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Quantum systems are the ultimate touchstone for the production of random sequences of numbers. Spatially spread entangled 
systems allow the generation of identical random sequences in remote locations. The impossibility of observing a quantum system, 
without disturbing it, ensures that the messages encoded using these sequences cannot be eavesdropped. This is the basis of Quantum 
Key Distribution. It is then of crucial importance knowing whether the sequences generated in the practice by spatially spread 
entangled states are truly random, or not. Yet, that knowledge is not immediate. One of the obstacles is the very definition of 
randomness. “Statistical” randomness is related with the frequency of occurrence of strings of data. On the other hand, “algorithmic” 
randomness is related with the compressibility of the sequence, what is given by Kolmogorov complexity. We analyze sequences 
generated by entangled pairs of photons focusing on an estimation of their complexity.  
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1. Introduction. 
   

Sequences of random numbers are a basic supply in 
many applied sciences of information, from statistics to 
cryptography. The randomness of a given sequence is 
difficult to establish in the practice. Even the very 
definition of “random” is controversial. All definitions 
agree that “predictable” ⇒ “not random”, hence 
“random” ⇒ “unpredictable”. But, the unpredictability 
of an event is, in general, an ambiguous property. It 
depends on the available information. Some consensus 
has been reached, that appropriate measurements 
performed on quantum systems guarantee randomness. 
This is a consequence of von Neumann’s axiom: 
quantum measurements violate the principle of 
sufficient reason. Or, in other words, a quantum 
measurement produces one or another outcome without 
cause. It is intuitive to conclude that a sequence of 
such outcomes is unpredictable, although this 
conclusion is difficult to formalize [1]. Besides, note 
that it is still logically possible the existence of 
sequences that are both “unpredictable” and “not 
random”. Depending on the precise definitions of 
“random” and “predictable” involved, chaotic series 
may be an example of this case. 

Leaving aside the logical intricacies, there are at 
least two definitions of randomness that are relevant 
from a practical point of view [2]: 

i) “Statistical” randomness. Imagine a sequence of 
1 and 0. The sequence is “statistically random” if the 
number of strings of 1 and 0 of different length n (say, 
110101 for n=6), in the total sequence, coincides with 
the number one would get if the sequence had been 
produced by tossing an ideal coin (statistical spread is 
taken into account, of course). Yet, certifying this 
property for any value of n and/or different ways of 
choosing the strings is not easy. Other tests of 
statistical randomness involve the decay of the self-
correlation or the mutual information. They all involve 
measuring probabilities. The battery of tests provided 
by the National Institute of Standards and Technology 
(NIST) is mostly based on this approach. 

ii) “Algorithmic” randomness. A sequence can pass the 
tests mentioned above and still be predictable, hence, 
not random. A well known example is the sequence 
formed by the digits of the number π (or any other 
transcendental number). A sequence is “algorithmically 
random” if there is no algorithm or program code able 
to generate the sequence using a number of bits shorter 
than the said sequence. Note that this definition does 
not use probabilities. It applies even to sequences that 
are not statistically stationary. By the way, practical 
tests of randomness often include subroutines aimed to 
recognize the digits of the best known transcendental 
numbers. 

Algorithmic randomness is directly related with the 
definition of complexity developed by Kolmogorov [3], 
Chaitin [4] and Solomonoff [5]. In few words, the 
complexity K of a binary sequence of length N is the 
binary length of the shortest program (running on a 
classical Turing machine) whose output is the said 
binary sequence. A sequence is “algorithmically 
random” if K ≈ N. As there is no way of expressing the 
sequence using less bits that the sequence itself, the 
sequence is said to be incompressible. This definition 
is intuitive and appealing, but it has two main 
drawbacks. One: it is possible to demonstrate that all 
series are (partially) compressible; hence, that the 
precise condition K ≈ N cannot be reached. In the 
practice this problem is solved by appropriately 
rescaling the definition. Two: K cannot be actually 
computed, for one can never be sure that there is no 
shorter program able to generate the sequence. 
Nevertheless, K can be estimated from the 
compressibility of the sequence using, f.ex., the 
algorithm devised by Lempel and Ziv [6]. 

Measurements performed on quantum entangled 
states can generate identical outcomes in two remote 
stations. The sequences of outcomes, assumed random, 
allow the encryption of messages in a secure way using 
one-time-pad Vernam’s cipher. This technique is 
known as Quantum Cryptography [7], or Quantum Key 
Distribution (QKD). The purity of the achieved 
entanglement puts a minimum bound on the entropy of 



the generated sequences [8] and hence, to the degree of 
statistical randomness. The loophole-free verification 
of the violation of Bell’s inequalities was required as a 
necessary step to certify the randomness of the 
sequences and the invulnerability of QKD [1]. This 
loophole-free verification has been recently achieved 
by several groups using different techniques [9-12] (for 
a sort of critical review, see [13]). Loophole-free 
generated sequences have been recently used to 
produce series of numbers of “quantum certified” 
statistical randomness [14]. To our knowledge, little or 
no attention has been paid to algorithmic randomness. 

In this paper, we study the algorithmic randomness 
of time series generated in Bell’s experiments by using 
the realization of the Lempel and Ziv algorithm 
developed by Kaspar and Schuster [15]. We also use 
part of the battery of tests of NIST to evaluate the 
statistical randomness of the same files. It is evident 
that the results of these tests, performed on actual 
Bell’s sequences, are crucial to ensure the 
invulnerability of QKD in the practice. In the Section 
2, we briefly describe the idea in Lempel and Ziv 
algorithm. We also review some previous attempts to 
detect deviations from randomness in Bell’s series. In 
the Section 3 we report the results for the main set of 
data of the Bell’s experiment performed in Innsbruck 
in 1998 [16], generously provided by Prof. G.Weihs. 
We also include some data recorded in our own setup. 
Although our experiment is far more modest, it puts 
some light on the probable cause of the regularities 
found in some runs of the Innsbruck experiment.  

 
2. Background. 
2.1 Lempel and Ziv algorithm. 

 
Complexity has advantages over other methods of 

detecting regular behavior in a time series. Regarding 
the statistical methods, complexity does not need to 
assume stationary probabilities. Regarding non-
statistical methods, as the ones extracted from the 
theory of nonlinear dynamics systems (Takens’ 
theorem), complexity does not need to assume the 
existence of a low dimensional object in phase space. 
On the other hand, complexity cannot be properly 
calculated; it can only be estimated.  

Assuming a time series of elements {s1,s2…sN} the 
Lempel and Ziv algorithm adds a new “word” to its 
memory every time it finds a substring of consecutive 
elements not previously registered. The size of the 
compiled vocabulary, and the rate at which new words 
are found, are the basic ingredients to evaluate 
complexity. In the realization of the algorithm [15, 17], 
the time series is encoded so that a binary string is 
produced. Then the complexity counter c(N), which is 
defined as the minimum number of distinct words in a 
given sequence of length N, is calculated. As N→∞, 
c(N)→ N/log2(N) in a random series. The normalized 
complexity measure K is then defined as: 

 
K(N) ≡ c(N) × log2 (N)/N  (1) 

 

The value of K(N) is designed to be near to 0 for a 
periodic or regular time series, and 1 for a random one, 
if the available value of N is large enough. For a 
chaotic series it is typically between 0 and 1. For a 
“strongly” random sequence of relatively short length, 
K(N) can be considerably larger than 1. As references, 
the series formed by the digits of the number π has 
K(27,000) = 0.95. A typical chaotic time series (dimen-
sion of embedding dE = 4, one positive Lyapunov 
exponent) recorded from a solid-state laser with 
modulated losses [18] has K(105) = 0.4. A numerically 
generated quasi-periodical (2-torus) sequence has 
K(106) < 0.02.  

 
2.2 Previous studies of randomness in Bell’s series. 

 
Some years ago, we looked for regularities in the 

time series generated in the Innsbruck experiment. This 
experiment is not only crucial to the foundations of 
Quantum Mechanics, but also is a superb realization of 
the quantum channel of a QKD setup. 

In that experiment, each run includes 4 files, that is: 
for each of the two stations, one has the time of photon 
detection, and also a code for the angle setting and 
fired detector (see Fig.1). We firstly looked for 
periodicities in one of the runs (named longdist35) 
using standard linear transforms [19], finding none. 
Later, we sought for low dimensional objects in phase 
space, using Takens’ reconstruction theorem [20], on 
the whole set of available data [21]. We found a 
chaotic attractor with dE=10, and four positive 
Lyapunov exponents, in the longest run in real time. It 
is named here longtime, and is made of the runs 
originally named longtime1 and newlongtime2. It was 
possible to reconstruct the attractor and to predict the 
outcomes in the sequence roughly up to the inverse of 
the largest positive Lyapunov exponent, as expected. 
Remarkably, the same was possible for the 16 subsets 
corresponding to the different settings in spite of their 
shorter length. If the files in longtime were used for 
QKD, it would be possible to predict until 20 bits of 
the key, what is a vulnerability of a new kind [21]. The 
run longtime was the only one where dE was reliably 
measured. In order to check if the cause was its time 
length, we perform a simpler Bell’s experiment, but 
with an unusually long continuous time of observation. 
It amounts to more than half an hour, about five times 
longer than longtime. In this run, named here SL1722, 
no value of dE is reliably measured. The cause of the 
attractor in longtime is believed to be a drift between 
Alice and Bob’s clocks. File SL1722 is recorded with a 
single clock instead, so that obtained results are 
consistent with this belief. Unfortunately, when the 
attractor in longtime was found the Innsbruck 
experiment had been dismantled, so it was impossible 
to know its cause by sure. 
 
3. Results. 
3.1 Structure of the Innsbruck experiment’s runs. 

 
The Innsbruck experiment includes fast switching 

of the analyzers’ settings, driven by independent and 



quantum-measurement-based random number genera-
tors, and spatially distant stations, what is named the 
“remote, switched” condition. Most of the results 
obtained in this condition are the set of runs named 
longdist*. We also study some preparatory runs with 
the stations close to each other and slowly varying 
settings (condition “local, static”). Also, with close 
stations and fast and random switched settings 
(condition “local, switched”). There are no “remote, 
static” runs. We discard most of the runs that do not 
violate the involved Bell’s inequality (SCHSH ≤ 2). 

 
Figure 1: Files in the Innsbruck experiment. The left column 
(*_V.dat file) indicates the time photons were detected, in 
seconds. The right column (*_C.dat file) indicates the 
detector that fired and the analyzer’s orientation, according to 
a code. The data belong to Alice station of run longdist35.  

 
The structure of the runs is shown in the Figure 1. 

For each of the two stations, there are two files: the one 
with extension *_V.dat (left column in the Figure) is 
the (always increasing) sequence of photon detection 
times, in seconds. The one with the same name but 
extension *_C.dat (right column in the Figure) 
indicates the setting of the analyzer and the detector 
that fired at that time, using a two-bit code. Both files 
have the same length. There is a pair of similar files for 
the other station. The length of the files is the number 
of single photons detected, and is hence different in 
each station.  

A coincidence occurs when the difference of the 
values in the *_V.dat for each station is smaller than a 
certain value, what is called “time coincidence 
window” Tw. Once a coincidence is found, we pick up 
the time value in *_V.dat of station Alice (this 
choosing is arbitrary, it may well to be Bob, or the 
average between them, in any case the difference is 
small) to write down a time sequence of coincidences. 
The corresponding codes in the two C.dat files allow 
calculating the value of the SCHSH parameter.  

In time stamped setups like these, the value of Tw 
can be chosen at will after the experiment has ended. 
Due to different response times of the detectors and 
electronic channels, cable lengths, etc. a time delay 
between the files in each station must be added. The 
value of the delay is found by maximizing the number 
of coincidences for a given value of Tw. This leads to 
some ambiguity in the definition of the coincidences’ 

file. Here we use the values of Tw and delay reported 
by the authors of the experiment. 
 
3.2 Algorithmic and statistic randomness. 

 
We calculate K (Kaspar and Schuster realization of 
Lempel and Zev algorithm) and also submit the runs to 
a battery of randomness tests developed by the NIST. 
The complete battery includes 15 tests. Here we use the 
simplest 6, namely: Frequency (Monobit) Test, 
Frequency Test within a Block, Runs Test, Tests for 
the Longest-Run-of-Ones in a Block, Binary Matrix 
Rank Test and Discrete Fourier Transform (Spectral) 
Test. A run is said to have positive (“yes”) randomness 
only if passes the 6 tests. The calculation of K and 
these 6 tests form a set of relatively simple and fast 
running programs that are feasible to be included as a 
control in a QKD setup in the practice. As will be seen, 
all runs that are discarded by the criterion K<1 are also 
discarded by (at least one of) the NIST tests. This 
result is specific of the set of runs included in this 
study. Given the different nature of the two types of 
randomness, the safe criterion is that a sequence can be 
considered random only if it passes both types of tests. 

 The main results are summarized in the Table 1. 
The last column is the length of the sequence. It 
corresponds to the number of coincidences, excepting 
for the “singles” files, in which case they correspond to 
the Alice station. There are three groups of sequences 
with different complexities (Fig.2): the ones with K<1, 
which cannot be considered random, the ones with 
K≈1, which are “normally” random, and the ones with 
K>1, which are “strongly” random, what means that 
the normalization factor in eq.(1) is insufficient. Most 
of the sequences belong to the latter two groups, 
meaning that Bell’s experiments do generate series of 
algorithmically random numbers, as expected.  

 
Figure 2: Graphical representation of data in Table 1. Open 
circles indicate the runs that do not pass NIST tests. 
Horizontal line indicates the Bell’s limit, vertical line K=0.9. 

 
The run longtime has not only low K and is 

discarded by the NIST statistical tests (3 over 6), but is 
even partially predictable, as it was discussed before. 
The subset corresponding to analyzers’ settings and 
firing detectors Alice=0, Bob=3 shows a slightly higher 
K than the complete sequence (probably because it is 
shorter), and is also unable to pass NIST. The runs 



longdist22 and longdist35 have low K and, 
correspondingly, they do not pass NIST. Runs 
longdist10 and 12 have high K but do not pass NIST. 
None of these five runs can be considered random 
despite they violate the involved Bell’s inequality (they 
are the open circles in Fig.2) 

All the runs with K>1 pass the NIST excepting 
longdist10. As a reference, run Conlt3 is obtained from 
the coincidences between detectors observing 
uncorrelated fields, it has K=7.29 and passes NIST.  

It seems that higher K corresponds to lower SCHSH. 
F.ex., the three runs with higher K (longdist30, 32 and 
37, all with K>12) have an average SCHSH=2.28, while 
the three ones with lower K (but still K≈1, longdist0, 
36 and 31) have an average SCHSH=2.62. Runs 
longdist10 and 12 are not included in this set because 
they do not pass NIST. Run longdist34, which has the 
highest complexity of all (12.26), is also discarded 
because it has SCHSH= 1.87 < 2.  

The complexity of the singles files and the 
coincidence files is, in general, nearly the same. There 
are exceptions: in runs longdist22 and 35 the value of 
K in the coincidence files is smaller than in the singles 
ones, down to the point that they cannot be considered 
random. On the other hand, in longdist36 the value of 
K is larger for the coincidences than for the singles, 
although both can be considered random. 

All runs obtained in the “local” condition 
(regardless if “switched” or “static”) have K≈1 and 
pass the NIST. Finally, the sequences of settings and 
outputs (the column on the right in Fig.1) have high K 
and also pass NIST. This confirms the reliability of the 
random number generators used to drive the settings in 
the Innsbruck experiment. 
 
Summary. 

 
An estimation of Kolmogorov complexity in time 

series recorded in Bell’s experiments has been 
performed. Almost all series have complexity K≈1 or 
K>1, what means they are algorithmically random. The 
few with K<1 belong to the “remote, switched” case. 
They do not pass NIST tests either. The deviation from 
the expected randomness is presumably caused by a 
drift between the clocks, an artifact that had been 
independently detected.  

Even though low K does not allow, by itself, to 
predict outcomes, it implies that the involved 
sequences are compressible, and hence potentially 
vulnerable. In our opinion, the main conclusion of this 
study is that, although random sequences are generated 
in most cases, it is not safe taking randomness for 
granted in experimentally generated sequences, even if 
they violate the related Bell’s inequality by a wide 
margin with a maximally entangled state. Deviations 
from randomness are observed even in the controlled 
conditions of the Innsbruck experiment, which are very 
difficult (perhaps impossible) to achieve in a QKD 
setup operating in a real world situation. Therefore, 
applying additional statistical and algorithmic tests 
and, if necessary, using distillation and extraction 

techniques are advisable before coding a message in 
the practice. 
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Filename  (description) Complexity NIST (RND=?) SCHSH N 
Longtime (remote, switched) 0.55 NO 2.51 95801 
Longtime, subset {0,3} 0.65 NO Not applicable 2122 
Longdist0 (remote, switched) 0.97 yes 2.53 15501 
Longdist0, singles  0.96 NO Not applicable 471017 
Longdist1  11.94 yes 2.63 16168 
Longdist2 11.21 yes 1.98 26675 
Longdist3 11.25 yes 2.67 24335 
Longdist4 11.24 yes 2.66 25402 
Longdist10 10.88 NO 2.20 26529 
Longdist11 10.82 yes 2.41 25573 
Longdist12 0.93 NO 2.37 27158 
Longdist12, singles  0.97 yes Not applicable 934979 
Longdist13 10.84 yes 2.36 27160 
Longdist20 10.37 yes 2.06 41549 
Longdist22 0.59 NO 2.16 39915 
Longdist22, singles  0.96 yes Not applicable 1237058 
Longdist23 10.37 yes 2.63 41058 
Longdist30 12.24 yes 2.10 14145 
Longdist31 0.97 yes 2.62 13022 
Longdist32 12.24 yes 2.70 10992 
Longdist33 12.18 yes 2.06 13004 
Longdist34 12.26 yes 1.87 14289 
Longdist35 0.34 NO 2.73 14562 
Longdist35, singles  0.96 yes Not applicable 388455 
Longdist36 11.0 yes 2.72 14573 
Longdist36, singles  0.96 yes Not applicable 388573 
Longdist37 12.16 yes 2.05 14661 
Loccorr1 (local, switched) 0.96 yes 2.74 72533 
Loccorr3 0.96 yes 2.74 73269 
Loccorr3, singles  0.96 yes Not applicable 853985 
Bluesin1 (local, static), α= 0o, β= 7.5o 0.98 yes Not applicable 6797 
Bluesin2, α= 0o, β=15o 0.97 yes Not applicable 6815 
Bluesin3, α= 0o, β =22.5o 0.97 yes Not applicable 6822 
Bluesin4, α= 0o, β=30o  0.96 yes Not applicable 6824 
Bluesin5, α= 0o, β=37.5o 0.97 yes Not applicable 6784 
SL1722 (local, static) α=0o, β=22.5o 0.96 yes Not applicable 56913 
Conlt3 (local, static, uncorrelated) 7.29 yes Not applicable 4950 
 
TABLE 1: Summary of results. They correspond to total coincidences between stations, unless indicated otherwise. The condition of 
the experiment is indicated for the first run with the same name, f..ex.: the condition of being “remote, switched” applies to all runs 
whose names start with Longdist. The “static” runs have fixed settings, which are indicated. All runs belong to the Innsbruck 
experiment, excepting SL1722 and Conlt3, which are ours. The second column is “yes” only if the run passes all the 6 test of NIST 
named in the main text. 
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