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A B S T R A C T

Loblolly pine monocultures have been increasingly expanding in the Atlantic Forest of South America especially
in northern Argentina. Pine plantations can modify understory vegetation and soil characteristics due to the
management practices and to the dense mulch of pine needles that develop in the forest floor that could affect
soil biota and ecosystem processes. Nitrogen (N) addition as expected as atmospheric deposition can also con-
tribute to these changes. The aim of this study was to assess the effect of litter removal and low levels of N
addition on understory regeneration, soil mesofauna abundance, and leaf litter decomposition. For this purpose,
a completely randomized block design was used. Nitrogen addition had significant effects on understory re-
generation promoting creeping herbs, graminoids and shrubs life forms affecting tree establishment and growth.
Litter removal treatment showed the same pattern but only promoting the creeping herbs that could also have
affected tree species. Decomposition decreased due to litter removal and was slightly increased by N addition.
The addition of N decreased the abundance of mesofauna in the mulch, especially Symphypleone (a suborder of
Collembola), but the abundance of the soil communities was not affected. Litter removal had a strong impact on
these communities because most individuals and species of the mesofauna are present in the litter and not in the
soil. This is one of the first studies analyzing the effect of low amounts of N addition and litter removal in
subtropical pine plantations and contribute to understand potential impacts of increasing N deposition on
biodiversity and soil processes, and to select organisms that may help as bioindicators in assessing impacts on
ecological functions in productive ecosystems.

1. Introduction

Tree monocultures have been increasingly expanding in the Atlantic
Forest of South America for the last three decades (Izquierdo et al.,
2008; Fonseca et al., 2009). In northern Argentina, large areas of these
subtropical forests have been replaced by high-yield plantations of lo-
blolly pine (Pinus taeda L.). In addition to the well documented effect of
tree plantations on understory vegetation and diversity (e.g.
Schabenberger and Zedaker, 1999; Thomas et al., 1999; Augusto et al.,
2003; Brockerhoff et al., 2003; Ramovs and Roberts, 2003; Cusack and
Montagnini, 2004; Zobrist et al., 2005; Andreu et al., 2008), pine

plantations can modify soil characteristics such as pH and consequently
affect soil biota and ecosystem processes and function including nu-
trient dynamics (Brand et al., 1986; Binkley et al., 1989; Berthrong
et al., 2009). Pine plantations are largely associated with a dense mulch
of pine needles on the forest floor that exudes different kinds of organic
acids, tannins and phenolic compounds changing soil chemical condi-
tions (Kanerva and Smolander, 2007; Kanerva et al., 2008). Managing
practices (e.g., thinning) in tree plantations also affect soil structure by
increasing compaction and decreasing water availability in the topsoil
(Stogsdili et al., 1992; Zinn et al., 2002; Trentini et al., 2017).

Leaf litter plays an important role in understory regeneration and
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soil processes by changing soil microclimate conditions and nutrient
availability (Facelli and Pickett, 1991a; Xiong and Nilsson, 1999; Berg
and McClaugherty, 2008; Deutsch et al., 2010). In some cases, positive
effects on plant establishment are due to better moisture conditions
(West, 1979; Fowler, 1986) or by reducing competition with dominant
species (Facelli and Pickett, 1991b). Leaf litter can also contribute to
plant regeneration by preventing seed predation (Cintra, 1997). How-
ever, in coniferous plantations, leaf litter has low water-soluble con-
stituents and high lignin content that slow down degradation processes
(Berg and Staff, 1980; Coûteaux et al., 1998; Berg and McClaugherty,
2008; Kanerva et al., 2008). Pine leaf litter accumulates on the ground
and acts as a barrier to plant regeneration by delaying or even impeding
seed germination (Keever, 1973; Grime, 1979; Sydes and Grime, 1981;
Collins and Good, 1987; Persson et al., 1987; Ellenberg, 1988; Facelli
and Pickett, 1991a; Bueno and Baruch, 2011).

Besides, mulch accumulation in pine plantation can result in fa-
vorable conditions for the development of lignin degrading micro-
organisms such as white rot fungi (Ponge, 1991; Humphrey et al.,
2000), and provide refuge and food to meso-decomposers such as
springtails (Collembola) and mites (Acari) (Ponge, 1991; Sayer, 2006).
Springtails and oribatid mites (suborder Oribatida) are the most
dominant taxa among the soil mesofauna, both in abundance and di-
versity (Vlug and Borden, 1973; Ashford et al., 2013). They influence
litter decomposition processes through litter comminution, which in-
creases the surface area for bacterial and fungal activities and facilitates
leaching of several compounds, but also feeding on bacteria and fungi,
hence controlling their populations and dispersing them (Hansen, 1999;
Wall and Moore, 1999; Adl, 2003; Barajas-Guzman and Alvarez-
Sanchez 2003; Behan-Pelletier, 2003). Pine plantations can enhance
mite and springtail abundances because both taxa respond positively to
these typical environmental conditions, e.g. leaf-litter with high
moisture contents, high C:N ratios and low soil pH (Robson et al.,
2009). Litter removal was observed to affect decomposition rates di-
rectly due to the exclusion of decomposers that live in the mulch (Subke
et al., 2004) and indirectly modifying soil microclimatic conditions
such as temperature and water content (Ponge et al., 1993; Diaz et al.,
2005; Ramakrishna et al., 2006; Sayer, 2006) both strongly correlated
to litter decay (Berg and McClaugherty, 2008).

Nitrogen (N) addition can affect decomposition rates through
changes in soil chemistry and soil biota, but these changes will depend
on N enrichment level, litter quality and native soil community (Berg
and Matzner, 1997; Knorr et al., 2005). In general, N addition promotes
biological activity measured as respiration rate and microbial biomass
in the forest floor (Wardle, 1992; Gallardo and Schlesinger, 1994; Berg
and Matzner, 1997; Hart and Stark, 1997; Allen and Schlesinger, 2004).
Native soil community and the climatic condition can also affect the
direction of this effect. A recent meta-analysis performed in temperate
forests suggested that N deposition inhibits the decomposition of or-
ganic matter especially in N saturated areas (Janssens et al., 2010). But
effects of N addition in pine plantations in tropical and subtropical
environments with N deficit litter have been less studied (Mo et al.,
2006; Mo et al., 2008). In these environments, decomposition may in-
crease when N does not reach saturating values to micro-decomposers
(Mo et al., 2006). Litter quality can also affect N addition responses;
Jiang et al. (2014) found that decomposition rates of pine needles (low
quality) increase in response to N addition while better quality
substrates decomposition was slower.

Nitrogen addition can also promote the development of primary
productivity (Elser et al., 2007; Stevens et al., 2015), but with negative
consequences in plant diversity due to asymmetric competition in favor
of fast-growing species, which are adapted to high levels of nutrients
(e.g. Vitousek et al., 1997; Bobbink et al., 1998; Stevens et al., 2004;
Suding et al., 2005; Pierik et al., 2011; Borer et al., 2014, Humbert
et al., 2016). Nitrogen addition can reduce tree growth due to the in-
crease of herbaceous species coverage (Davis et al., 1999; Kraaij and
Ward, 2006; Diwold et al., 2010). Besides, nutrient availability can

influence plants differently according to their ontogenetic stage (Webb
and Peart, 2000), being seedlings and saplings more responsive than
small trees (Alvarez-Clare et al., 2013; Fisher et al., 2013; Li et al.,
2018). In general, the augment of N in soil has a positive effect on
woody species growth especially under high radiation conditions (e.g.,
Grubb et al., 1996; Kobe, 2006). The increase of plant biomass in re-
sponse to nutrient availability provides more resources for soil fauna
community. N fertilization in forests can increase soil microarthropod
abundance (e.g. Berch et al., 2006; Wang et al., 2016), but this has not
been always observed (e.g. Maraun et al., 2001; Lindberg and Persson,
2004).

In this study, we assessed the effect of litter removal and low levels
of N addition on the understory regeneration, soil mesofauna
abundance and leaf litter decomposition in Pinus taeda L plantations.
Specifically, we aimed to determine the effects on (1) plant cover and
life form abundance, (2) tree seedling establishment and growth, (3)
microarthropod abundance and (4) pine needle litter decomposition.
We hypothesized that litter removal promotes the regeneration of
woody plants and tree seedling establishment in the understory, affect
negatively meso-decomposers, and decrease pine litter decomposition.
Nitrogen fertilization is expected to have a positive effect on plant cover
but with a detrimental effect on tree development depending on their
size. Larger seedlings will have better advantages in terms of their
ability to compete for the lighting resource than smaller seedlings, so
they will, therefore, benefit from the addition of N. The positive effect
of N addition in plant cover is expected to increase meso-decomposers
abundance, and consequently pine needle decay. The study of the effect
of the litter on plant regeneration, and on the characteristics and
processes occurring in the undergrowth, allows us to understand the
impact of needle mulch, and assess the limitations and advantages of
potential management strategies. By adding low levels of nitrogen, we
intended to predict likely impacts of atmospheric nitrogen deposition
on some key processes and biodiversity of plants and on soil mesofauna
and litter decomposition in pine plantations.

2. Methods

2.1. Experimental design

A completely randomized block design was used to test the pro-
posed objectives. Pine plantations representing blocks were carefully
selected, to have the same stand age, management and similar previous
land use and being next to native forests. We only found three planta-
tions fulfilling these conditions (n=3). Plots were located next to
native forest to avoid potential limitation to regeneration by seed
arrival. In the study area the abundance and richness of seed rainfall in
forest plantations is reduced to less than 20% at a distance of 100m
from the native forest (Vespa et al., 2014). Pine plantations were
established in 2006 and were located between 1 km and 5 km apart
from each other (see Trentini et al., 2017). Three plots of 45× 65m
were performed in high intensity thinned stands (50%) where the
treatments were randomly assigned after one year of the first thinning
procedure as detailed in Trentini et al. (2017). Comparisons were made
between treatments plots with N addition (N), needle litter removal (R),
and a control plot (C) for both treatments in the three blocks to assess
the effects separately. Because we did not intend to study potential
understory management under an increment in the atmospheric de-
position scenario and another treatment (i.e., litter removal combined
with N addition) would decrease statistical power, we preferred no to
include a factorial design. Treated and control plots were divided into
six 15×15m sub-plots to measure vegetation and meso-decomposers
changes, and to perform litter decomposition experiments in order to
avoid the hauling roads (see Trentini et al., 2017).
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2.2. Nitrogen addition treatment

Fertilization was carried out with granulated urea (CH4N2O, 46%)
in six broadcast applications during one year starting in May 2014 and
until reaching 60 kg N ha−1 year−1. Both frequency and amount of
fertilizer attempted to simulate an increase of N in the system as a result
of atmospheric deposition (e.g. Lu et al., 2010, 2011). The amount of
urea applied took into account that in subtropical environments the
fifty percent of N could be lost by volatilization, de-nitrification, or
leaching (Weier, 1994). Although, precautions were taken at applica-
tion time to minimize losses. Before treatments, in March 2014, a
composite sample (eighteen sub-samples per plot) were taken from the
first 5 cm of soil to determine that there were no initial differences in N
concentration (F (1, 2) = 2.77; P= 0.2).

2.3. Litter removal treatment

Pine needle litter was removed from an internal area of 12×4m
inside each sub-plot. The mulch layer (5.6 ± 0.82 cm deep) was
completely removed. This procedure was repeated periodically in the
plots to avoid mulch accumulation.

2.4. Stand structure and soil characteristics

Changes in stand structure due to N addition were determined
measuring the diameter at breast height (1.3 m DBH) of all the pines
higher than 10 cm of DBH in the subplot area after a year of treatment,
on one block. Soil water content was estimated for the first 5 cm soil
depth, in N addition, litter removal and control plots in two sampling
times after treatments in October 2014 and March 2015, before and
after the growing season respectively. Both samplings were done after a
moderate drought of 20 days. Soil samples were oven-dried at 105 °C at
constant weight. In order to determine the changes in pine mulch
biomass and their water content due to N addition, three samples
(0.09 m2 each) were taken per treatment plot, these samples were
weighed, kiln-dried at 70 °C to a constant weight. The samples were
collected in June 2015. Soil and mulch water content was calculated as
the difference between the weight of moist and dry samples, divided by
the weight of the moist sample.

2.5. Ground coverage and understory vegetation

Changes in the understory vegetation were assessed in three quad-
rants of four square meters in each sub-plot. Understory ground
coverage was registered in two sampling times and their change was
compared between treatments and control plots. The first measure was
two months before the treatments in November 2013, and the second,
one year and two months after treatments in March 2015. Plant cover,
branch cover, and bare soil cover (i.e. not covered by living vegetation,
so include pine needle litter in N addition and control plots) were
measured using the interception method (Ellenberg and Mueller-
Dombois, 1974) in four points inside the quadrant (4 m2 each). The
interception method was done with a vertical stick in those points and
counting all the species or branches that touch with it, up to approxi-
mately two meters high (maximum height of the undergrowth). This
method is a faster sampling technique and allowed us to perform
quantitative analysis to detect differences in cover with statistical
models. Individuals were determined to a species when possible (in
some cases only the genus could be determined) and were classified
according to their life form into trees (T), shrubs (S), graminoids (G)
which include Poaceae and Cyperaceae families, ferns (F), and per-
ennial herbs (PH), creeping herbs (CH), and vines (V) that includes
woody and non-woody climber species. Changes in tree seedling
regeneration were estimated measuring abundance and height of all
individuals by quadrant and calculating the difference between the two
sampling times in treatment and control plots. Comparisons were made

separating the individuals according to two height categories: < 0.5m
and ≥0.5m.

2.6. Microarthropod abundance

To assess the change in abundance of microarthropods (Collembola
and Oribatida), five litter and five soil (5 cm deep) samples of about
300 cm3 were randomly taken by sub-plot in two times. Samples were
taken in October 2013 and November 2014, before and after the
application of the litter removal and N addition treatments, respec-
tively. The samples were immediately taken to the laboratory to collect
the fauna in Berlese-Tulgren funnels for 15 days. The microarthropods
collected were fixed in 70% ethanol and observed under a stereo
microscope. Springtails and oribatid mites were sorted and counted.
Collembola were identified at the suborder level (Entomobryomorpha,
Poduromorpha, and Symphypleona).

2.7. Decomposition

The litter-bag technique was used to estimate decomposition rates
(Cuevas and Medina, 1988), which measures loss weight over time. The
size of the bags used was 15×15 cm and the mesh size was
2×1.5mm to allow the entry of micro and meso-decomposers
(Bradford et al., 2002). In the assay 2 g of Pinus taeda needles were
used, they were collected with traps to prevent them from reaching the
ground. The collected material was not air-dried but oven-dried at 70 °C
for 48 h. This was due to the high moisture content of the air in this
environment which made air drying difficult, as in other studies (e.g.,
Padgett, 1976; Sundarapandian and Swamy, 1999; Lin and Zeng, 2018).
The dry material was then placed in the litter-bags. This process
allowed us to obtain initial values of dry weight while avoiding the start
of the decomposition process. A total of 108 litter-bags were used,
twelve for each treatment, in N addition, litter removal, and control
plots. The litter-bags were placed in June 2014 and collected by
duplicate six times in the months 1, 3, 6, 9, 12, and 18 after placement
in the field. After collection, the remaining material inside the litter-
bags was carefully separated to remove other materials (such as soil or
external debris). The remaining material was dried at 70 °C for 48 h (to
constant weight) and weighed.

2.8. Data analyses

The plantation stands or blocks determined the sample size in all
analyses (n= 3) except in the stand structure analysis that was per-
formed for a single block. Data were analyzed using linear mixed-effects
models (LMM) where treatments (N, R, and C) were considered as fix
factors and blocks (plantations stands) as a random factors in all
models. LM model considers a normal distribution and an Identity link
function. In some cases, a constant variance structure function
(varIdent) was also added to the model to correct residual spreads.
Fixed effects were assessed using likelihood ratio tests. A posteriori tests
were performed by the DGC test (Di Rienzo et al., 2002). Significance
levels of 5% were used but considering the low number of replicates (3)
p-values lower than 0.1 were considered marginally significant. Info-
Stat software was used for all analysis, as an interpreter of R (Di Rienzo
et al., 2015). Treatments effects for DBH, soil water content (SWC),
mulch biomass, and mulch water content (MB and MWC, respectively)
were performed by comparing both treatments separately with control
plots. SWC was measured twice (before and after the summer) and the
analyses were performed independently. Changes in ground coverage,
understory vegetation and life forms, tree seedlings abundance, and
mean height were analyzed calculating the differences between the two
measured times (final value minus initial value) in the same sampling
quadrants for each variable (total interceptions, total life form inter-
ceptions, total number of seedling and mean quadrant height). Micro-
arthropod abundance was compared between the sampling times and
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layers (litter and soil) with LMM considering time, layers and their
interaction as fixed factors and blocks as random factors. The change of
microarthropod abundace due to the treatments was calculated by the
differences between the two sampling times in soil and litter, com-
paring between samples taken in the same subplot. These variables
were analyzed with LMM considering treatments as fixed factors and
blocks as random factors. Change in decomposition rate was assessed by
comparing the mass remaining. This was calculated for each litter-bag,
taken from the field at each sampling time, as the difference between
the final dry weight divided by the initial dry weight. The analysis was
performed with LMM considering treatments, time, and treat-
ment× time interaction as fixed factors and blocks as a random factor.

3. Results

3.1. Stand structure and soil characteristics

In fertilized plots, the average DBH of pine trees was similar among
treatments (F(1,65)= 1.3, P= 0.2). In the soil, no variations were de-
tected in SWC between N addition and control plots, neither before nor
after the growing season (SWC1: F(1, 25)= 1, P=0.3; SWC2 F(1,
38) = 0.7, P=0.4, respectively). Similarly, MB showed no differences
between treatments (F(1,14) = 0.23; P= 0.6). However, MWC was sig-
nificantly lower in plots with N addition than in control ones
(F(1,14) = 14.4, P=0.002). In the first measurement, SWC was lower in
litter removal plots than in control plots (F(1, 26)= 6.8, P=0.01), but
after the growing season, SWC decreased in control plots, reaching si-
milar values to those in litter removal plots F(1, 38) = 0.02, P=0.8)
(Table 1).

3.2. Ground coverage and understory vegetation

Plant cover was similar between N addition and control plots as well
as between leaf litter removal and control plots (N: F (1, 99)= 2.4,
P=0.1; and R: F (1, 94)= 0.2, P= 0.6). Branches cover decreased
significantly in N addition plots (F (1, 94)= 8.66; P=0.004) and in
removal plots (F (1, 85)= 45.9; P < 0.0001), the latter being a direct
effect of the application of the treatment. There were no significant
differences in bare soil cover between N addition and control plots (F (1,

48) = 1.0; P=0.3). On the other hand, bare soil cover increased twice
after litter removal in relation to control plots (F (1, 51)= 14.4;
P < 0.001) (Fig. 1A, 1B).

3.3. Life forms

Cover change analyses for each life form showed that shrubs, gra-
minoids and creeping herbs, increased significantly in plots with N
addition (S: F (1.23) = 8.8, P=0.007; G: F(1, 45)= 3.9, P=0.05; CH:
F(1, 48)= 9.7, P=0.003). Instead, perennial herbs (PH) and three of the
most abundant life forms: trees (T), ferns (F), and vines (V), did not
respond to N addition (PH: F(1, 18) = 2.9; P= 0.1; F: F(1, 50)= 0.3,

P= 0.6; T: F(1, 38)= 0.5, P= 0.5; V: F(1, 64)= 0.4, P=0.5) (Fig. 2A).
Litter removal treatments strongly augmented creeping herbs coverage
(F (1, 53) = 13.4; P < 0.001). Shrubs showed a marginal increase after
litter removal (S: F (1, 31) = 3.3; P=0.08). Finally, trees, graminoids,
ferns, perennial herbs, and vines did not differ between litter removal
and control plots (T: F(1, 39)= 0.1, P= 0.7; G: F (1,54) = 0.2, P=0.7; F:
F (1, 57)= 0.1, P= 0.7; PH: F(1, 22)= 0.6, P= 0.4; V: F (1,64) = 1.7,
P= 0.2) (Fig. 2B).

3.4. Tree seedlings regeneration

Density of understory native seedlings, shorter than 0.5m of height,
showed no differences in both N addition and litter removal treatment
plots compared with control plots (N: F (1, 48)= 0.2, P= 0.6; and R: F
(1, 56)= 0.8, P= 0.4) (Fig. 3A, 3C). Nevertheless, the abundance of tree
seedlings taller than 0.5m strongly decreased in both treatments (N: F
(1, 63)= 8.8, P=0.004; and R: F (1, 63)= 6.3, P=0.01) (Fig. 3A, 3C).
There were no differences in seedlings growth of individuals shorter
than 0.5 m in both treatments (N: F(1, 49)= 0.36, P=0.5; and R: F(1,
57)= 1.7 E−04, P= 0.9) (Fig. 3B, 3D) but seedlings taller than 0.5 m
showed a marked decreased in height (more than 20 cm on average per
year per quadrant) with N addition, although this effect was only
marginally significant (F (1, 62)= 3.6; P=0.06) (Fig. 3B). Litter
removal did not have an effect on growth in seedlings taller than 0.5m
(F(1, 64) = 0.6; P=0.6) (Fig. 3D).

3.5. Microarthropod abundance

Microarthropod abundance was higher in the litter layer than in the
soil in both sampling times (F layer x time (1,139) = 32.9, P < 0.0001).

Table 1
Diameter at breast height (DBH, cm) of pine trees; soil water content (SWC, %),
five and ten months after treatments (SWC1 and SWC2, respectively, %); mulch
biomass (MB, kg/m2); and mulch water content (MWC, %) one year after the
application of the treatments, in N addition, litter removal and control plots.
Values are means ± 1 S.E. Significant differences between treatments and
control plots are indicated (**P < 0.01; *P < 0.05).

Control N addition Litter removal

DBH 23.8 ± 0.6 25.1 ± 1 –
SWC1 24.5 ± 1.3 24.2 ± 1.3 22.6 ± 1.4*

SWC2 19.96 ± 1.2 20.4 ± 1.2 20.0 ± 1.4
MB 2.06 ± 0.13 1.98 ± 0.13 –
MWC 55.5 ± 2.59 48.3 ± 2.59** –

Fig. 1. Changes in coverage at ground level measured as the difference in
number of interceptions before and after N addition ( , N) and litter removal
treatments ( , R), compared to control plots ( , C). In N addition and
control plots, bare soil includes the litter layer of pine needles. Values are
means ± 1 S.E. Significant differences between treatments and control plots
are indicated (***P < 0.001; **P < 0.01; *P < 0.05).
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Total number of individuals registered before and after treatments in
control plots were 6862 and 2656 in the litter and 670 and 233 in soil,
respectively. Generally, within the pine litter layer, abundances of the
four groups of microarthropods decreased between measured times,
and this reduction was higher in N addition plots compared to control
plots. Decrease in Entomobryomorpha abundance due to N addition
was not significant (F(1, 26) = 0.9; P=0.3), while Oribatida and
Poduromorpha showed a marginally significant response to this treat-
ment (Oribatida: F(1, 26)= 3.3, P=0.08; and Poduromorpha: F(1,
26) = 3, P= 0.09). A decrease in the abundance of Symphypleona
showed a significant effect of the treatment (F(1,26) = 5.4; P=0.03)
(Fig. 4).

In the soil there were no differences in abundance of any of the sub-
orders studied after the addition of N (Entomobryomorpha:
F(1,25) = 1.5, P=0.2; Oribatida: F(1,26)= 0.3, P= 0.6; Poduromorpha:
F(1,14) = 0.01, P= 0.9; Symphypleona: F(1,15)= 0.3, P= 0.6) (Fig. 5A).
The change in abundance of Oribatida in soil samples was lower in litter
removal than in control plots (F(1, 25)= 10.3; P= 0.004). Changes in
Entomobryomorpha showed the same pattern but the effect was only
marginally significant (F(1,24) = 2.6; P= 0.1). On the other hand,
Symphypleona decreased more in removal compared to control plots
(F(1,13) = 5.2; P=0.04). Poduromorpha did not show a response to
litter removal (F(1,13) = 0.4; P= 0.5) (Fig. 5B).

3.6. Decomposition

The decomposition experiment showed that, after one year, the
mass remaining was similar in N addition treatment and control plots.
After 18months, N addition plots showed lower remaining values than

control plots, indicating an acceleration in decomposition rates,
although these values were marginally significant (FTreat × Time

(5, 54) = 2.03; P= 0.09) (Fig. 6A). On the other hand, plots with litter
removal showed higher remaining mass values over time, even one
month after the start of the essay (FTreat × Time (5, 57)= 16.4;
P < 0.001) (Fig. 6B).

4. Discussion

4.1. Stand structure and soil characteristics

Nitrogen addition and litter removal resulted in changes in un-
derstory plant cover, soil characteristics, litter decomposition, and
mesofauna community. Nitrogen addition did not affect stand structure
as expected. Other studies observed important increments in leaf pro-
duction (i.e., increased total leaf area) during the first year but with
higher amounts of nitrogen addition in combination with other nu-
trients (Valinger, 1993; Albaugh et al., 1998). Total leaf area was not
addressed in our study. Although no significant structural changes were
observed at the stand level in our study, there were important effects at
ground level on both soil biota and undergrowth vegetation.

The amount of mulch of needle litter showed an important role in
soil water retention consistent with other studies (Ginter et al., 1979;
Ramakrishna et al., 2006; Deutsch et al., 2010; Rhoades et al., 2012),
and supporting the positive relationship founded by Eckstein and
Donath (2005) between soil water content and litter biomass. Water
retention in the soil could be related to a reduced evapotranspiration as
a consequence of lower temperature values found in covered soils
(Rhoades et al., 2012; Xu et al., 2013). However, under water deficit
conditions, soil water content in control plots (without mulch removal)
decreased reaching values similar to litter removal plots (post-summer
values). On the other hand, N addition can increase needle biomass by
promoting pine aerial growth (Brix, 1983; Valinger, 1993). In our
study, neither mulch biomass nor soil water content changed due to N
addition. However, mulch water content was lower in fertilized than in
control plots. This difference could be related to the increase of
creeping herbs and grasses species with shallow roots.

4.2. Ground coverage and understory vegetation

We expected to find important increases of plant cover with N ad-
dition (e. g. Elser et al., 2007; Lu et al., 2010; Stevens et al., 2015).
However, despite vegetation cover mean values were two-fold greater
in fertilized compared to control plots, the differences were not statis-
tically significant possibly due to the differential responses of the life
forms analyzed. Some of the most abundant life forms were responsive
to N addition treatments (graminoids and creeping herbs) while the
others did not show differences at all (ferns and vines). Another factor
that possibly limited plant development and recruitment was light
availability. Nitrogen addition started one year after thinning when
vegetation response was decreasing due in part to a decrease in solar
radiation in the understory (Trentini et al., 2017). In this case, solar
radiation could have been a factor more important than nutrient lim-
iting plant growth (Lu et al., 2011). Consistent with this, no differences
were found in bare soil due to N addition. Intercepted points without
vegetation represented a very low percentage (7% and 6% in control
and N addition plots at the beginning of the experiment, respectively)
due to the fast understory development immediately after thinning
(Trentini et al., 2017).

4.3. Life forms

Consistent with what we expected, most of the species that pre-
sented a response to nitrogen addition were fast-growing life forms with
potential effects in understory simplification. Shrubs were highly re-
sponsive to N addition, which could be related to the rapid response

Fig. 2. Changes in plant cover, grouped by life form, measured as the difference
between the number of interceptions before and after treatments in nitrogen
addition ( , N) and litter removal plots ( , R) compared to control plots (
, C). Changes were analyzed for each life form (T: trees, S: shrubs, G: grami-
noids, F: ferns, PH: perennial herbs, CH: creeping herbs and V: vines). Values
are means ± 1 S.E. Significant differences between treatments and control
plots are indicated (***P < 0.001; **P < 0.01; *P < 0.05).
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that many species have after disturbances (Chazdon, 1992; Laska,
1997). For example, species of the genus Piper have a regrowth colo-
nization strategy that changes the structure of the understory in a forest
of Costa Rica (Gartner, 1989), and also in northern Argentina where our
study was done (Campanello et al., 2007; Montti et al., 2011). Grasses,
the other responsive group, are generally favored by the addition of N
because of their rapid capacity to exploit available resources (Price and
Morgan, 2007; Xia and Wan, 2008; Lu et al., 2010; Yang et al., 2011).
Creeping herbs also had a positive response to the addition of N

treatments. It is noteworthy that clonal reproduction was a common
characteristic of most of the species that constitute the three life forms
mentioned before. These groups of species may have also negative
consequences for the establishment of other species, particularly trees
(Chapman and Chapman, 1997; Paul et al., 2004; Campanello et al.,
2007, Montti et al., 2011). Some clonal species showing high plasticity
in the search for resources (Keser et al., 2014) are able to modify soil
chemical properties and enzymatic activity, negatively impacting the
germination and growth of other species (Novoa et al., 2014). However,
long term studies are needed because no differences in species richness,
or in the evenness of both species and life forms, were observed over the
period of time analyzed (data not shown).

Litter removal treatment did not have an effect on total plant cover
contrary to what was expected in this study and observed in other
studies (Deutsch et al., 2010). The increase of bare soil points could
have been due to handling effects. Contrary to the positive effects ex-
pected in litter removal understory regeneration, no responses were
observed in most life forms. Even though creeping herbs were the more
disturbed life form, it had also the highest positive response. So, this
may evidence that mulch slow down these species development pos-
sibly because their shallow roots have to penetrate a dense mulch of
needles to get nutrients. Also, mulch retains water, prevents it from
reaching the soil and favors evaporation after low precipitation events
(Walsh and Voigt, 1977) further affecting particularly these species but
also the growth rates of other life forms (Tao et al., 1987). Shrub cover
increased marginally because of litter removal. It is possible that time
was not enough to detect effects in life forms that have slower growth
rates than creeping herbs.

Fig. 3. Changes in seedlings abundance and height
before and after N addition (N) and litter removal
(R) treatments compared to control plots (C). Data
were analyzed considering two height categories:
lower and higher than 0.5 m. Differences were cal-
culated in 2×2m quadrants. Values are means ±
1 S.E. Asterisks indicate differences between treat-
ments and control plots (**P < 0.01; *P < 0.05).

Fig. 4. Changes in microarthropods abundances in pine needle litter before and
after N addition (N), and in control plots (C). Values are means ± 1 S.E.
Significant differences between treatment and control plots are indicated
(*P < 0.05).
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4.4. Tree seedling regeneration

We expected that individuals lower than 0.5m were affected by N
addition since competition with other life forms would be strong.
However, our results showed that individuals lower than 0.5 m were
not affected while individuals taller than 0.5 m decreased their abun-
dance and height considerably after treatment. One possible reason for
these findings is that tree seedlings were not tall enough to avoid
competition with other life forms that increased after N addition like
shrubs, creeping herbs or graminoids. A second reason concerns shade
tolerance. Our analysis pooled all seedlings irrespective of their shade
tolerance but several studies found that shade-tolerant tree species are
nutrient limited under close canopy conditions, while the light-de-
manding ones are not (e.g. Pasquini and Santiago, 2012; Santiago et al.,
2012; Villagra et al., 2013; Chou et al., 2018). A third possible reason is
related to the light environment. It is generally accepted that light is a
primary limiting factor for tree growth in forest understories (Chazdon
et al., 1996). As light limitation increased during the experiment, the
impact of N addition on growth may have been reduced. The final
reason for the absence of growth responses concerns time. In local
plantations, management interventions are frequent and therefore it is
not feasible to conduct a long-term fertilization experiment in the field.

Litter removal did not show the expected response of increase of
seedling regeneration especially in the early stages. The lack of differ-
ences in the abundance of seedlings shorter than 0.5 m height does not
support the hypothesis that mulch could be a barrier to tree recruit-
ment. In addition, the decline of seedlings higher than 0.5m suggests
that litter removal not only does not favor the regeneration but it harms
it, unlike to what was found in Tao et al. (1987). The availability of
light and also a lower soil water content that might reduce desiccation

during summer may have been the main limiting factor that inhibited
the expected plant responses after leaf litter removal, especially in the
smaller category.

4.5. Microarthropods

The decrease of microarthropods abundances in pine litter layer of
both, control and N addition plots, and also the soil of the litter removal
plots, can be related to interannual variations that may be associated to
local changes in climatic conditions. Furthermore, in the N addition
treatment, we observed a statistically significant difference only in the
litter layer. This is in agreement with other studies that show a decrease
in the intensity of disturbances with depth (Vlug and Borden, 1973;
Petersen et al., 2004; Coleman and Rieske, 2006). We expected that the
addition of N would increase the abundance of meso-decomposers by
increasing the plant biomass (plant cover) and also the microbial bio-
mass. However, we found a reduction of Symphypleona abundance
with N addition in the litter layer (from 359 individuals to 115 in N
addition and from 266 to 225 in control plots) and the same pattern was
observed for the other groups but differences were no statisticaly sig-
nificant. These results show that, on a short time-scale, fertilization can
have a negative effect on litter layer fauna (Lindberg and Persson,
2004). In the soil, there were no differences due to N addition. Overall,
our hypothesis that litter removal would negatively impact meso-de-
composers was partly supported. Symphypleona did show a negative
response to this treatment, while the oribatid mites has been less af-
fected in the treatment than in control plots. This last result partially
disagrees with other studies that show a strong negative effect of litter
removal on oribatid abundance in soil, by depriving the soil

Fig. 5. Changes in the abundance of the four groups of microarthropods stu-
died, in soil, before and after N addition (N) and litter removal treatments (R),
compared to control plots (C). Values are means ± 1 S.E. Significant differ-
ences between treatments and control plots are indicated (**P < 0.01;
*P < 0.05).

Fig. 6. Exponential needle litter mass loss over time in N addition (N), litter
removal (R), and control plots (C). Values are means ± 1 S.E. Different letters
indicate significant differences on treatment and time interaction (N addition:
P= 0.09, Litter removal: P < 0.001).
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communities of the protection of litter against high temperatures,
drought and predators (Behan-Pelletier, 1999; Sayer, 2006; Ashford
et al., 2013). In our study, heavy rainfall events prior to the second
sampling time probably affected negatively microarthropod abundance,
but for oribatid mites the impact was apparently lower in litter removal
than in control plots. The observed changes could indicate that these
decomposer taxa are sensitive to disturbances and could be used as
good indicators when evaluating management. These changes should
be studied further as they will allow us to deepen into the consequences
of management practices.

4.6. Decomposition

An increase in the decomposition rate was expected in N addition
plots according to other studies (Thirukkumaran and Parkinson, 2000;
Jiang et al., 2014). However, the results were not very conclusive, just a
marginally decrease was detected in mass remaining eighteen months
after the experiment started. In other studies increases in pine litter
decay have been found with N addition even in short periods of time
(Lin et al., 2013; Mo et al., 2006) and laboratory experiments (Jiang
et al., 2014). However, branch coverage was significantly lower in
fertilized compared to control plots, which could be indicating an ac-
celeration of the wood decay consistent with Zhang et al. (2016). This
study attributes the increase in wood decomposition in plots with N
addition to the macro-decomposers activity. Because the size of the
mesh used in our study excluded macro-decomposers, and as N addition
showed negative effects on meso-decomposers abundance, we could
attribute this slight increase in needle litter decomposition to micro-
decomposers, especially those white rot fungi present in the samples
favored by the high moisture conditions of these environments.

As we expect litter removal strongly affected decomposition rate
probably due to the low values of water content of the soil that may
have affected soil biota communities (Benkobi et al., 1993; Geddes and
Dunkerley, 1999; Prevost-Boure et al., 2011; Zhang et al., 2016).
Moreover, mulch represent a structural habitat for meso and macro-
fauna (McLean et al., 1996; Moseley et al., 2004), and also maintains a
favorable microenvironmental conditions for microorganisms, even
despite the poor quality of the litter, as was shown in a meta-analysis
about litter manipulation (Xu et al., 2013). In addition, the decreased
rate of decomposition may be the result of the removal of soil biota,
especially of meso-decomposers, that live on mulch (McLean et al.,
1996; Irmler, 2000), which were more abundant than mesofauna col-
lected from soil samples in our study.

5. Conclusion

The development of grasses, creeping herbs, and shrubs due to
nitrogen fertilization can have consequences for other species by
simplifying the structure of the ground vegetation. Therefore, nitrogen
deposition or even the use of fertilizers in subtropical plantations could
have negative consequences for biodiversity conservation affecting
other species that may provide shelter and food to animals. Similarly,
but with a less pronounced effect, litter removal promoted the develop-
ment of creeping herbs affecting species regeneration. Both treatments
had negative effects on the regeneration and development of native tree
species.

The addition of nitrogen also appeared to slightly accelerate de-
composition, which may have long-term consequences on carbon
storage that should be studied in more detail. In turn, the addition of
nitrogen had a negative impact on the abundance of microarthropods,
especially of Symphypleona in the litter layer. Litter removal negatively
affected decomposition by affecting microclimatic conditions and the
elimination of decomposers. Particularly, some groups of Collembola
and Oribatida could be good indicators of soil disturbance and would
allow assessing the sustainability of pine plantation management. In the
longer term, we would expect to detect higher changes in decomposer

fauna that could potentially impact on soil processes. It is necessary to
highlight the importance of the pine litter layer to maintain soil
processes and biodiversity.

This is one of the first studies analyzing the effect of low amounts of
nitrogen addition and litter removal in subtropical pine plantations that
contribute to understanding potential impacts of increasing nitrogen
deposition on biodiversity. Meso-decomposer organisms may help as
bioindicators in assessing impacts on ecological functions in productive
ecosystems.
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