoding electronic and structural information relevant to the chem-
istry of intermolecular interactions, by means of the Recon 5.5 soft-
ware [18]. This sort of computed descriptors are not provided by
Dragon software, while the robustness of Recon has previously been
demonstrated elsewhere [19, 20]. Recon is an algorithm for the recon-
struction of molecular charge densities and charge density-based elec-
tronic properties of molecules, using atomic charge density fragments
precomputed from ab initio wavefunctions. The method is based on
the Quantum Theory of Atoms in Molecules [21]. A library of atomic
charge density fragments has been built in a form that allows for the
rapid retrieval of the fragments and molecular assembly. In present
case, the smiles chemical notation is employed as input for the genera-
tion of 248 Transferable Atom Equivalent (TAE) descriptors, developed
by Breneman and co-workers [22].

In this way, the total number of calculated structural descriptors
for the molecular set under analysis results in 1750 variables.

2.3. Model development

The QSAR established in this work are obtained via two different
linear modeling approaches with the purpose of comparing the con-
sistency of our results: a) the search of molecular descriptors via mul-
tivariable linear regressions; and b) the calculation of flexible
descriptors with the CORAL (CORrelation And Logic) program.

2.3.1. Linear descriptors search
In recent years theoretical and experimental researchers have fo-

cused an increasing attention on finding the most efficient tools for
selecting molecular descriptors in QSAR studies. There is a great num-
ber of available feature selection methods to search the best structur-
al descriptors from a pool of variables, and the Replacement Method
(RM) [23, 24], employed here, has been successfully applied else-
where [11–14, 25]. In brief, the RM is an efficient optimization tool
which generates multi-parametric linear regression QSAR models
on a training (calibration) molecular set by searching the set D of D
descriptors for an optimal subset d of d≪D ones with minimum
model's standard deviation (S). The quality of the results achieved
with this technique approaches that obtained by performing an
exact (combinatorial) full search of molecular descriptors although,
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of course, requires much less computational work. Finally, RM re-
sults consider the Variance Inflation Factor (VIF), a method of detect-
ing the severity of multicollinearity which represents a high degree
of correlation (linear dependency) among several independent vari-
ables [26, 27]. The VIFij for a given descriptor i can be easily calculated
(Eq. (1)) if we know the correlation coefficient between that de-
scriptor and the remaining j ones of the model (Rij):

VIFij ¼
1

1−R2
ij

: ð1Þ

In practice, when VIFij>10 then this would indicate that there exists
significant multicollinearity in the chosen subset of descriptors.

2.3.2. The CORAL method
CHEMPREDICT/CORAL (CORrelation And Logic) version 1.4 [28], is

a freeware forWindows. Eachmolecular structure must be represented
by SMILES (SimplifiedMolecular Input Line Entry System) notation, cal-
culated with ACD/ChemSketch software [29]. CORAL approach is based
on the presence of certain SMILES attributes occurring in the molecule
which can be associated to the activity of themolecule under evaluation
[30–33]. As SMILES attributes are used the symbols representing the
chemical elements and the other symbols used in SMILES for cycles,
branching of molecular skeleton, charges, etc. The CORAL modeling
process considers not only the presence of individual elements
SMILES attributes (sk), but also clusters of two (ssk) and three (sssk)
elements. For example, SMILES=Clc1ccccc1 then sk=(Cl, c, 1, c, c,
c, c, c, 1); ssk=(Clc, c1, cc, cc, cc, cc, cc, c1); sssk=(Clc1, c1c, ccc,
ccc, ccc, ccc, cc1).

The fragment-based model is a one-variable linear correlation be-
tween the activity values and the flexible descriptor (DCW) that is de-
fined as:

DCW thresholdð Þ ¼ α∑
k
CW skð Þ þ β∑

k
CW sskð Þ þ γ∑

k
CW ssskð Þ: ð2Þ

where α, β, γ are 1 or 0, and CW is the correlation weight for the
element/s of the SMILES. The threshold is the parameter to define
rare (noise) SMILES attributes. The rare SMILES attributes can lead
to overtraining: excellent correlation for the training set accompanied
by poor correlation for the validation set. Thus they can bring ‘noise’.
The threshold can be defined as 0, 1, 2,…N, withNbeing the number of
compounds in training set. If threshold is defined 5, all SMILES attributes
that take place in less than 5 SMILES notations of the training set will be
classified as rare. In present study, numerical data for CW can be calcu-
lated by the Monte Carlo simulation by maximizing R parameter, the
correlation coefficient between the activity values and the DCW de-
scriptor defined in Eq. (2) for the training molecular set. The quality of
the prediction is dependent on the selected options/parameters in the
algorithm, such as the number of epochs used during the Monte Carlo
optimization procedure, Dstart, dprecision, dRweight, dCweight, threshold
range and others, which should be correctly specified in order to calcu-
late the DCW values. More specific details on the CORAL algorithm can
be found in the recent literature [30–33].

2.3.3. Analysis of the Happenstance of the model
Another simple way of proving that the structure-activity

relationships established in this study do not result from happen-
stance involves checking their robustness by means of the so-called
y-randomization [34]. This technique consists on scrambling the ex-
perimental property values in such a way that they do not corre-
spond to the respective compounds. After analyzing 10,000 cases of
Y-Randomization for each developed QSAR, the smallest standard devi-
ation value obtained using this procedure (SRand) turned out to be a
poorer (greater) value when compared to the one found when
considering the true calibration (S). Therefore, the correlations found
are not fortuitous and result in real structure-activity relationships.

2.3.4. Model validation
Every QSAR research has to fulfill the basis of the QSAR hypothesis,

that is to say, the appropriate validation of the defined mathematical
models in order to verify that these relationships behave predictive
and are not only limited to work correlatively on the training set.
The theoretical validation practiced over each linear regression devel-
oped is based on the Leave-One-Out Cross Validation procedure (loo)
[35]. Statistical parameters Rloo and Sloo measure the stability of the de-
velopedQSARupon inclusion/exclusion of compounds, and according to
the specialized literature, Rloo2 should be greater than 0.7 for obtaining a
validated model [36]. However, from our own experience in establishing
QSAR models, Rloo2 b0.7 could also lead to satisfactory models, as the
Leave-More-Out technique provides the predictive power of the model
by defect, in the sense that no-compound should be excluded and all
training compounds should be present during the cross-validation evalu-
ation. Therefore, we consider that Rloo2 should be greater than the value
0.7 but this is not an exclusive rule.

We also apply a rigorous and more realistic validation that consists
on omitting from the complete molecular set presented in Table 1
some compounds which constitute the ‘test set’, denoted here as ‘test’.
The main purpose of performing such a splitting is to assess whether
the QSAR found have predictive capability for estimating the activity
on the “fresh” test set compounds (never seen by themodel).We select
the molecules composing the training and test series as a previous step
to the model search, and this is done in such a way that both sets share
similar qualitative structure-activity characteristics. In addition, we use
the same molecules as test set for each strain of the P. falciparum
parasite.

2.3.5. Degree of contribution of selected descriptors
In order to determine the relative importance of each descriptor in the

linear regressionmodel,we calculate standardized regression coefficients
(bjs) through the following equation:

bsj ¼
sj:bj
sY

j¼ 1;…;d ð3Þ

where is the regression coefficient of descriptor j, and sj and sY are the
standard deviations for that descriptor and for the activity, respectively.
Eq. (3) allows one to assign a greater importance to those molecular
descriptors that exhibit larger absolute standardized coefficients
[37].

3. Results and discussion

We use the Matlab 7.0 program in all our calculations [38]. In
every reported QSAR, N is the number of training set molecules,
range is the experimental range of activities covered by the model, d
the number of descriptors of the model, R is the correlation coeffi-
cient, S the model's standard deviation, F is the Fisher parameter, res
the residual for a givenmolecule (difference between the experimental
and predicted activity), outliers>x.S indicates the number of molecules
predicted to have res greater than x times S, Corrmax represents the
maximum intercorrelation coefficient between two given descriptors
of the model, VIFij is the variance inflation factor, loo subindex belong
to the Leave-One-Out Cross Validation result, test subindex applies to
the test set, and Rand supraindex stands for Y-Randomization.

The following linear QSAR are obtained on each strain, for which
we discuss the relative contributions of the structural descriptors to
the predicted antiplasmodial activities:



Table 2
Experimental and predicted antimalarial activities on different strains of Plasmodium
falciparum obtained with linear models based on RM technique.

Strain log 10IC50(W2) log 10IC50
(FCR3)

log 10IC50(D10) log 10IC50
(NF54)

ID Exp. Eq. (4) Exp. Eq. (5) Exp. Eq. (6) Exp. Eq. (7)

1^ 1.394 1.623 1.140 1.268 1.966 1.858 2.184 2.057
2 1.837 1.711 1.649 1.339 2.014 1.826 2.024 1.995
3 1.396 1.616 1.297 1.170 1.979 1.909 2.130 2.064
4 1.258 1.337 1.072 1.042 1.896 1.820 2.182 2.110
5^ 0.669 1.055 0.671 0.627 1.772 1.836 1.831 2.051
6 1.062 0.882 0.853 0.645 1.812 1.855 1.869 2.063
7 1.060 1.436 0.980 1.212 1.968 2.318 2.052 2.229
8^ 1.553 1.049 1.482 1.432 1.923 1.799 2.180 2.103
9 1.423 1.477 1.509 1.558 1.931 2.020 2.358 2.047
10 1.821 1.848 1.790 1.666 2.063 2.029 2.223 2.045
11 1.225 1.247 1.040 1.143 1.969 1.877 2.156 2.072
12 1.049 0.904 0.307 0.686 1.176 1.078 0.892 0.818
13 0.083 0.255 0.134 0.512 0.009 0.272 0.305 0.378
14 1.843 1.713 1.793 2.091 1.763 1.759 2.006 2.086
15^ 1.618 1.739 1.799 1.793 1.800 1.668 2.013 2.161
16 1.748 1.672 1.876 1.930 1.719 1.621 2.017 2.212
17 1.721 1.275 1.734 1.427 1.671 1.747 1.901 2.010
18 1.633 1.502 1.558 1.357 1.373 1.324 1.675 1.564
19 1.193 1.156 0.615 0.337 0.906 0.702 1.283 1.295
20^ 1.228 0.837 1.130 0.693 1.065 0.707 0.956 1.164
21^ 1.764 1.162 1.303 1.178 1.059 0.676 1.262 1.166
22 1.114 1.437 0.812 0.904 0.591 0.684 1.090 1.177

^Test set compound.
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W2 Strain:

log10IC50 ¼ −1:628 �0:8ð Þ−0:107 �0:02ð Þ⋅DISPv
þ 1:982 �0:5ð Þ⋅R3e ð4Þ

N=16, range=0.0828–1.843, d=2, N/d=8, R=0.889,
S=0.22, F=24.3, outliers>2.5.S=0, Corrmax=0.573,
Rloo=0.833, Sloo=0.27, SRand=0.24, Rtest=0.365.
For the case of Eq. (4), both DISPv and R3e descriptors take pos-
itive numerical values. Their absolute standardized regression
coefficients are 1.083 and 0.661, respectively, and thus DISPv
is the most important variable of this model. The sign of the re-
gression coefficients in Eq. (4) suggests that increasing values of
DISPv and decreasing values of R3ewould lead to lower predicted
IC50 values.

FCR3 Strain:

log10IC50 ¼ 1:743 �0:1ð Þ−0:059 �0:02ð Þ⋅DISPv
þ 1:694 �0:4ð Þ⋅Mor29m ð5Þ

N=16, range=0.134–1.876, d=2, N/d=8, R=0.902,
S=0.25, F=28.5, outliers>2.S=0, Corrmax=0.399,
Rloo=0.826, S100=0.34, SRand=0.28, Rtest=0.906.
This equation has similar contributions to themodeled activity for
descriptors DISPv (bDISPvs =0.493) andMor29m (bMor29m

s =0.584):
the second variable can either take positive or negative numerical
values. The sign of the regression coefficients in Eq. (5) indicates
that increasing values of DISPv and decreasing values of Mor29m
would tend to generate lower predicted IC50 values.

D10 Strain:

log10IC50 ¼ −13:389 �1ð Þ þ 12:577 �0:9ð Þ⋅AROM
þ 1:349 �0:2ð Þ⋅R2e ð6Þ

N=16, range=0.00860–2.063, d=2, N/d=8, R=0.968,
S=0.16, F=96.8, outliers>2.5.S=0, Corrmax=0.323,
Rloo=0.934, Sloo=0.23, SRand=0.25, Rtest=0.987
Eq. (6) has AROM as the most important descriptor
(bAROMs =1.019), while R2e has bR2es =0.412. As both parameters
are positive quantities and the sign of the regression coefficients
are positive, increasing values of descriptors in Eq. (6) would
lead to higher predicted activities.

NF54 Strain:

log10IC50 ¼ −13:117 �1ð Þ þ 14:835 �1ð Þ⋅AROM
þ 0:0551 �0:01ð Þ⋅RDF030e ð7Þ

N=16, range=0.305–2.358, d=2, N/d=8, R=0.969, S=0.15,
F=99.3, outliers>2.5.S=0, Corrmax=0.730, Rloo=0.955,
Sloo=0.18, SRand=0.21, Rtest=0.948.
As happen in the previous equation, here AROM is the most
important descriptor (bAROMs =1.251), while RDF030e has
bRDF030e
s =0.459. The increment of these two positive descrip-

tors leads to higher predicted antiplasmodial activities.

All the above models obey the semiempirical “Rule of Thumb”,
stating that at least five or six data points should be present per de-
scriptor [39]: a single descriptor does not achieve enough accuracy
for predicting the activities, while two-descriptors models are accept-
able for the number of trainingmolecules involved (N=16). Dispersion
plots of residuals (residuals as function of predicted activities) for each
QSAR are provided in Figs. S1–S8 of Supplementary figures with the
purpose of demonstrating the validity of these multivariable linear
regressions. Although some outliers are detected in these plots having
residuals exceeding the 2.S value, we decide to derive a general model
having applicability to any biomolecule without restrictions, and so
we do not remove such molecules from the training set.

Correlation matrices together with the numerical values for each
descriptor appearing in the established models are also provided as
part of the supplementary material in Tables S1 and S2, respectively.
The predicted activities for each QSAR are supplied in Table 2, from
which it is appreciated that Eqs. (4)–(7) predict the experimental ac-
tivities of the test set compounds reasonably well (test data denoted
with ^) and thus the models are predictive and properly validated. A
straight line trend is observed for the predicted log 10IC50 as function
of experimental values in Figs. 1–8.

The Variance Influence Factor (VIFij) parameter for each chosen de-
scriptor in each model (Table S1) suggests that the descriptors are
non-collinear and include non-redundant structural information con-
tent. All the models given in Eqs. (4)–(7) require conformational-
dependent molecular descriptors. The geometrical variable DISPv is a
3D-descriptor obtained from moment expansions that do not require
molecular superposition or alignment for the assignment of molecular
similarity, incorporating information about the magnitude of the dis-
placement between the molecular centroid (center of mass) and the
polarizability-field center (center of charge) [40]. This kind of parameters
has been found valuable for the prediction of the electrophoretic
mobilities of peptides.

GETAWAY (GEometry, Topology, and Atom-Weights AssemblY) [41],
type of descriptors R2e and R3e, the R autocorrelation of lag 2 and lag 3,
respectively, are weighted by atomic Sanderson electronegativities.
GETAWAY have been designed with the main purpose of matching the
3D-molecular geometry and are derived from the elements hij of the
Molecular Influencematrix (H), obtained through the values of atom-
ic Cartesian coordinates. The diagonal elements of H (hii) are called
leverages, and represent the influence of each atom on the shape of
the molecule. For instance, the mantle atoms always have higher hii
values than atoms near the molecule center, while each off-
diagonal element hij represents the degree of accessibility of the
jth atom to interactions with the ith atom. The influence/distance
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matrix (R) involves a combination of the elements of the H matrix
with those of the Geometric Matrix (G).

The 3D-MoRSE (3DMolecule Representation of Structure based on
Electron diffraction) descriptor Mor29m is the signal 29/weighted by
atomic masses. Such kind of descriptors is obtained through the mo-
lecular transform generally employed in electron diffraction studies
[42]. Electron diffraction does not directly yield atomic coordinates,
but provides diffraction patterns from which the atomic coordinates
are derived by mathematical transformations. These descriptors are
defined in order to reflect the contribution to the biological activity
under investigation, at a prescribed scattering angle, of a given atomic
property, and also employ weights for distinguishing atoms.

The aromaticity index AROM measures the degree of aromaticity
of a compound [17]. It can only be calculated once the molecular ge-
ometry is properly optimized with an accurate electronic structure
method. Another descriptor is RDF030e, the Radial Distribution Function
3.0/weighted by atomic Sanderson electronegativities [41]. The 3D-
Radial Distribution Functions descriptors defined for an ensemble of
atoms may be interpreted as the probability distribution of finding an
atom in a spherical volume of certain radius, also incorporating different
atomic properties in order to differentiate the contribution of atoms to
the activities. For the case of RDF030e, the sphere radius is of 3.0 Å and
atomic Sanderson electronegativities are employed for atoms.

Now, it is feasible to improve the statistical performance of
Eqs. (4)–(7) by using linear models established via flexible descriptor
definitions calculated with the CORAL program.We run a Monte Carlo
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Fig. 2. Predicted log 10IC50[mM] for FCR3 strain according to Eq. (5) as function of ex-
perimental values.
simulation for obtaining the correlation weights of Eq. (2), achieving
the following QSAR models:

W2 Strain:

log10IC50 ¼ −0:116 �0:1ð Þ þ 0:0709 �0:005ð Þ⋅DCW W2ð Þ ð8Þ

N=16, range=0.0828–1.843, d=1, N/d=16, R=0.964,
S=0.12, F=186.6, outliers>3.S=1, Rloo=0.958, Sloo=0.13,
SRand=0.21, Rtest=0.887.

FCR3 Strain:

log10IC50 ¼ −1:890 �0:2ð Þ þ 0:0960 �0:006ð Þ⋅DCW FCR3ð Þ ð9Þ

N=16, range=0.134–1.876, d=1, N/d=16, R=0.975,
S=0.13, F=270.9, outliers>2.5.S=0, Rloo=0.970,
Sloo=0.14, SRand=0.34, Rtest=0.932.

D10 Strain:

log10IC50 ¼ −0:160 �0:03ð Þ þ 0:0782 �0:001ð Þ⋅DCW D10ð Þ ð10Þ

N=16, range=0.00860–2.063, d=1, N/d=16, R=0.998,
S=0.040, F=3310.2, outliers>3.S=0, Rloo=0.997,
Sloo=0.044, SRand=0.28, Rtest=0.940.
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Fig. 4. Predicted log 10IC50[mM] for NF54 strain according to Eq. (7) as function of ex-
perimental values.
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Fig. 5. Predicted log 10IC50[mM] for W2 strain according to Eq. (8) as function of exper-
imental values.
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Fig. 6. Predicted log 10IC50[mM] for FCR3 strain according to Eq. (9) as function of ex-
perimental values.
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Fig. 8. Predicted log 10IC50[mM] for NF54 strain according to Eq. (11) as function of ex-
perimental values.

Table 3
Experimental and predicted antimalarial activities on different strains of Plasmodium
falciparum obtained with linear models based on the Coral method.

Strain log 10IC50(W2) log 10IC50
(FCR3)

log 10IC50(D10) log 10IC50(NF54)

ID Exp. Eq. (8) Exp. Eq. (9) Exp. Eq. (10) Exp. Eq. (11)

^
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NF54 Strain:

log10IC50 ¼ 0:544 �0:05ð Þ þ 0:0539 �0:002ð Þ⋅DCW NF54ð Þ ð11Þ

N=16, range=0.305–2.358, d=1, N/d=16, R=0.991,
S=0.078, F=789.4, outliers>2.5.S=0, Rloo=0.989,
Sloo=0.086, SRand=0.19, Rtest=0.950.
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Fig. 7. Predicted log 10IC50[mM] for D10 strain according to Eq. (10) as function of ex-
perimental values.
The numerical parameters used in the CORAL calculation are:
number of epochs: 20, number of probes: 3, range of threshold
values: 0–2, Dstart=0.5, dprecision=0.01, dRweight=0, dCweight=0,
threshold range=0–2, and α=β=0 (refer to Eq. (2)). Figs. 5–8
plot the predicted activities as function of the experimental data.
The predictions achieved bymodels 8–11 are included in Table 3.

It is easily appreciated from the statistical parameters of calibra-
tion and leave-one-out validation that the quality of Eqs. (8)–(11)
outperforms that of Eqs. (4)–(7). However, an important remark
has to be made upon establishing Eqs. (8)–(11): as a linear optimiza-
tion problem having a greater number of parameters is involved in
the CORAL method, it results not possible to establish a predictive
model by minimizing only S of the training set, and the test set statis-
tics has also to be monitored. Therefore, it is not possible to establish
flexible descriptors-based models without considering the indepen-
dent test set data, as it is the case of Eqs. (4)–(7). We decide to in-
clude the CORAL models in order to compare their predictions on
unknown compounds.
1 1.394 1.247 1.140 0.996 1.966 1.643 2.184 1.992
2 1.837 1.689 1.649 1.520 2.014 2.021 2.024 2.067
3 1.396 1.578 1.297 1.500 1.979 1.972 2.130 2.079
4 1.258 1.216 1.072 0.954 1.896 1.879 2.182 2.025
5 ^ 0.669 1.105 0.671 0.934 1.772 1.829 1.831 2.037
6 1.062 1.105 0.853 0.934 1.812 1.829 1.869 2.037
7 1.060 1.052 0.980 0.961 1.968 1.968 2.052 2.059
8 ^ 1.553 1.613 1.482 1.541 1.923 2.042 2.180 2.221
9 1.423 1.502 1.509 1.521 1.931 1.992 2.358 2.234
10 1.821 1.502 1.790 1.521 2.063 1.992 2.223 2.234
11 1.225 1.435 1.040 1.301 1.969 1.979 2.156 2.265
12 1.049 1.062 0.307 0.290 1.176 1.176 0.892 0.890
13 0.083 0.061 0.134 0.128 0.009 0.009 0.305 0.308
14 1.843 1.864 1.793 1.820 1.763 1.763 2.006 2.003
15 ^ 1.618 1.654 1.799 1.935 1.800 1.702 2.013 2.183
16 1.748 1.765 1.876 1.851 1.719 1.719 2.017 2.024
17 1.721 1.698 1.734 1.740 1.671 1.671 1.901 1.887
18 1.633 1.625 1.558 1.555 1.373 1.373 1.675 1.678
19 1.193 1.186 0.615 0.627 0.906 0.906 1.283 1.271
20 ^ 1.228 1.434 1.130 1.248 1.065 0.999 0.956 1.299
21 ^ 1.764 1.693 1.303 1.291 1.059 0.946 1.262 1.391
22 1.114 1.128 0.812 0.796 0.591 0.591 1.090 1.103

^Test set compound.



Table 4
Predicted antiplasmodial activities for aryl-piperazine derivatives according to Eqs. (4)–(11).

NNR Ar

IDa R Ar log 10IC50(W2) log 10IC50(FCR3) log 10IC50(NF54) log 10IC50(D10)

Eq. (4) Eq. (8) Eq. (5) Eq. (9) Eq. (6) Eq. (10) Eq. (7) Eq. (11)

53 Hydrogen 8-chloro quinoline 0.510 0.446 0.761 0.255 0.268 0.135 0.431 0.528
54 Hydrogen 6-chloro quinoline 0.490 0.146 0.610 0.233 0.267 0.013 0.372 0.281
61 Hydrogen 3-trifluoromethyl 7-chloro quinoline 0.363 0.733 0.360 0.660 0.486 1.451 0.482 1.422
62 Hydrogen 3-trifluoromethyl 6-chloro quinoline 0.606 0.685 0.384 0.559 0.483 1.398 0.503 1.459
66 Hydrogen 2-chloro 6-trifluoromethyl quinoline 0.554 0.499 0.914 0.067 0.839 0.978 0.673 0.707
67 Hydrogen 2-chloro 5-trifluoromethyl quinoline 0.575 0.415 0.513 −0.038 0.482 0.971 0.658 0.734

a Numbering of compounds refer to Table S3.
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Eqs. (4)–(11) are applied to predict unknown aryl-piperazine
compounds, with the purpose of extracting new biochemical infor-
mation from the QSAR models designed in this work. We draw and
optimize 145 structurally-related compounds which do not exhibit
experimentally assigned antiplasmodial activities (refer to Table S3).
The top-six most active predicted compounds are included in Table 4. In
accordance with a previously established structure-activity relationships
(SAR) study [4], the most active unknown compounds provided in this
table appear unsubstituted at the secondary amino group. Eqs. (4)–(7)
derived with Dragon theoretical descriptors and Eqs. (8)–(11) obtained
with the Coral methodology offer similar trends for the predictions of
these unknown molecules although, however, one may pay more atten-
tion to the results obtained with Eqs. (4)–(7) that are supposed to be
more truthful for obeying to linear equations involving a fewer number
of optimized parameters in their formulations.

4. Conclusions

We hope that the QSAR established in this work may serve as a
guide for providing the structural requirements affecting the antima-
larial activities of aryl-piperazine derivatives, through the identifica-
tion of the most relevant selected molecular descriptors in the
models. In this line, we applied the developed QSAR to predict some
unknown structurally-related molecules. We are especially careful in
validating the relationships with the Leave-One-Out Cross Validation
method and by leaving some of the molecules as part of an external
test set. Finally, the results presented in thiswork resort to two different
methodologies: (a) application of linear models for selecting the most
relevant structural parameters, and (b) employment of flexible (prop-
erty dependent) molecular descriptors.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.chemolab.2011.10.002.
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