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Abstract Carbon and nitrogen stable isotope ratios are

used to assess diet composition by determining bounds for

the relative contributions of different prey to a predator’s

diet. This approach is predicated on the assumption that the

isotope ratios of predator tissues are similar to those of

dominant food sources after accounting for trophic dis-

crimination (DxX), and is formulated as linear mixing

models based on mass balance equations. However, DxX is

species- and tissue-specific and may be affected by factors

such as diet quality and quantity. From the different

methods proposed to solve mass balance equations, some

assume DxX to be exact values whilst others (based on

Bayesian statistics) incorporate variability and inherent

uncertainty. Using field data from omnivorous reef fishes,

our study illustrates how uncertainty may be taken into

account in non-Bayesian models. We also illustrate how

dietary interpretation is a function of both absolute DxX

and its associated uncertainty in both Bayesian and non-

Bayesian isotope mixing models. Finally, collated litera-

ture illustrate that uncertainty surrounding DxX is often too

restricted. Together, these data suggest the high sensitivity

of mixing models to variation in trophic discrimination is a

consequence of inappropriately constrained uncertainty

against highly variable DxX. This study thus provides

guidance on the interpretation of existing published mixing

model results and in robust analysis of new resource

mixing scenarios.

Keywords Fractionation � Trophic enrichment � Diet

proportions � Stable isotopes � Food sources

Introduction

Stable isotope analysis (SIA) is a powerful tool, widely

used in food web and trophodynamics research (Vander

Zanden et al. 1999; Pinnegar and Polunin 2000). SIA

applications are based on constrained and element-specific

trophic-induced isotopic shifts between consumers and

their resources (D15N or D13C generalized as DxX). D13C is

usually small, such that carbon data reflect basal resources,

and will inform on primary production sources sustaining

species (Melville and Connolly 2003; Benstead et al. 2006)

or principal prey items and their relative mixes (Phillips

2001; Moore and Semmens 2008). In contrast, D15N is

large and relates to an individual’s trophic position (Post

2002). Variance in isotope values may also be used to infer

information on niche breadth (Bearhop et al. 2004; but see

Flaherty and Ben-David 2010).

The use of SIA in assessment of diet composition has

grown exponentially, providing time integrative and intra-

population resolution trophic data, which has proved par-

ticularly powerful in combination with the fine temporal

and taxonomic resolution data derived from direct dietary

observations (Schindler and Lubetkin 2004). Such resource

mixing approaches are predicated on the assumption that

isotope ratios of predator tissues are similar to that of
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dominant food sources after accounting for DxX (DeNiro

and Epstein 1976), and that dominant food sources can be

separated isotopically. A predator’s tissues are thus an

isotopic mixture of its dietary sources; SIA can then indi-

cate the proportional contributions of these sources, but

only when the isotopic signatures of each source differ.

Initial mixing models were based on balancing equa-

tions (Fry 2006) and solved through a series of linear

equations. When n isotope systems are used, the unique

proportional contribution of n ? 1 isotopically distinct

dietary sources can be resolved for a given DxX in each

isotope system (Phillips 2001; Martinez del Rı́o and Wolf

2005) (Eqs. 1, 2).

dxXconsumer � DxX ¼
X

i

fresourceid
xXresourcei ð1Þ

and
X

i

fresourcei ¼ 1 ð2Þ

For example, the above linear mixing model has an exact

solution with two isotopes and three sources. However, the

number of potential sources often greatly exceeds the

number of isotopes systems, preventing identification of

unique solutions of source proportions.

The need to incorporate multi-source mixing has led to

development of new modeling approaches based not on

unique solutions but on identification of potential ranges.

The first software developed to resolve these Multisource

Mass-balance Mixing Models (4M) (IsoSource; Phillips

and Gregg 2003) was based on iterative techniques and

provided constrained boundaries of source utilization and

ranges of feasible mixes in the nutrition of predators. Iso-

Source calculates all possible combinations of source

proportions that sum to 100% in small increments (e.g.,

1%). Then, the predicted isotope values of each mixture are

computed using linear mixing models that preserve mass

balance (Eqs. 1, 2). Isotope values of computed mixtures

are then compared with the observed isotope values; the

range of combinations that matches within a user-specified

tolerance value (e.g., 0.1%) is then described. Thus, Iso-

Source outputs are ranges of feasible contributions for each

source, given as minima and maxima or 1–99% percentiles,

and their usefulness and interpretation depend on how

constrained these ranges are. Large ranges are usually

uninformative, unless the minimum is relatively high,

which identifies that the source is important. Small ranges

represent relatively well-constrained estimates of the

source contribution and give a useful solution.

Since Phillips and Gregg (2003), a number of other

methods have been proposed (see Box 1 in ‘‘Literature

review’’, below). Such resource mixing models have many

applications: for example, they have been used to describe

plant water uptake dynamics (Asbjornsen et al. 2007) and

rainfall infiltration processes in soils (Bao et al. 2009),

trace the contribution of aged and contemporary organic

matter to rivers (Caraco et al. 2010), estimate contributions

of different sediment sources to water channels or estuaries

(Collins et al. 2010; Gibbs 2008), and dietary proportional

contributions (Moore and Semmens 2008; Parnell et al.

2010).

As with IsoSource, 4M models generally are most useful

in further applications when they identify constrained

potential mixes. However, the likelihood that this occurs is

dependent on the geometry of the convex hull (also refer-

red to as the prey polygon; the smallest convex perimeter

that includes all points) formed by sources in isotope space,

the position of the predator within that polygon after back-

correcting for DxX (Phillips and Gregg 2003; Moore and

Semmens 2008) (Fig. 1) and the number of sources. When

the consumer is in the middle of the resource convex hull,

the range of feasible solutions tends to be diffuse and few

potential mixes may be ruled out (Phillips and Gregg

2003). As the number of sources increases, models also

become increasingly underdetermined and feasible range

estimates generally increase such that outputs becomes less

informative (Boecklen et al. 2011).

Three factors determine the placement of a consumer

within the convex hull, one ecological and the other two

methodological. In the former, feeding strategy influences

where a consumer is likely to sit. Centrally-placed con-

sumers are more common for generalist opportunist pre-

dators because they frequently lack dominant prey items

and or utilize a wide range of resources. Methodologically,

the placement of a consumer depends on the DxX and the

precision with which the convex hull is defined. The use of

inadequate DxX values will result in inaccurate diet pro-

portions (Bond and Diamond 2011) and thus has been one

stimulus for repeated calls for better understanding of DxX

and the factors that affect it (Caut et al. 2008; Wolf et al.

2009; Martinez del Rı́o et al. 2009), such as in elasmo-

branchs (Hussey et al. 2010; Logan and Lutcavage 2010).

Similarly, the convex hull is given with definitive bound-

aries, but the isotopic signatures of the resources them-

selves are variable.

Although there is need for more experimental research

identifying factors driving variation in DxX, the best that

may be realistically achieved is a species- and tissue-spe-

cific mean DxX and constrained variance based on an

understanding of, for example, the effects of ration size,

diet quality or diet isotopic ratios on DxX (Caut et al. 2009,

2010; Auerswald et al. 2010; Perga and Grey 2010). Such

variance in estimates of DxX will likely persist in analyses

despite increased understanding, as they cannot typically

be obtained for all wild populations, especially where

characterization of the diet is a principal objective of
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analyses. Moreover, experimental determination of DxX is

not possible for some species that are difficult to maintain

in captivity, and uncertainty will surround extrapolating

experimental results to wild populations.

It is therefore informative to explore how the different

4M perform in relation not just to DxX but to DxX uncer-

tainty. Few 4M models addressed uncertainty formally,

SIAR being one example. In others (e.g., IsoSource,

Source&Step, and LP-Tracer) uncertainly must be

addressed indirectly, outside of model analyses, for

example via a sensitivity analysis. The main goal of this

paper is to (1) show how DxX uncertainty is or could be

incorporated in the different 4M packages, (2) assess the

consequences of including variance in DxX as either a

range or a mean with its standard deviation, and (3) eval-

uate how informative the different 4M outputs are. In doing

so, the assumptions and tolerances of 4M techniques in

source mixing are assessed to inform future appropriate use

of such analyses.

Materials and methods

Data

Analyses were conducted on two published fish predator–

prey datasets of Galván et al. (2009) containing both gut

content and isotope data. Both species are predatory reef-

fish that inhabit northern Patagonian shore reefs. Pinguipes

brasilianus (hereafter ‘turco’ by its common name) feeds

mainly on reef invertebrates, principally grazers and filter-

feeders, but also small reef fish (Galván et al. 2009).

Sebastes oculatus (hereafter ‘escrófalo’) is as an ambush

predator that feeds opportunistically on mobile organisms

that pass near its refuge (Barrientos et al. 2006; Galván

et al. 2009); it consumes pelagic and benthic fish and

invertebrates. Fishes are a ideal group to evaluate 4M

performance being the taxa to which mixing models are

most frequently applied (Boecklen et al. 2011).

Samples of predator dorsal muscle (n = 6 for each fish)

and whole prey were collected and processed using stan-

dard protocols for C and N isotope data (see Galván et al.

2009 for details). Twelve potential common prey species

were investigated, but because of small isotopic differences

among several prey, these species were pooled, leading to

seven general groups for each consumer. For turco,

SU = sea urchin (Arbacia dufresnei); Cr = crab (Rochinia

gracilipes and Leurocyclus tuberculosus); Ch = chiton

(Chaetopleura isabelle); FA = fishA (Triathalassothia

argentina and Dules auriga); FB = fishB (Ribeiroclinus

eigenmanni and Helchogrammoides cunninghami);

Sc = scallop (Aequipecten tehuelchus) and Pl = poly-

chaete (Eunices argentinensis), were selected as possible

food sources. Oc = octopus (Octopus tehuelchus),

An = anchovy (Engraulis anchoita); FA, FB, Cr, Sc and Pl

were selected for escrófalo (Fig. 1). Seven prey sources

were used for both predators to avoid possible biases

resulting from differing numbers of sources.

Fig. 1 Model input for stable isotope mixing models for two

predatory fish, a Escrófalo and b Turco and various prey. Triangles
represent d13C and d15N predator values: open down-triangle
represents original values, open up-triangle represents values after

D13C = 1 and D15N = 3.4 corrections, solid up-triangle represents

values after D13C = 1.5 and D15N = 3.2 corrections. Shaded box
represents d13C and d15N possible predator values after D13C and

D15N corrections under high uncertainty (HU) scenario for non-

Bayesian implementations. Inset white box represents d13C and d15N

possible predator values after D13C and D15N corrections under low

uncertainty (LU) scenario for non-Bayesian implementations. Curves
represent D13C and D15N assuming LU (dashed lines) and HU (dotted
lines) scenarios. Solid circles represent d13C and d15N prey values:

SU sea urchin, Cr crab, Ch chiton, FA fishA, FB fishB, Sc scallop, Oc
octopus, An anchovy, Pl polychaete
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Model implementations and scenarios

IsoSource, Source&Step, LP-Tracer (thereafter named

together as non-Bayesian implementations) and SIAR were

performed under different D13C and D15N uncertainty

scenarios [single values (SV), low uncertainty (LU) and

high uncertainty (HU)] based principally on estimates of

fish-specific DxX values (Sweeting et al. 2007a, b).

For SV, non-Bayesian applications were performed

using DxX corrections without uncertainty. Two different

estimates (a, b) of DxX were explored: SVa (D13C = 1.0%
and D15N = 3.4%) representing a global mean of all

species tissues and habitats (e.g., Vander Zanden et al.

1999) and SVb (D13C = 1.5% and D15N = 3.2%) repre-

senting fish-specific DxX values (Sweeting et al. 2007a, b).

For LU, DxX was constrained within the most probable

range. In non-Bayesian 4M, D15N was varied between 3.0

and 3.4% (Sweeting et al. 2007a), whilst D13C varied from

1.0 to 2.0% (Sweeting et al. 2007b). Each 4M run used

0.2% increments of D13C and D15N values covering all

possible combinations (Fig. 1). For the Bayesian approach,

DxX LU was taken as one SD about the mean estimate from

Sweeting et al. (2007a, b) for fish (D13C = 1.5 ± 0.4%
and D15N = 3.2 ± 0.4%).

The LU scenario was also performed for Bayesian

models with (LUp) and without (LU) utilizing the capacity

of Bayesian models to incorporate further prior information

(Parnell et al. 2010), in this case, gut contents analysis

(escrófalo: Cr = 0.55 ± 0.1, Oc = 0.05, FA = 0.1,

FB = 0.1, Sc = 0.05, Po = 0.05, An = 0.1; turco:

SU = 0.25 ± 0.05, FA = 0.05, FB = 0.05, Cr = 0.2,

Sc = 0.15, Po = 0.2, and, Ch = 0.1; Barrientos et al.

2006; Galván et al. 2009), otherwise uncertainty in d13C

and d15N of prey values (i.e., d13C and d15N prey

mean ± SD) was the same. Dietary proportions naturally

follow a Dirichlet distribution; and the distribution

parameters (a) are the values that the user can input into the

model. a parameters were calculated using prey propor-

tions and the standard deviation of one source (Cr for

escrófalo and SU for turco) by means of a specific SIAR

function (Parnell and Jackson 2010).

The HU scenario represents a situation with unknown

species-specific DxX and includes nearly the whole range

of D13C and D15N published for fish tissues (reviews in

Sweeting et al. 2007a, b). For non-Bayesian applications,

D13C varied from 0.0 to 2.6% and D15N from 1.0 to 4.6%.

As in LU scenarios, models were run with 0.2% incre-

ments. For SIAR, DxX values were means ± SD of muscle

from controlled feeding studies in Sweeting et al. (2007a,

b) (D15N = 3.2 ± 1.3% and D13C = 1.5 ± 1.2%). This

scenario was also performed adding, as in LU scenario,

prior potential contributions based on gut contents (HUp).

Results are reported following the authors’ recommen-

dation for each 4M implementation (i.e., IsoSource: 1–99%

percentiles, LP-Tracer and Source&Step: minimum and

maximum values, and SIAR: 95% credible interval).

Literature review

To evaluate how DxX and associated variation is currently

addressed in describing diet mixing a literature review was

conducted of 4M literature through the SCOPUS electronic

database. The search was restricted to that literature where

4M was applied to dietary description of fishes. Searches

covered January 2009 (approximately 1 year after first 4M

Bayesian publication; Box 1) up to October 2011.

Results and discussion

The literature review identified 54 publications that used

one of the five 4M presented in Box 1 since 2009 to esti-

mate the diet composition of over 100 different fish species

(Online Resource 1). Bayesian models represent 40% of

the literature in this period. While the proportion has

increased yearly, Bayesian methods represented half of the

mixing literature by the end of the review period, despite

sound theoretical benefits for their use to incorporate

uncertainty.

Among all 4M studies collated, none used a species- and

tissue-specific DxX. Uncertainty in DxX was therefore a

ubiquitous problem in the mixing models reviewed here.

DxX proxies were either from similar species or derived

from reviews. Only 10% (six) of studies suggest the utili-

zation of a proxy from similar species. Thus, there was a

heavy reliance of literature review generated means of

DxX. Problematically, single DxX values varied substan-

tially among reviews based on publication date and data

and inclusion criteria, such that estimates of D13C ranged

from 0 to 1.4% and D15N, from 2.2 to 3.6% (e.g., Post

2002; McCutchan et al. 2003; Caut et al. 2009).

None of the non-Bayesian studies have incorporated

uncertainty in DxX to date. Incorporating DxX uncertainty

more easily is one driver of recommendations for switching

to Bayesian models. However, there was little consistency

among Bayesian models reviewed here as to the magnitude

of uncertainty applied, despite a similar samples type (fish

white muscle), objective (dietary description), and restric-

tions (use of generic DxX). The combination of disparate

choices of DxX and a commonly low uncertainty leads to

variable dietary interpretation (Bond and Diamond 2011).

In contrast, those studies that use high uncertainty are

likely to produce comparable results regardless of specific

choices of DxX due to high overlap. Eight studies using
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Table 1 Feasible proportional diet contributions, expressed as percentages, of each prey item to both predators under different D13C and D15N

assumptions

Prey IsoSource Source&Step LP_Tracer

SVa SVb LU HU SVa LU HU SVa LU HU

Pinguipes brasilianus

SU 0–11 0–1 0 0 0–1 0

0–31 0–49 0–42 0–58 0–40 0–50

0–25 0–23 0–31 0–49 0–42 0–42 0–58 0–21 0–40 0–50

Cr 0–6 0–3 0 0 0–1 0

0–40 0–65 0–62 0–87 0–52 0–80

0–40 0–14 0–40 0–65 0–13 0–62 0–87 0–13 0–52 0–80

Ch 0–3 0–3 0 0 0–1 0

0–18 39–56 0–20 40–59 0–20 40–59

0–18 0–5 0–18 0–56 0–5 0–20 0–59 0–5 0–20 0–59

FA 0–31 0–15 0 0 0–15 0

4–58 74–95 0–66 80–97 0–65 80–95

0–50 1–46 0–58 0–95 0–62 0–66 0–97 0–36 0–65 0–95

FB 0–9 0–9 0 0 0–1 0–1

0–50 75–99 0–59 90–100 0–53 90–97

0–50 0–16 0–50 0–99 0–14 0–59 0–100 0–14 0–53 0–97

Pl 0–48 0–4 0 0 0–60 0

36–91 36–91 97–100 67–100 48–96 47–96

0–49 8–85 0–91 0–91 0–89 0–100 0–100 25–90 0–96 0–96

Sc 0–23 0–3 0 0 0–3 0

0–48 0–75 0–64 0–90 0–57 0–83

0–35 0–43 0–48 0–75 0–56 0–64 0–90 0–40 0–57 0–83

Sebastes oculatus

Cr 0–10 0–1 0–8 0 0–8 0

0–28 20–58 0–38 17–64 0–37 17–63

6–20 0–23 0–28 0–58 0–34 0–38 0–64 0–30 0–37 0–63

FA 0–9 0–8 0 0 0 0

10–64 84–96 0–74 99–100 0–71 90–96

0–9 0–50 0–64 0–96 0–69 0–74 0–100 0–59 0–71 0–96

FB 0–46 0–6 0–57 0 0–34 0

74–94 73–95 83–95 100 83–94 83–94

73–85 16–70 0–94 0–95 0–75 0–95 0–100 11–75 0–94 0–94

Pl 0–6 0–4 0 0 0 0

0–49 0–69 0–64 0–100 0–65 0–95

0–6 0–29 0–49 0–69 0–37 0–64 0–100 0–37 0–65 0–95

Sc 0–8 0–3 0 0 0 0

0–26 0–53 0–37 0–65 0–37 0–64

0–8 0–18 0–26 0–53 0–23 0–37 0–65 0–23 0–37 0–64

An 0–3 0–1 0 0 0 0

0–30 30–54 0–39 35–60 0–36 32–57

0–3 0–15 0–30 0–54 0–19 0–39 0–60 0–19 0–36 0–57

Oc 0–8 0–5 0 0 0 00–61 0–69 0–94 0–100 0–85 0–96

0–8 0–39 0–61 0–69 0–60 0–94 0–100 0–51 0–85 0–96

Reported values show: the minimum feasible contribution calculated (first row); the maximum feasible contribution (second row) and the whole

range (third row, bold values) of feasible contributions. SVa D13C = 1.0% and D15N = 3.4%; SVb D13C = 1.5% and D15N = 3.2%; LU D13C

varied from 1.0 to 2.0% and D15N from 3.0 to 3.4%; HU D13C varied from 0.0 to 2.6% and D15N from 1.0 to 4.6%

Prey: SU sea urchin, Cr crab, Ch chiton, FA fishA, FB fishB, Sc scallop, Oc octopus, An anchovy, Pl polychaete
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Bayesian models (40% of Bayesian studies reviewed) used

DxX uncertainties comparable with our HU scenario.

So how does uncertainty impact trophic interpretation?

The combination of both uncertainty in trophic shifts and

the numerous potential prey items proved particularly

problematic in determining constrained resource mixing in

omnivorous fishes. Under the HU scenario, 42 and 50% of

the possible predator positions were inside the prey poly-

gon of escrófalo and turco, respectively (Fig. 1), while 100

and 66% were inside the prey polygon assuming the LU

scenario and all were in the prey polygon under the SV

scenario (Fig. 1). Thus, HU results summarize 112 and 134

outputs whilst LU results summarize 18 and 12 outputs for

escrófalo and turco, respectively. Solutions that resulted in

predator positions that lay outside the prey polygon after

corrections were mostly due to D13C values, although

which D13C and D15N combinations resulted in non-fea-

sible values differed among species (Fig. 1). When D13C

was [1.8%, turco values were outside the polygon, irre-

spective of the D15N value. For escrófalo D13C values,

\1.0% fell outside the polygon. Assuming that all

important prey items were either sampled or at least had

isotopic signatures that fell within the prey polygon pro-

posed, the latter result showed that potential D13C variation

among different fish species could be bigger than the d13C

difference between extreme prey (e.g., anchovy = pelagic

prey vs. criptic-fish = benthic prey) for escrófalo.

Non-Bayesian methods had similar outputs (Table 1),

but IsoSource’s outputs were the most constrained, pro-

viding narrower ranges than other models (Table 1).

However, IsoSource’s outputs represent 1–99% quantiles

of the feasible results, instead of the whole feasible range,
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Fig. 2 Histograms show the spread of feasible dietary contributions

under high uncertainty (HU) scenario running non-Bayesian

approaches for (a–g) prey of Escrófalo and (h–n) prey of Turco. Solid

line and dotted line represent the spread of feasible solutions using

D13C = 1.0% and D15N = 3.4% (SVa scenario) and D13C = 1.5%
and D15N = 3.2% (SVb scenario) discrimination factors, respectively
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and, when IsoSource’s maximum and minimum feasible

contributions were considered, results were nearly identical

to Source&Step and LP_Tracer results. The IsoSource

feature to inform 1–99 percentiles has the advantage of

truncating distributions that have very small numbers of

observations in long tails and is therefore more robust to

these possible outliers (Benstead et al. 2006).

The results obtained using non-Bayesian methods under

a HU scenario were non-informative due to the broad range

of possible contributions calculated for each prey

(Table 1), ranging from 0 to over 90% for three prey

(fishA, fishB, and polychaetes) and two (fishA and fishB)

prey groups in escrófalo and turco, respectively. Among

the possible D13C and D15N combinations, results varied

from well-constrained outputs (e.g., IsoSource output,

escrófalo, D13C = 1.2% and D15N = 4.4%, fishB

46–56%) to diffuse outputs (e.g., IsoSource output, escró-

falo, D13C = 1.6% and D15N = 3.0%, fishB 4–65%)

(Fig. 2). This is mainly because under HU assumptions the

predator position moved from one side to the other of the

prey polygon and as a result of this feasible contribution

varied from ‘main prey’ to ‘minor prey’ (Fig. 3).

Non-Bayesian methods under a LU scenario produced

smaller overall ranges than HU (Table 1), but they were

still poorly constrained for both species. Although some

escrófalo prey had narrow ranges, for example, crab,

scallop and anchovy with contributions B30% (Table 1,

IsoSource output), all output mixes included zero as a

possible contribution, and at least one other prey group

with high variable contribution (e.g., escrófalo’s IsoSource

output, fishB = 0–94%). These results occurred despite

constraining DxX to the most probable range.

Under the SVa scenario, escrófalo had two mandatory

prey (fishB and crabs) that were present in all feasible

solutions, while other prey could be described as occa-

sional or minor (Table 1). However, under the SVb sce-

nario, only fishB was a mandatory prey, and other prey like

polychaete or octopus could be more important than crabs

(Table 1). This comparison shows how dramatically output

interpretation could change within the most probable range

of DxX values (see Dubois et al. 2007 for a similar com-

parison). In contrast to escrófalo, turco outputs were most

constrained under SVa DxX assumptions (Table 1; Fig. 2).

These results suggest that not only the dietary mixes for a

given species but also comparative analyses among co-

occurring predators face problematic interpretation as a

consequence of DxX uncertainty. For example, the relative

degree of omnivory differs for each fish under different

DxX assumptions and it is unlikely that the same DxX is

applicable to both species.

The Bayesian approach provided more constrained

solutions under all the scenarios (Table 2; Fig. 4). How-

ever, it is not possible to directly compare non-Bayesian

and Bayesian results, in that Bayesian models had the

advantage of producing source contribution estimates with

explicit probability distributions (see Box 1: SIAR and

MixSIR). The results showed that LU and HU assumptions

had very similar outputs when models with or without prior

information were compared (Table 2). However, the

comparison of models with the same uncertainty, but

incorporated prior information, showed that the input of

priors resulted in narrower credible intervals and fewer

prey with 0% contributions as a feasible result.

Fig. 3 Sensitivity analyses of IsoSource outputs under high uncer-

tainty (HU) scenario. 3D plots show the 99% quantile of feasible

dietary contribution for each prey in turco’s diet: a sea urchin, b crab,

c chiton, d fishA, e fish B, f scallop, and g polychaete
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Under HU scenarios, Bayesian outputs showed some

prey had narrower credible intervals compared to LU (e.g.,

polychaete as turco prey and fishB as escrófalo prey;

Table 2; Fig. 4). These unintuitive results for the main prey

item are similar to those of Moore and Semmens (2008),

who also compared high and low uncertainty scenarios (see

Moore and Semmens 2008; Table 1, Eggs and Fish).

The unintuitive results are attributable to standard errors of

the D13C and D15N corrections being large compared to the

spread of the consumers (Fig. 1). This pattern was also

evident for non-Bayesian methods under the HU scenario,

which resulted in *50% of solutions outside the prey

polygon. There was then less ‘space’ for the dietary con-

tributions to move around, and thus, uncertainty reduced,

when the DxX standard error increases (A. Parnell, SIAR

author, personal communication). However, the input of

prior information mitigated this mathematical artifact and

under HUp assumptions the estimated credible intervals

were similar to under LUp scenario (Table 2).

Ecological interpretation of non-Bayesian 4M runs

dramatically changed even with small shifts in the predator

position inside the prey polygon. These shifts induced

changes in the relative importance of diet items, the

number of food sources eaten (omnivory), and, in the case

Table 2 Mean, standard deviation and 95% credible interval of proportional diet contributions based on Bayesian SIAR and expressed as

percentages, of each prey item to both predators under different D13C and D15N assumptions

Prey LU LUp LUppu HU HUp

Pinguipes brasilianus

SU 8.9 ± 6.4 23 ± 5.1 22.9 ± 5 9.7 ± 6.6 23.1 ± 5.1

0–24 14–34 14–33 0–25 14–34

Cr 8 ± 6.5 18.7 ± 4.8 18.7 ± 4.8 9.4 ± 7.1 18.6 ± 4.8

0–24 10–29 10–29 0–26 10–29

Ch 3.2 ± 2.9 7.7 ± 3 7.7 ± 3 3.8 ± 3.4 7.6 ± 3.1

0–11 3–15 3–15 0–13 3–15

FA 27 ± 9.4 6.7 ± 3.9 6.9 ± 4 25.1 ± 8.5 6.8 ± 3.9

8–45 1–16 1–17 8–42 1–16

FB 12.2 ± 8.8 5.7 ± 3.3 5.7 ± 3.3 14.8 ± 8.8 5.6 ± 3.3

0–32 1–14 1–14 1–33 1–14

Pl 25.2 ± 13.2 22.1 ± 5.4 22 ± 5.4 21.8 ± 10.2 2.2 ± 5.3

3–55 12–34 12–33 3–43 12–33

Sc 15.3 ± 9.6 15.9 ± 4.8 15.9 ± 4.8 15.3 ± 9 16.2 ± 4.8

1–36 8–26 8–26 0–34 8–26

Sebastes oculatus

Cr 10.7 ± 7.5 40.5 ± 9.4 40.3 ± 9.3 9.8 ± 6.9 38 ± 8.7

0–28 24–60 24–60 0–25 22–56

FA 23.2 ± 10.3 18.3 ± 8.8 18.5 ± 8.7 22.3 ± 8.5 18.6 ± 8.4

3–44 4–37 4–37 5–40 4–36

FB 29.3 ± 11.4 19.6 ± 8.5 19.1 ± 8.3 21.2 ± 8.5 17.4 ± 7.7

8–53 5–37 5–36 4–38 4–34

Pl 10.5 ± 7.9 4.8 ± 4.1 5 ± 4.2 13 ± 8.2 5.7 ± 4.6

0–29 0–16 0–16 1–30 1–18

Sc 6.9 ± 5.6 3.7 ± 3.1 3.8 ± 3.1 8.3 ± 6.3 4.2 ± 3.6

0–21 0–12 0–12 0–23 1–14

An 5.6 ± 4.9 6.9 ± 4.2 7.2 ± 4.1 10 ± 6.6 9.1 ± 4.9

0–19 1–17 1–17 1–25 2–20

Oc 13.6 ± 9.2 5.8 ± 4.8 5.9 ± 4.9 15.3 ± 8.7 6.6 ± 5.3

1–34 0–18 0–19 1–33 1–20

LU D13C = 1.5 ± 0.4% and D15N = 3.2 ± 0.4%; LUp incorporates prior information on prey’s dietary proportions; LUppu incorporates

uncertainty in d13C and d15N prey values; HU D15N = 3.2 ± 1.3% and D13C = 1.5 ± 1.2%; HUp incorporates prior information on prey’s

dietary proportions

Prey SU sea urchin, Cr crab, Ch chiton, FA fishA, FB fishB, Sc scallop, Oc octopus, An Anchovy, Pl polychaete
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of among species comparisons, interpretations of resource

partitioning. Given the lack of specific DxX values, it seems

necessary to conduct a sensitivity analyses among most

probable DxX ranges. However, results here showed that

the wide range of feasible DxX values usually results in

poorly constrained and uninformative results. Even the

comparison between two well-supported estimates of DxX

correction (i.e., SVa vs. SVb) resulted in trophodynamics

of each species (see Bond and Diamond 2011 for a similar

result on Bayesian models).

Bayesian models incorporate DxX uncertainty in a

useful way, and under low uncertainty scenarios gave

constrained estimates of diet proportions. In addition,

their outputs have the advantage of producing estimated

probability distributions of source contributions to a

mixture instead of only feasible solutions. On the other

hand, mean values describing the average of all the

source contribution estimates should be treated with

utmost caution and never equated with unique solutions

to the mixing problem; because the diet of predators is

influenced by factors such as prey availability and pal-

atability or competitive interactions, and none of the

available implementations incorporate these factors;

therefore, there is no reason to expect that its distribution

means will accurately index the unique solutions that

scientists seek (Benstead et al. 2006).

The unintuitive decrease in the 95% credible interval of

prey contributions when DxX uncertainty increases in

Bayesian models’ output emphasizes the need to use spe-

cific DxX values for isotopic values of species, tissues, and

diets (Caut et al. 2008), and the importance of the call for

more experiments (Wolf et al. 2009; Martinez del Rı́o et al.

2009). In this regard, it is important to choose for dietary

analyses the tissue with smallest DxX uncertainty; which in

fish seems to be muscle when is compared with liver or

heart (Sweeting et al. 2007a, b).

Pre-existing results of dietary analyses based on 4M

non-Bayesian approaches must be used with careful con-

sideration of DxX and compared to currently accepted

mean values and sources of variation. Given the position of

the predator inside the prey polygon, one can explore

qualitatively how alterations in DxX are likely influence

model outputs and feasible prey ranges. This analysis could

be done following the discussion here and the rules of

Phillips and Gregg (2003) for the graphical examination

and interpretation of mixing diagrams.

Box 1 Comparison of four available methods to generate 4M

IsoSource (Phillips and Gregg 2003): Isosource was cited 458 times; more than 100 citations use the software to analyze datasets.

IsoSource is a free Visual Basic program (http://www.epa.gov/wed/pages/models.htm) with, intuitive math, it is easy to use and interpret

the outputs. The software has high computational demands (e.g., seven sources and two isotopes would require examining

more than 1.7 billion partitions at 1% increments). This software has two outputs; one summarizing maximum, minimum and quantiles,

for each source, and another file containing all of the possible prey combinations. All these combinations have the same probability,

thus their authors suggest reporting the distribution of feasible solutions rather than focusing on a single value such as the mean

to avoid misrepresenting the uniqueness of the results. This model incorporates an unknown amount of uncertainty varying the level

of ‘‘tolerance’’ of the feasible solutions. The maximum number of sources is limited to 10. Isosource does not explicitly incorporate

a DxX correction

Source&Step (Lubetkin and Simenstad 2004): Source&Step was cited 25 times; 5 citations use the software to analyze SIA datasets.

Source&Step is less computationally intensive than Isosource and also has relative easy math. This software iteratively solves sets

of linear equations for subsets of sources which have exact solutions and then each resultant mixture become a corner point

of the solution space. The output informs the range (maximum and minimum) of feasible contributions. It is a free S-PLUS code

available at http://staff.washington.edu/lubetkin; and it is easy to translate into R (R Development Core Team 2010). Source&Step

incorporates DxX correction explicitly and also calculates the predator’s relative trophic position. However, this software

does not incorporate uncertainty, but allows solutions ranging from -5 to 105%

LP_Tracer (Bugalho et al. 2008): LP_Tracer was cited on time. LP_Tracer consumes less computational resources than IsoSource;

the implementation of the model runs on Excel and is free

(http://www.isa.utl.pt/*orestes/LP Tracer/). The output is similar to Source&Step, but also generates qualitative information

on the simultaneous presence of sources in the mixtures. This implementation incorporates uncertainty in a similar way to Isosource

and does not incorporate DxX correction explicitly

SIAR (Jackson et al. 2009; Parnell et al. 2010) SIAR was cited 63 times; 34 citations use the software to analyze SIA datasets.

MixSIR (Moore and Semmens 2008) was cited 71 times; 24 studies use the model to analyze SIA datasets. Both, MixSIR and SIAR

use a Bayesian framework and provide similar results, but differ in the fitting algorithms

(MixSIR uses Sampling-Importance-Resampling algorithm, SIR (Rubin 1988) and SIAR uses Markov-Chain Monte-Carlo (MCMC)

sampling techniques). SIAR incorporates an overall residual error term in model formulation. Both SIAR and MixSIR incorporate

DxX correction, account for uncertainty associated with multiple sources, fractionation and isotope signatures, and allow the input

of prior information on prey proportions. Bayesian model outputs are not directly comparable with non-Bayesian outputs. SIAR

and MixSIR estimate posterior probability distributions of prey proportions that allow the user to calculate credible intervals

for prey contributions and to analyze and discuss the histogram shapes of the distributions of prey proportions; see Moore

and Semmens (2008) for a detailed discussion on this regard. SIAR is a free R package (R Development Core Team 2010)

which can be downloaded from (http://cran.r-project.org)
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Conclusions

Literature review illustrates a heavy reliance of mixing

models on review-derived estimates of trophic shifts. These

estimates have substantial uncertainty. A researcher’s

choice of DxX can lead to fundamentally different trophic

interpretations, particularly if uncertainty is inappropriately

constrained, and this problem occurs in all 4M models,

Bayesian or otherwise. Where uncertainty is high, differ-

ences in absolute DxX are less relevant, as widely over-

lapping DxX are assessed. We therefore recommend the use

of species- and tissue-specific discrimination values with

constrained uncertainty. In the absence of species- and

tissue-specific values, the most parsimonious choice is to

use generic discriminations values with high uncertainty

and to input prior information from literature and field

observations. In the absence of such prior information,

under parameterization will generally result in poorly

constrained model outputs.
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