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ABSTRACT
We prove that a generalized Fefferman-Phong type conditions on a pair of weights

u and v is sufficient for the boundedness of the potential type operator from Lg”

into LZ(‘). We also obtain an analogous estimates for their commutators with BMO
symbols.

We include some estimates for a generalized maximal operator in the variable con-
text My(.y, and its fractional version, Mg(.) s(.), between variable versions of L log L
type spaces, where s(-) and B(-) are exponents belonging to certain classes.
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1. Introduction and main results

Let ® be a nonnegative and locally integrable function. We shall consider potential
type operators Ty defined by

Tof(o) = [ @ 1)f(w)d

whenever this integral is finite where the kernel ® satisfies certain weak growth
condition.

In [1], E. Sawyer and R. Wheeden obtained Fefferman-Phong type conditions on the
weights and proved weighted boundedness results for the fractional integral operators
I, between Lebesgue spaces. Motivated by this paper, in [2], C. Pérez considered
weaker norms than those involved in the Fefferman-Phong type conditions in [1] and
obtained weighted boundedness result for the potenctial operator Tg. This article
was the motivation for a great variety of subsequent papers related to this kind of
operator. For example, in [3] and [4], the authors obtained weighted L inequalities of
Fefferman-Stein type for Tg and for the higher order commutators associated to this
operator, respectively, whenever 1 < p < oco. For this commutators two weighted norm

CONTACT Luciana Melchiori. Email: luchimelchiori@gmail.com
CONTACT Gladis Pradolini. Email: gladis.pradolini@gmail.com



inequalities in the spirit of those given in [2] were proved in [5], and similar results
were obtained in [6] and [7] in the general framework as spaces of homogeneous type.

Multilinear version oh the results described above can be found in [8] and extrapo-
lation results involving these operator were given in [9] and [10].

On the other hand, it is well known that many applications in partial differential
equations and quantum mechanics find in this type of operators relevant tool. We shall
refer the reader to [1] and [11] for further information.

The aim of this paper is to describe the behavior of the operators mentioned above
when they act between variable exponent Lebesgue spaces with different weights. Con-
cretely, we proved that a generalized Fefferman-Phong type conditions on a pair of
weights u and v is sufficient for the boundedness of the potential type operator from
Lﬂ(') into LZ('). We also obtain an analogous estimates for their commutators with
BMO symbols.

We also include some interesting estimates for certain generalizations, in the variable
context, of the Hardy-Litthewood maximal operator between variable version of the
Llog L type spaces. Fractional version of these results are also considered.

In the definition of Ty, the function ® belongs to a certain class of kernels that
satisfy that there exists positive constants §, ¢ and 0 < ¢ < 1, with the property that
P(y) dy,

C
sup  P(z) < 5
2 < || <2k+1 2 Js(1—e)2k <|y|<26(14¢)2"

for all k € Z. We shall denote this class by 2.

For example, if ® is radial an nonincreasing, then ® € ©. A basic example of
potential operator with radial and nonincreasing kernel ® is given by the fractional
integral operator I,, which is the convolution with the kernel ®(¢) = [t|]*™",0 < a < n.
There are other important examples such as the Bessel potential Jg », 3, > 0 with

kernels K » best defined by means of its Fourier transform by I?;({) = (A2 ¢ P72
and Kpg ) is also radial and nonincreasing.
Nevertheless, condition ® involves other type of kernels ® such that radial and

non-decreasing functions. Moreover, if ® is essentially constant on annuli, that is,
D(y) < CP(x) for |y|/2 < |z| < 2|y, then & € D.

We now introduce the general context where we shall be working with.

The expression A < B means that there exists a positive constant C' such that
A< CB. With A~ B wemean A < B and B < A.

Let p(-) : R® — [1,00) be a measurable function. For A C R" we define p, =
essinfzea p(r) and pi = esssup,ca p(z). For simplicity we denote p~ = pg. and
Pt = .

Witlﬂfp’(-) we denote the conjugate exponent of p(-) given by p'(-) = p(-)/(p(-) — 1).
It is not hard to prove that (p')~ = (p*) and (p')*" = (p~)'.

We say that p(-) € P(R") if 1 < p~ < p™ < oo and we denote by P9(R") the set
of the exponents p(-) € P(R™) that satisfy the following inequalities

p(z) —p(y)| S 1/logle+1/|x —yl), z,y e R"

and
Ip(z) — poo| S 1/log(e + [2]), z € R" (1)

for some positive constant po,. It is easy to see that the inequality (1) implies that
lim;| 00 P(Z) = Poo. The conditions on p(-) above are known as local and global
log-Holder conditions, respectively.



If p(-) € P(R™), the variable exponent Lebesgue space LP()(R") is the set of the
measurable functions f defined on R™ such that, for some positive A, the convex
functional modular

0 (F/N) = / @)/ AP da

R

is finite. A Luxemburg norm can be defined in LP()(R™) by taking
£l = inf {0 > 03 0,00 (F/N) < 1.

By Lfo(g (R"™) we denote the space of the functions f such that f € LPO)(R™)(U) for
every compact set U C R™.
A locally integrable function w defined in R™ which is positive almost everywhere

is called a weight. For p(-) € P(R"™) we define the weighted variable Lebesgue space

Lﬁ,(')(R") as the set of the measurable functions f defined on R"™ such that fw €
LPO)(R™).

By a cube @@ C R" we shall understand a cube with sides parallel to the coordinate
axes. The sidelength of @ is denoted by ¢(Q) and a@, a > 0, denotes the cube
concentric with @ and with sidelength a¢(Q). By X we denote the characteristic
function of Q.

We are now in position to state our main results.

The next theorem gives a two weighted boundedness result for T between variable
Lebesgue spaces with different exponents. In the classical Lebesgue space a proof can
be found in [2]. The function @ involved in the condition on the weights is given by

D(t) :/|<t(1>(z) dz.

Theorem 1.1. Let p(-),q(-) € P9 (R"™) such that p(-) < q(-) and ® € D. Suppose
that (v,w) is any couple of weights such that v € Lfo(g (R™) and for some constants
r,a>1,
gl v g Il
sup B(U(Q)) Qllg() H H (p-) [ XQull q+<oo, 2)
) [Zall,) Tl el

where the supremum is taken over all cubes @ C R™. Then Ty : Lg(')(R”) — LZ,(')(R”).

The maximal operator associated to Ty is defined by

) — s 2UQ)
My f(w) = sup =0 /Q @) dy.

Note that the weights w = u!/%" and v = (M&(p,),u)l/’“(lf)' where u a weight,

r > max{1l,p"/(p7)'} and a = r(p~)'/p" satisfies condition (2) with p = ¢. In fact,

since _
(L(Q))r /
Mz, -yu =sup ——=—— | u(y)dy,
Hrip™) QBIQ)J |Q‘ 0 (y) Yy

then



- [XQu ], - - 1 —1/(r(p7))+1/ (ap)
PU(Q ! a §</uydy) =1.
D g Tl =\l Jp '@

In the theorem above the bump-conditions on the weights involve constant expo-
nents. However, we can give a variable version by assuming certain adittional condition
on the constants r and a, which restrict the range of them with respect to the previous
theorem.

Theorem 1.2. Let p(-),q(-) € PYI(R™) such that p(-) < q(-) and ® € D. Suppose
that (v,w) is any couple of weights such that v € Llo(c) (R™) and for some constants
> )*/(®)” anda>q" /g7,

ey el 140~ oy 13wl "
o Rl Pl Tl

Then Tp : LY (RM) < LI (R™).

It is easy to check that the pair (w,supg ‘AI;(E(Q))HXQUJHMI(.)HXQH;ql(.))7 where a >
qt/q~ satisfies condition (3) with p = q.

Remark 1. When p and ¢ are constant exponents, Theorems 1.1 and 1.2 coincide.
Moreover, they was proved in [2].

When Ty is the fractional integral operator, defined for 0 < a < n by I, f(z) =

Jgn f(W)|z — y|*™dy, condition (3) can be written as follows
2N Xl 1Xu™ ], ) 1 XQull,
sup |Q[5 Q )H Hp Q a() ()
Q 12l Xl 1XQll,

However, as in the classical case (see [1]), it can be seen that a necessary condition for

the boundedness
I : IO < 1a0) (5)

is given by

N 2 1%l 1%Qu [ o) 1wl
Ap(.)’q(.) . Sgp ’Q‘" q(-) (") q(+)

6
ol TXal,,  TRal,, ©)

In fact, fix a cube @ C R”™ and let f(y) = 0 Xg(y)sq(y)?W/PWy(y)=®) where
soy) = (IQIY™ + |zg — y|)*™™, g is the center of Q and 6 is a constant such that
vaH = 1. Since
p()
Q" [z —y| < QI [zq — 2| + Q" |zq —yl < (IQ" + |zq — z[)(IQI» + [zq — y),

we have .
|z —y|*™" > Q' "sq(2)sq(y), (7)

for every x,y € R™. On the other hand, since vaH o =1, we have
e

[ Fap oy da /Q sq@)? Pu(z) 7' da, (8)



and this implies that

~ 1. 9)

-1
HSQU ()

Then, by (7) and (8) we have
Inf(x) 2 1QI"*"sq(x) / so(u)” Wo(y) W dyz|Q|' " sq(x).
Q
Thus by (5), the last inequality and (9) we obtain
Toful | 2101 [squl,, 2 @I/ [ Xgsqu™

2 QI | gy

12

}p,(,) ||XQ5Qw”q(.)

40 HXQw”q(.)

since sg(z) > |Q|*/™ 1. The last expression is equivalent to condition (6) since Lemma
2.2 (see section §2).

Therefore, as in the classical case, the sufficient condition given by (4) is stronger
than condition A;‘(') o) given in (6). In fact, by Lemma 2.7 and Hoélder’s inequality
(13) (see sections §3 and §2), since 1/p/(-) = 1/(rp'(*)) + 1/(+'p'(*)) and 1/q(-) =
1/(aq(")) +1/(a'q(-)), we have
o 1%ally) [%0v ) 1wl

||XQ||p(.) ”XQ”,,/(.) ”XQ”q(.) ~

%l 13 ) 1 X0l

Q .
ol 12l 1l

QI

In this article we shall also deal with the commutators of Tg with BMO symbols. For
a nonnegative, locally integrable function ®, a function b € Lllo .(R™) and a nonnegative
integer m, the conmmutator of order m of T is formaly defined by

TV () = / (b() — b(y))"®(x — ) f(y)dy.

n

In the classical Lebesgue context, these operators were study in [5] and in [8] in the
multilinear framework.

The next result envolving commutators is the corresponding version of Theorem 1.1
for this case. When m = 0 both theorems are the same.

Theorem 1.3. Let p(-), q(-) € P9 (R™) such that p(-) < q(-), ® € D, b€ BMO and
m € N. Let two constants r, a > 1. Suppose that (v, w) is any couple of weights such

that v € Lfo(g (R™), w e Lfoqc(')(R”) and
(e el [ Qv
o Rl Tl Xl

Xou||

aqt

Then T2™ : I3V (R") < LIV (RM).

As in the case of the operator Ty we can give a variable bump condition of the
theorem above.
Theorem 1.4. Let p(-),q(-) € P°I(R") such that p(-) < q(-), ® € D, b€ BMO and
m € N. Let two constants r, a such that r > (p')*/(p')~ and a > ¢ /q~. Suppose that

(v,w) is any couple of weights such that v € Lfo(g (R™), w € Lfoqé')(R") and
~ Xoll oy 1Xv™| s [[Xow]|

bup(I)(ﬁ(Q))H QHq() H Hrp() ’ Q Haq()<
Q ||XQ||p(.) ||XQ||rp/(.) ||XQ”aq(.)
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Then T2™ : L5V (R") < LI (R™).

Let s(-) > 1 and g be a locally integrable function. We shall consider the maximal
operator M.y introduced in [12] and defined by

Myy9(w) = sup | Xogll 1115 (10)

It was proved in [[12],Theorem 7.3.27] that, if p(-),s(-),I(-) € PYI(R") then,
My - LPO(R") — LPO)(R™) provided that p(-) = s(-)I(-). On the other hand in
[13] the authors proved that the Hardy-Littlewood maximal operator M is bounded
in LP() (log L)")(R™) when p(-) € P°9(R") and r(-) € Ple9lod(R™).

We say that r(-) € P9%°9(R") if 7(-) : R* — R is bounded on R™ and it satisfies
the following inequality

r(x) —r(y)| < 1/log(e +log(e + 1/]z — yl)), for every 2,y € R".

Let p(-) € P(R™) and r(-) > 0, we denote with 19;8 the function defined by

9 (w,1) = ) (log(e + 1)), (11)

for t > 0 and x € R™.

The space LP0)(log L)")(R™) is the set of the measurable functions f defined on
R"™ such that, for some positive A, the convex functional modular

() _ r¢) (. 1f ()]
2y (F/A) = /R V() (x )&
is finite. A Luxemburg norm can be defined in LP()(log L)"()(R™) by taking
11y = 11 oo og o = inf {A > 05 070 (F/0) < 1}

In the following result we extend both results mentioned above.

Theorem 1.5. Let p(-),s(-),l(-) € PYI(R™) such that p(-) = s(-)I(:). Let r(-) €
Ploglod(R™) such that v(-) > 0. Then M.y : LPO)(log L)")(R™) — LPO)(log L)) (R™).

For 5(-) > 1, we define the following fractional type version of the maximal operator
M,y given in (10), as follows

My, 001@) = 10 1%l ¥l 1 ¥l (12)
A key result relating both operators above is given by the following lemma (see the
proof in section §4).
Lemma 1.6. Let p(-),q(-) € P9(R") such that p(-) < q(-). Suppose that 1/3(-) =
1/p(-)—1/q(-) and let s(-) € P(R™) be such that sT < 3~ . Then the following inequality
My (9)(z) S Mgyt (60 @) 97070 Hm

holds for every function g.



By Lemma 1.6 and Theorem 1.5 we obtain the following boundedness result for the
fractional type maximal operator Mg .y (.), which is relevant in the proofs of our main
results.

Theorem 1.7. Let p(-),q(-) € PY9I(R") such that p(-) < q(-) and r(-) € PI°I(R")
such that r(-) > 0. Let 5(-) and s(-) be two functions such that 1/5(-) = 1/p(-)—1/q(-)
and st < p~. Then Mg(.) 4y : LPV)(log L)"")(R™) — L0)(log L)"O)(R™).

Particularly, if 7(-) = 0 we obtain that Mg, 4. LPO(R™) — LIO(R™).

Let us return to the condition on the weights (3). For a given exponent s(-), a
weight w and a cube (), that inequality involves averages of the form as(')(w, Q) =
Xl Xl

We now consider the following Luxemburg type averages associated to a given N-
function ¢ (see [12] for more information about N-function),

- 1 |f (@)
||f”¢,Q=1Hf{)\>0:@/Q¢(x, ; )dazgl},

and the corresponding maximal operator My f(z) = supgs, || fll4 o -

For g(-) € P(R™), we define the following fractional type version of the maximal
operator above Mgy o f(7) = supgs, ”XQHBC) [ fllyq- When ¢(-, L) = L) (log L)"0),
it is easy to see the following relation between both averages given above.

Lemma 1.8. Let p(-) € P9 (R™) such that p™ < ps and let 7(-) be a function
such that 0 < 7~ < rt < oco. If ¢(x,t) = tP®(log(e + t))"®), then the inequality

||f||¢Q < C.aPOre(f,Q) holds for every cube Q, for every function f € Ll (R™) and
e> 0.

As a consequence of this lemma we have the following version of the Theorem 1.4
by considering conditions that involves this type of Luxemburg averages. The proof is
similar to the proof of theorem 1.4.

Theorem 1.9. Let p(-),q(-) € P9(R™) such that p(-) < q(-). Let ® € ®, b € BMO
and m € NU{0}. Let Ay, By, C, Dy, € N(R™) be funtions that verify
(i) My, : LPO(R") — LPO(R™),
(i) Mg o, : LYO(R™) — LP'O(R™) where 5(-) is defined as in Lemma 2.7,
(iii) A Yz, t)B Y (x,t) < t/(log(e+1))™ and
() C,'(z,t)Dy w,t) < t/(log(e + )™

If (w,v) is any couple of weights such that v € Lf(c') (R™), w € Lq(')(R”) and

o loc

sup U 07 |5, 10lp,.0 1¥ally 1 Xl < oo
Then T2™ : 12 — 140,

2. Preliminaries

When we deal with variable Lebesgue spaces, we have the following known results that
we shall be using along this paper.



Lemma 2.1. ([12]) Let s(-),p(-),q(-) € P(R™) be such that 1/s(-) = 1/p(-) + 1/q(-).
Then
1£9llscy < 20l Nlgllgey - (13)

Moreover, if s(-) = 1, the inequality above gives

/Rn W9l dy < 21 fll, llg

p'() (14)
which is an extension of the classical Holder inequality.

Lemma 2.2. ([12]) Let p(-) € PYI(R"). Then, for every cubes Q C R",
1%l 1%l ~ Q.

Lemma 2.3. ([12]) Let p(-) € P(R") and s > 0 such that sp~ > 1. Then ||| f|*||,,) =
1 15p(-

Lemma 2.4. ([14]) Let p(-) € P9(R") such that p* < poo. Then HXQHP(.) <|QY/P@),
holds for every cube @ C R™ and a.e. x € Q.

Lemma 2.5. ([12]) Let p(-) € P(R™). Then, for every cubes @ C R™, min{1, |Q|} <
Xl , < max{1, |QI}.

emma 2.6. et p(-) € an C a cube such that < 2™, en,
L 2.6. ([12]) L Plog(R") and Q C R™ a cube such that |Q| < 2. Th
if and v € Q, ||XQ||p(.) ~ |Q|Y/P®) . Moreover, for every cube Q C R", H‘XQHP(J o~
,Q‘(l/p)q.

The result above allow us to obtain the following lemma.

Lemma 2.7. Let p(-),q(-) € P9(R"™) such that p(-) < q(').1 Suppose that 1/5(-) =
1/5() — 1/a("), then. for every cubes @ C B™, | Xqll, ) | Xalld = |Xal 50,

Lemma 2.8. ([15]) Let p(-) € P9(R"™), b € BMO(R™) and k be a positive integer.

Then i i
Xolb—b Xiolb —b;
sup H al Ql Hp(.) ” iQl Ql Hp(.)
Q HXQHp(.) ”XjQHp(.)

k k
5Hb”BMo and Sgp SHbHBMo

Vi,i € Z with j > i.

Lemma 2.9. ([14])) If p(-) € P9(R") there exists a positive constant C), such that,
for every cube Q@ CR", [[Xaqll,, ) < Cp[[XQll,.) -

3. Key lemmas

In order to state the following Lemma, let us recall that |||,y .y = [l Loc) (og 1)) -
Given f € Li, (R"™), s(-) € P(R") and Q a cube, with M) o f we denote the average

loc
Myy.af = X fll Xl

Lemma 3.1. Letp(-),s(-) € P9(R") such that p(-) > s(-). Let r(-) € P91°9(R"™) such
that r(-) = 0. Let f be a nonnegative measurable function on R™ with || f|,.) .y <1

8



such that f(x) > 1 or f(z) = 0 for each x € R™. If @ C R™ is a cube with |Q| <1
such that Mgy of > 1 and x € Q, then

vef < (g / 0w £ ) (o8 (e + o / y))dy))_p?x) |

In order to prove the Lemma 3.1 we previously show two useful estimates contained
in the next lemma. For simplicity we introduce de following notation. If f is a function
defined on R", for each :c E R™ and @ C R"™ a cube we define I = I(f,Q) = M.y of

and J = J(f,Q) = fQ (y)) dy.
Lemma 3.2. Let f,p(‘),s(-) and @ as in the hypotheses of Lemma 3.1. Then there

exists two positive constants C1 and Cy such that
1. If I > 1 then J > Cy. and 2. If J > Cy then I < CalJ.

Proof. 1. By hypothesis we have that o (XQf/HXQHS()) > 1. Since |Q] < 1, by
Lemma 2.6, the hypotheses on f and the exponents we get

151Q1 05y (X N S QI 0y (Xoniyf ) =11 S .

2. Since C7/J <1 as above we obtain

s(y) s(y)
Cif(y) C1 f(y)
) ) gy < 2 L) g
L(JHXQHS(.)) V=7 (HXQH ) g

01/ f(y) / )
I Jontylfw)=1 (HXQH J|Q| 0

O
In [16] the authors proved the following estimate that we shall also use in the proof

of Lemma 3.1. In order to state it, if () is a cube and x € ), we define
K = JYP®) (1og(e + J))T@/p@), (15)

Lemma 3.3. Let p(-) € P9(R"™) and r(-) € P99 (R"™) such that r(-) > 0. Let f be
a nonnegative measurable function on R™ with || f[|,.) ) <1 and @ C R™ a cube. If
1 < J, then for every z,y € Q

KW < g7 log(e + J))™™@ and (log(e + K))™"W < (log(e + J)) @),
We can now proceed with the proof ol Lemma 3.1.

Proof of Lemma 3.1. Since My of > 1, by Lemma 3.2, we have 1 < J. Let x € Q
and let K be defined as in (15) then

I/K = || X f /K| | Xall3

(HXQm{yw y<itf /K| +HXQm{y|f<y>K}f/K|| )HXQH;(B

fN\" ( Jog(e + ) o -
< 1+ Xenyrw)> K} (K log(e + K) (Re] IS

=1+ A. (16)
s()




Let us estimate A. Since |Q| < 1, by Lemma 2.6, we have

S /e s(y)
e 1 K) a0 '
QN{ylf(y)>K} et

<1 (Jc(y)>p(y) <log(e + f(y))>r(y) o d
1Rl ontyrwzry |\ K log(e + K) ’

_1 <f(y)>p(y) <1og(e+f(y)))r(y) ay
1Rl Jonwlrwzry \ K log(e + K) '

By Lemma 3.3 and the estimate above we obtain that A < 1 and, by (16), it follows
that I < K as required. O

The following lemma was proved in [12] and we shall use it in the proof of Theorem
1.7.

Lemma 3.4. [[12],Theorem 7.3.27] Let p(-),s(-),1(-) € P©9(R") such that p(-) =
s()I(-) and I > 1. Then for any m > n there exists 6 € (0,1) such that

(OM(y )P S M(POI ) (@) + (ME ) (@) + 2Hp ()
holds for every cube Q C R", x € @ and every function f such that Hpr(.) < 1/2,
where Hp,(z) = (e + |z])~™
The following lemma is useful to prove the Theorem 1.4.

Lemma 3.5. Let p(-) € P°9(R"), v € Z and Qq a dyadic cube. If for i € N we define
O; = {iQ dyadic cube : Q C Qo and £(Q) =27V}, then

QZO HfXSQHP(.) HQXSQHPI(.) S HfXSQOHP(.) HQXSQOHP/(.) (17)
SO

for every f € L ()( R™) and g € Lp/(')(R").

loc loc

Proof. Let f € Llo(c) (R™) and g € Lfog)(R") By Lemma 2.2 and Hoélder’s inequality
(14) we have

||fX3QH | "
Qeo, " Qe0, 3Q1p(-) 3Q1p ()
1f Xsqll l9&Xsqll, (.
< D Hyo(a )7 D Ao )7 da
B\ Geo, 131, Scon 1231,
1f Xl l923@ll,,
o DI ER Lo ) | 2 el | de
" Q€03 SQ QGOB 3Q
1.f X3, X30]],,. 19X30, 30|,
S Mo e | |2 e g
Q€0, 3Q1p() ) lleeos 3Qlp () -
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Then, by [[12], Corollary 7.3.21] we obtain (17). O

4. Proof of main results

Proof of Theorem 1.1. Since v € Lfo(g (R™) implies that the set of bounded func-

tions with compact support is dense in Lg(')(R”) and T is a positive opera-
tor, it is enough to show that ||To f[| 40 < | fl[»c) for each nonnegative bounded
function With compact support f. This is in turn equivalent by duality to
Jan 9( z)To f(z)dz S || f|[ ») for all nonnegative bounded functions with compact
support f,g such that ||g||q,(.) <1.

It was proved in [2] that, if ® € ©, there exists a family of maximal nonoverlaping
dyadic cubes {Qj ;}, the Calderén-Zygmund cubes, such that, if we denote Ry ; =
YQk,; where v = max{3,d(1 + )} with ¢, the numbers provided by condition D, we
have the following estimation

/n guTef SO Q| ®(U(Re ) 5—

o Bl JR,

1
|Rijl JR,,

f(z)dz 9(z)w(z) dz.

Let us denote s = r(p~)’. By Holder’s inequality, the hypotheses on the weights and
Lemma 2.7, the last sum can be estimated by a multiple of

Z’ij"p Rk,j) s’ Rkj(fv> st]( _1)M(aq+)’,Rk,j (g) Maq*,Rk,j(w)
k,j

~ > Qs My g, (fV) Mg (agty R, (9)- (18)
k7j

We shall use the following properties of Calderén-Zygmund cubes. For each k,j € Z
we can consider the sets Dy, = Uj Qk,j and Fi j = Qkj\(Qk,j N Di+1). Then {Fj ;} is
(18) by a

multiple of

Z|Fk,j|Ms/,Rk,j(fU)Mﬂ(.),(aqﬂ/,Rk,j(g) < i M (fo)(y)Mp(y (ag+y (9)(v)dy
k,j "

S HM (fU ” HM,B aq*)( )|

() S HfUHp( )

where we have used that, by [[12], Theorem 7.3.27], My : LP() < LPC) since p~ > &/
and, by Theorem 1.7, Mgy (qq+) LIy P (), O

Proof of Theorem 1.2. The proof follow as in the proof of Theorem 1.1 replacing
the exponents s ans [ by s(-) = rp/(-) and I(-) = aq(-) respectively to obtain

| s < [0 (£0)] o S 170l

where we have used that, by [[12],Theorem 7.3.27], My, : LP0) — IPO) since p~ >
(s")* and, by Theorem 1.7, Mg (. : LYC) — 1P'0) since (¢/)~ > (I)*T. O

We first prove Theorem 1.4 since Theorem 1.3 follows similar arguments with minor
changes.
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Proof of Theorem 1.4. Since v € L‘fo(g (R™) implies that the set of bounded func-

tions with compact support is dense in L} (')(R”) and \Tb’m| is a positive operator,

it is enough to show that Tqb)’m f‘ 0= Sfllpe for each nonnegative bounded func-

tion w1th compact support f. Moreover by duality this is equivalent to prove that
b,

Jon 9@)w(@)|Tg™ f(2)| da, SN fIl

pact support 7, o0 <L

Let @ be the function defined by ®(t) = SUD;<|z|<at P(), for every t > 0. It was
proved in [5] that, if ® € ©, we can estimate

[ ouirins r<2<1>( )Z/ ~hobf [ =tol e ()

where bg = |Q|~* fQ z)dz and the sum is taking over all dyadic cubes of R™.

Let us denote s(-) = rp/(-) and [ = aq(-). Since (p)* < r(p/)” and ¢" < aq™
then (s)* < p~ y (I')" < (¢7)". Let @, u two constants such that (s')" < w < p~
and (I)" < u < (¢7), and w(:),7(:) defined by 1/w(-) = 1/s(-) + 1/ and 1/7(-) =
1/1(-) +1/u. Observe that w(-), 7(:) € PI(R™) since 5(-),1(-) € P9(R™). By Holder’s
inequality (14), Lemmas 2.2, 2.3 and 2.8 we can estimate (19) by a multiple of

‘X3Q|b bQM w'(+) HXSQJ[HW(
) 3
20 (5 )Z' o ool
10 [Xalb = bol™ ]| ., HXQQUJHT()
() ||XQ||
_ Q) .ol I Xogul,,
< m b . 2
S 1blo 3 ("5 el T (20

Since g has compact support and w € Lﬁjqc(')(]R”), limg Q)00 Mr(),0(gw) = 0. Let Cr
be the constant provided by Lemma 2.9. If o > C; and k € Z, it follows that, if for

some dyadic cube @,
of < M r(),Q(gw), (21)

then @ is contained in dyadic cubes satisfying this condition, which are maximal with
respect to the inclusion. Thus, for each integer k there is a family of maximal nonover-
lapping dyadic cubes {Qy,;} satisfying (21). Let @} ; be the dyadic cube containing
Qr,; with sidelength 2¢(Qy ;). Then, by maximality and Lemma 2.9, we have

Oék < MT():QIW (gw) < HXQ;“J

T(_)HXQW HT_(l.)MT('),Q;,j (gw) < Cra® <t

For k € Z we define the set C, = {Q dyadic : % < M, g(gw) < o*'}. Then every
dyadic cube @ for which M, o(gw) # 0 belongs to exactly one Cy. Furthermore, if
Q € Cy, it follows that @ C Qy,; for some j. Then from (20) we obtain that
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/R el T2 S b0 3 7 & (6Q)/2) BQIM.() 50 (F)IQIM. ) 0 (g)

k QeCy

SIBwo Y oF > 2UQ)/2) BRUQIM . 30(f)

k,j Q€Cr: QCQy,;

SIbIEwo Y Mryu,(gw) Y- @ (UQ)/2) BRIIQIMug s(f)-  (22)

k.j QEC): QCQk,;

If we show that there is a constant Cg such that, for any dyadic cube Q,

> 2UQ)/2) BRIQIM() 30(f) < Ca®(5(1 4 £)(Q0))3Q0| Mg 30, (f); (23)
Q:QCQo

with ¢, ¢ the numbers provided by condition ©, from (4.6) we obtain that

/Rgw!Tbmf\<||b|BMoZ‘1> (14 e)lQrk,5))3Qk,j |1 Mu) 3qs , (/) Mr() @y, (gw)-
k,j

Let v = max{3,d(1+¢)}, we denote Ry, j = YQy ;.- Then, by Lemmas 2.9, 2.2, Holder’s
inequality (13), the hypothesis on the weights and Lemma 2.7 we have

/R I Te™ 1 S 16 Taro 3 SR ) B Moy 1, (F) M 1, (g10)

k.j
S0 Y PRk ) Rl Mk, , (f0) My gy, (0" ) M, (9) My, (w)
k,j
~ b B0 > 1Qk i Ma , , (f0)Ma() ., (9)-
k7j

As before, we take a disjoint family of sets {F}, ;} such that |Qx ;| S |Fi ;|- Then

b7
/]R gw‘Tme‘ S ||bHT£MO Z |Fk7j‘Mw7Rk,j (fU)MB('),UyRk,j (9)
! k.j

S0 [ Ml o) My

S 1Bl ar0 1M (F0) oy M) 9)

o SIblEo 7ol

where we have used that by [[12],Theorem 7.3.27], M, : LP() — LPO) since p~ > w,
and by Theorem 1.7, Mg, : L) — LP'0) since (¢')~ > w.

In order to complete the proof let us prove (23). In fact, if £(Qo) = 27%° with vy € Z,
by Lemmas 2.2 and 3.5 we have

Y. 2(UQ)/2)1QIBQI My 3 (f)

Q:QCQo
< Z 2_V ! 2 o Z ||fX3Q||w(.) | w'(+)
v>ug QCQo:£(Q)=2""¥
§ HfX3Q0 Hw(.) ||X3Qo w'() Z 6(2_V_1)2_m
v>1
S XQq oy 1430 vy B(O(L +€)€(Q0)),
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where the last estimation was proved in [2]. This conclude (23). O

Proof of Theorem 1.3. The proof follow as in the proof of Theorem 1.4 replacing
the exponents s(-) and () by s = r(p~)" and [ = aq™ respectively. In fact, we have
s’ <p~ and I’ < (¢7)" and we can take w,u,w, T constants such that s’ < @ < p~,
Ul'<u<(qt),1l/w=1/s+1/wand 1/7 =1/l +1/u. O

Proof of Theorem 1.5. Let f e LPO)(log L)) (R™) with ey rey < 10T s
enough to prove that [, 9" o )(:1:, Mgy f(x))dr < 1, where 19;8 is defined as in (11).

Without lost of generality we can suppose that f is nonnegative. Define f; =
(@ p(x)<1y and fa = f — f1. Since, for each fixed z, the function ﬁ;g:;(w, -) is convex
we have

[ 0@ atgsandes [ o0 Mo h)ds+ [ 070w Mg fala))ds

n n

=1+1IL

Fix z € R" and let () C R" a cube such that € Q. Then M) o f1 <1 which implies
that log(e + M.y o f1)< 1. Then, for a fix contant m > n, by Lemma 3.4, there exist
6 € (0,1) such that

(M Qfl) (1og(e+M Qfl)) (QMS(-),Qﬁ)p(m)
N( (fPO) @) + (MHED ) (@) + 2H(2)

where Hp,(z) = (e + |z|)™™. By taking supremum over all cubes @ containing = and
using that [T > 1, we get that

1< / A(PON Y @) da + / MED @) de+2 [ Ho() de

n R’n

f() Vde + | Hp(z) de<1.
R

Fix z € R™ and let A, B and C the sets defined by
A={QCR":x €@ and My, of2 <1},
B={QCR":ze€Q, M Qf2>1 and |Q| > 1},

—{QCR” T € Q, s()Qf2>1 and |Q|<1}
In order to estimate II, we first observe that

MS(.)fz(m) §Sup ()Qf2+supMs()Qf2+supM .02

iM fo(z )+M2f2( ) + M? fo(x).

The estimation of M fy(z) follows similar arguments as in L. If Q € B, from Lemma
2.5, we have that M) qofe = 1. In fact, HXQHS(.) > 1 implies that M) of2 <

HXQfQHS(_). But, since fo > 1 or fo = 0, we have

[ R dy = / Faly)*® dy + / Faly)*® dy
R*N{y|f2(y)>1} R*N{y|f2(y)=0}

/ Py dy < [ 000 falw)) dy < 1.
RO {y|f2(y)>1} R7

IN
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Then ||Xg ngs( <1 and we can deduce M,(.) o f2 = 1. Then we can proceed as in

the previous case. Let @ € C. Given 1 < pq < l , by Lemma 3.1 with p(:) and r()
replaced by p(+)/p1 and r(-)/p1 respectively, we get that

r()/p e —r(&)/p(x)
Marafs % (g7 [ B ) st )
where J is defined as in Lemma 3.1. Then, by Lemma 3.2, we obtain

T 1 P1
) s My @ f2) S (M@ L())(@) "
By taking supremum over all cubes ) € C and noting that p; > 1 we get that

| a0 Mo plandes [ (MERCRONE)" ds

< [ e he) s
R p(+)
We are done. O
Proof of Lemma 1.6. Let x € R™ and Q C R" be a cube such that z € Q. Let
s(-) € P(R™) which satisfies st < 7, by taking into account that 1/5( ) =1/s(:) —

1/[(8(-)/s(-))'s(-)], by Lemma 2.7, {|XQll 5y 1€ (50 /5()ys() = 141y - Noting that
p(-)/q(-) + p(-)/B(:) = 1, by Holder’s inequality (13) we have

HXQH,B(J Ms(.),Q(Q) — H‘XQHﬁ(.) My, Q( p(‘)/q(.)+p(-)/6(.))
S M(a)/s0yys) (67 ng( " )Hm-)'
Thus the desired inequality follows inmediately. O

This following remark will be usefull in the proof of the Theorem 1.7.

Remark 2. Let p(-), ¢(-), 5(-) as in the hypothesis of Lemma 2.7 and s(-) be a function
such that 1 < s~ < sT < p~. Suppose that I(-) = ¢(-)/[(B(-)/s(-))'s(-)]. Then I~ > 1.
In fact, since s™ < p~, there exists € > 0 such that s™(1+¢) < p~. Then, for z € R",
5(2) < s()(1+e) < p(x) and s(z)/[g(x) — s(z)(1 +¢] < p(x)(a(z) — p(z)), which
implies that q(z)/s(z) > (1 +¢) (B(x)/s(x)) and then I(x) > 1+ ¢ > 1 which proves
that [~ > 1.

Proof of Theorem 1.7. Let g € LP0)(log L)")(R™) such that l9llcyry < 1. By
Lemma 1.6 we have
135005009 ) || Mes050y750 87 Hq(_)m(.) o)
Note that, if g € LP()(log L)) (R") then g € LP()(R™). On other hand, by Theorem
1.5 with p and s replaced by ¢ and (5/s)’s respectively and Remark 2 we obtain that
Mg(y/s()ys() is bounded in LI0) (log L)) (R™). Then we have that

105095019l gy ) S ng(')/q“ Hq(-m-)

and we conclude de proof. O

B()

< Hng(~),7"(‘)
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