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Molecular basis of the NO trans influence in quaternary T-state human
hemoglobin: A computational study
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a b s t r a c t

NO binding to the T-state of human hemoglobin (HbA) induces the cleavage of the proximal His
bonds to the heme iron in the a-chains, whereas it leaves the b-hemes hexacoordinated. The struc-
ture of the nitrosylated T-state of the W37Eb mutant (W37E) shows that the Fe-His87a bond remains
intact. Exactly how mutation affects NO binding and why tension is apparent only in HbA a-heme
remains to be elucidated. By means of density functional theory electronic structure calculations
and classical molecular dynamics simulations we provide an explanation for the poorly understood
NO binding properties of HbA and its W37E mutant. The data suggest an interplay between elec-
tronic effects, tertiary structure and hydration site modifications in determining the tension in
the NO-ligated T-state HbA a-chain.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Nitric oxide (NO) is a signaling molecule that regulates essential
physiological processes [1,2]. Endothelium-derived NO regulates
vascular tone and inhibits platelet aggregation as well as lipid per-
oxidation [3–5]. A large fraction of NO that diffuses into the lumen
of the blood vessel rapidly reacts with hemoglobin (Hb) [6,7]. Hb
interacts with NO forming the various derivatives [8–11]. Under
high oxygen pressure NO both oxidizes oxygenated Fe(II)Hb into
the ferric species and is itself oxidized to generate nitrate (1).

FeðIIÞO2 þ NO ¼ FeðIIIÞ þ NO�3 ð1Þ

Nitrosylhemoglobin (Hb-NO) is the product of the reaction in
which NO adds to ferrous heme iron of deoxyhemoglobin (2).

FeðIIÞ þ NO ¼ FeðIIÞNO ð2Þ

In human Hb (HbA) Cys93b serves as an additional NO-binding
site [12,13]. When Cys93b is nitrosylated, the human Hb S-nitrosyl
adduct is known as S-nitrosohemoglobin (SNO-HbA) [13]. The bio-
logical role of these nitric oxide derivatives of Hb is not completely
understood. However, several possible functional roles have been
proposed. It has been suggested that the main physiological effect
of Hb on NO in vivo is to inactivate it [14]. The reduction of NO
activity by Hb is supported by evidence of vasoconstriction during
infusion of Hb-based blood substitutes [15,16]. It has also been
proposed that NO can function as an allosteric regulator of hemo-
globin oxygen-binding properties and that Hb can store NO [17].
Alternatively, a possible role involving nitrite reductase activity
by deoxy-Hb has been hypothesized [18]. Since both SNO-HbA
and HbA-NO have been detected in vivo [13,19], it has been sug-
gested that NO is transported by Hb as the S-nitrosyl adduct,
formed by intramolecular transfer from nitrosyl-HbA [12,13,20].

The stereochemistry of the interaction of NO with the heme is
complex [8–11]. It has been shown that the quaternary structure
of nitrosyl Hb can be switched from the R-state quaternary ensem-
ble to the T-state by adding the allosteric effector inositol hexa-
phosphate [8–10]. X-ray crystallographic [21] as well as
spectroscopic studies [22] have demonstrated that NO binding to
the heme groups of crystalline wild-type deoxyhemoglobin (T-
state) ruptures the Fe-His bonds in the a-chains (Fe-His87a). In
contrast, the corresponding b-subunit bond (Fe-His92b) is not bro-
ken [21]. The current explanation of this phenomenon is related to
the Perutz hypothesis [23,24], which has been supported by molec-
ular orbital calculations performed by Mingos [25,26], that the for-
mation of the T-state from two ab-dimers creates constraints at
the dimer–dimer interface that resist the ligand-induced move-
ment of the a-heme Fe atom into the plane of porphyrin ring
[21]. This resistance results in ligand-induced tension on Fe-
His87a, but not on Fe-His92b. Most of the quaternary constraints
are localized to a small cluster of residues that are centred around
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Fig. 1. Model systems for HbA heme pocket.
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residue Trp37b. The structure of the nitrosylated T-state of the
W37Eb mutant shows that Fe-His87a remains intact, thus con-
firming the Perutz hypothesis [21].

However, it remains to be explained why NO so dramatically af-
fects only a-hemes and exactly how the W37Eb mutation is linked
to the loss of tension on the a-heme. Knowledge of the structural
and dynamic features determining the tension at the a-heme is
crucial for deciphering the structural determinants of the ab-dimer
communication at the heart of Hb cooperativity.

During the last decade, we performed several structural and
computational studies for different members of the globin super-
family [27–32], with the aim of studying how tertiary structure
and dynamics control ligand affinity. To advance in our under-
standing of the relationship between structural modifications and
ligand binding in globins we have analyzed the NO trans influence1

in the isolated heme pocket HbA chain model systems by density
functional theory (DFT) and have performed classical molecular
dynamics (MD) simulations of the nitrosylated forms of HbA and
W37E. Our goal is to provide an explanation of the different behav-
iors of the a- and the b-chains of HbA, and of HbA vs W37E. Our re-
sults reveal an interplay between the electronic effects, tertiary
structure variations and modifications of hydration sites.

2. Methods

2.1. Models and computational methods

2.1.1. DFT calculations
All QM calculations were performed at the density functional

theory (DFT) level with the SIESTA code [33]. For all atoms, basis
sets of double-f plus polarization quality were employed; all calcu-
lations were performed by using the generalized gradient approx-
imation functional proposed by Perdew, Burke, and Ernzerhof
(PBE) [34]. For all systems studied, the spin-unrestricted approxi-
mation was used. The QM subsystem included the heme group
(without the peripheral groups), the NO, the His imidazole group
(87a and 92b), and backbone atoms of a Leu residue (83a and
88b) (Fig. 1A and B). This methodology was proved to be appropri-
1 Trans influence is a change in the bond distance between the metal and a ligand
that is trans to that which exerts the effect through the same d-orbital interaction.
Trans effect is the effect shown by a ligand whereby it directs the substitution of
another ligand placed trans to it. Here we refer to trans influence as the lengthening
of the bond trans to the NO.
ate for heme proteins, as shown by several works from our group
[35–38].

2.1.2. MD simulations
To investigate how structure and dynamics of nitrosylated form

of HbA and W37E may affect the Fe-His distance, MD simulations
were carried out. The initial structures for the MD simulations
were built starting from the X-ray structure of nitrosylated HbA
and W37E (PDB codes 1RPS and 1RQA, respectively) [21]. Particu-
lar attention was paid to the building of missing coordinates in the
mutant structure. In particular, the PDB model of W37E lacks
atoms of the side chain of Tyr140a. Superimposition of backbone
atoms of Tyr140a of HbA with the same atoms of W37E reveals
that the wild-type conformation of the side chain of Tyr140a pro-
duces serious crashes with backbone or side chain atoms of residue
Ser138a, Thr137a and/or of carbonyl of Asp94a in the mutant.
Since the superposition of the sole backbone atoms of Tyr140a
might not be suitable to properly orient the a-chain, we have also
aligned the entire alpha chains of the two proteins. After the super-
imposition, the aromatic ring of Tyr140a (as in HbA) collides with
the side chain atoms of Ala88 in W37E (as noted by short contacts
close to 2.0–2.2 Å). Altogether these findings suggest that Tyr140a
adopts a distinct conformation in the mutant. For this reason we
decided to position the side chain of Tyr140a exposed to the sol-
vent in the mutant (Fig. S1). This hypothesis is in line with the
X-ray data showing absence of electron density corresponding to
Tyr140a side chain, thus revealing a large conformation variability
for this residue.

Furthermore, to complete the picture of the mutant-induced
conformational variation that may affect the iron coordination,
two additional simulations, called HbA-to-W37E (HbA2W37E)
and W37E-to-HbA (W37E2HbA), have been performed. The first
simulation, called HbA2W37E, corresponds to a MD simulation
starting from the structure of HbA, in which Trp37b was replaced
with Glu. The second simulation, called W37E2HbA, corresponds
to a MD study starting from the structure of the mutant, in which
Glu37b was replaced with Trp. Finally, an additional simulation has
been performed, called HbA2W37E_Yout, which corresponds to a
MD study starting from the structure of HbA, in which Trp37b have
been replaced by Glu and Tyr140a occupies a position exposed to
the solvent. All simulations were carried out by using the AMBER
11 suite of programs and AMBER parm99 force field [39]. The heme
parameters were the same used for our previous works [35–38],
but all the Fe-NE2(His) bond force constants were set to 0 kcal/
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mol/Å2. The system energy was first minimized by steepest des-
cent algorithm followed by the conjugate gradient algorithm giv-
ing a total of 12000 steps.

Harmonic restraints applied to the a-carbons were slowly re-
laxed from 25 to 1 kcal/mol/Å2 by the end of the energy minimiza-
tion. To save computational time, a 10-Å cutoff for non-bonded
interactions was used. The equilibration period in the molecular
dynamics (MD) simulations consisted of eight stages. In the first
one, the system was gradually heated to 300 K for 50 ps at 50 K
intervals followed by 50 ps at 300 K. The remaining restraints were
gradually reduced to zero in this stage. The second stage consisted
of 50 ps of unrestrained equilibration. Solute temperature was
weakly coupled to a Berendsen temperature bath [40] at 300 K
with a time constant of 2 ps. Bond lengths including hydrogens
were constrained by using the SHAKE algorithm [41]. The time step
was 2 fs. The center-of-mass motion was removed at regular 1-ps
intervals. A simulation of 10 ns for each protein system has been
performed.

3. Results and discussion

3.1. DFT calculations

The comparison between the NO-bound structures of HbA and
W37E shows that a significant difference in the heme pocket is
the presence of a water molecule that forms hydrogen bonds with
Tyr140a and Val93a (Fig. 2). This water molecule, hereafter de-
noted as the bridging water, has not been observed in the b-heme
pocket and it is not conserved in the structure of the nitrosylated T-
form of the W37E mutant. In the latter, the binding of NO does not
induce the rupture of the His-Fe bond, but provokes an increase in
the flexibility of the surrounding region, with the Tyr140a that be-
comes invisible in the electron density maps.

We have first considered isolated model systems consisting of
the heme (excluding the propionate and vinyl groups), proximal
His imidazole (87a and 92b) and backbone atoms of a Leu residue
(83a and 88b) that are in contact with proximal His side chain
atoms (Fig. 1A) using atomic coordinates from b-chains of HbA,
a- and b-chains of W37E. Selected structural parameters obtained
from the optimized structures are presented in Table 1.

We observed a subtle variation of the Fe-His distance, which in-
creases about 0.05–0.14 Å, relative to that of the isolated model of
deoxy HbA, in NO-bound heme models of both a- and b-chains (Ta-
Fig. 2. Heme pocket in the a- (A) and b- (B) chains of nitrosylated HbA. In the a-chain,
molecule that in turn is linked to the hydroxyl moiety of Tyr140 and the amide nitrogen o
the His adopts Conformation I, in which it forms a hydrogen bond with the backbone c
ble 1). This finding is in line with the NO trans influence, i.e. with a
weakening of Fe-His bond. However, the reported values do not
justify the observed rupture of the Fe-His bond in HbA a-chains,
since the bond rupture corresponds to an increase of the distance
>1 Å. This indicates that Fe-His bond breakage depends not only
on the Fe-His bond strength but also on other factors.

Because surrounding residues often play important roles in li-
gand binding, we decided to perform a geometric characterization
of an extended model system composed of NO-bound a-heme with
iron not coordinated to imidazole of His87a, backbone atoms of
Leu83a and Val93a, the bridging water and the Tyr140a side chain
(Fig. 1B). The results of this analysis point out a critical role of the
Tyr140a side chain and of bridging water in stabilizing the penta-
coordinated form: the value obtained for the Fe-His distance, in
fact, is on average equal to 3.95 Å (Table 2).

3.2. Molecular dynamics simulations

Based on these data, we surmised that Tyr140a is responsible
for holding the bridging water in the position needed to interact
with proximal His side chain (Fig. 2). The perturbation of the
Tyr140a conformation induced by the W37E mutation should ex-
plain the different behaviour of the mutant compared to HbA.
Moreover, larger flexibility of Tyr145b (also due to the absence of
a residue corresponding to W37b in the a-chain) with respect to
that observed for Tyr140a should explain the different behavior
of the a- and b-HbA chains.

To validate these hypotheses and better understand the role of
Tyr140a and of the bridging water in the breakage of His-Fe bond,
we have carried out 10 ns MD simulations of the following sys-
tems: HbA, W37E, HbA2W37E, W37E2HbA and HbA2W37E_Yout,
not including the Fe-His covalent bond in the force field (see Sec-
tion 2). We first analyzed the stability of the simulations by com-
puting the root mean square deviations (RMSd) from the starting
structure as function of time (Fig. S2). The results of this analysis
show that the structures of HbA, HbA2W37E and W37E are quite
stable during the simulations (RMSd < 1.5 Å), whereas those of
HbA2W37E_Yout and W37E2HbA present large RMSd values
(about 3 Å). To assess if the large RMSd observed in the cases of
HbA2W37E_Yout and W37E2HbA are due to a quaternary struc-
ture transition, we have calculated the angle needed to superim-
pose the a2b2 dimer of each simulated system to the same
region of deoxy HbA (PDB code 2HHB) after the superimposition
proximal His adopts Conformation II (see text) and is hydrogen bonded to a water
f Val93. The Tyr140 side chain is in contact with the indole of Trp37b. In the b-chain,
arbonyl of Leu88.



Table 1
Structural optimized parameters for the NO hexacoordinated complexes in vacuum.

Starting coordinates HbA_b1 HbA_b2 W37E_a1 W37E_a2 W37E_b1 W37E_b2

Fe–NO 1.754 1.760 1.754 1.756 1.756 1.748
d(Fe-NeHis) in pentacoordinated isolated model system 2.160
d(Fe-NeHis) 2.240 2.230 2.252 2.216 2.272 2.308
<NeHis-Fe-N1 (�) 87.883 87.722 87.387 87.892 87.701 86.025
<NeHis-Fe-N2 (�) 86.493 88.874 85.307 86.774 87.262 86.330
<NeHis-Fe-N3 (�) 86.325 87.318 88.378 87.432 86.601 86.825
<NeHis-Fe-N4 (�) 86.954 86.179 89.785 88.890 86.662 85.672
d N� � �O (Distances are in Å) 2.750 2.741 2.818 2.778 2.769 2.782

Table 2
Structural optimized parameters for the NO pentacoordinated complexes in vacuum.

Sarting coordinates HbA_a1 HbA_a2

Fe-NO 1.734 1.730
d(Fe-NeHis) 3.939 3.967
d(Fe-NdHis) 5.066 5.074
d(Nim-OH2) 2.936 2.638
d(O Wat-OTyr) 2.698 2.578
d(O Wat-N) (Distances are in Å) 3.095 3.523

Fig. 3. Rotation of the a2b2 dimer with respect to the a1b1 dimer during the
simulations. HbA (black), HbA2W37E (red), HbA2W37E_Yout (green), W37E (blue)
and W37E2HbA (yellow).
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of a1b1 (Fig. 3). The results of this analysis suggest that HbA and
HbA2W37E retain the T-state quaternary structure, whereas
HbA2W37E_Yout, W37E and W37E2HbA shift towards a R-like
state. These data are consistent with a number of experimental
data showing that the constraints at the a1b2 interface play a role
in triggering the T-to-R transition [42,43].

Previous (and unpublished 100 ns) MD studies starting from T
state do not show any quaternary structure conformational varia-
tion in the time-scale analyzed here [44,45]. Thus, our data indi-
cate that the ‘‘Y out’’ conformation (found in the starting models
of HbA2W37E_Yout, W37E and W37E2HbA) accelerates the pro-
cess. In our opinion, these findings suggest that the mobility of
Y140a could have an important role in the quaternary T-to-R-like
transition. Notably, the replacement of W37b with smaller resi-
dues Gly (Hb Howick) [43] or Ser (Hb Hirose) [42] increases the
oxygen affinity.

3.3. Looking for the structural determinants of Fe pentacoordination

We now turn our attention to the Fe-His coordination. First we
evaluated the Fe-His distance in the five simulations. The histo-
grams reporting the normalized population of Fe-His distances in
the a- and b-chains of all the studied systems are shown in Fig. 4.

In HbA, the distribution of Fe-His distances in the b-chains and
in the a2-chain remain very close to their respective starting val-
ues, whereas the histogram of Fe-His distances is broader for the
a1-chain, spanning the short distances sampled by the b-chains
as well as the longer distances observed for the a2-chain
(Fig. 4A). Interestingly, the W37E mutation results in a narrowing
of this Fe-His distance distribution in the a1-chain around shorter
values for HbA2W37E (Fig. 4B). For the alternative ‘‘Y out’’ confor-
mation of the mutant (HbA2W37E_Yout) we observed a similar
shortening of the Fe-His distance not only in the a1-chain, but also
in the a2-chain (Fig. 4C). These data indicate that the Fe-His dis-
tance in the HbA a2-chain is larger than that expected for a stan-
dard coordination bond, whereas the values observed for the
HbA b-chains, and to some extent for the HbA a1-chain, are in line
with the presence/formation of the bond. In W37E and W37E2HbA
(Fig. 4D and E, respectively), the Fe-His distances are maintained
near the already short starting values (2.5 Å). In summary, we ob-
served that in a1-chain of HbA, the Fe-His distance has a higher
tendency to fluctuate towards shorter lengths than in the a2-chain,
and that this tendency is enhanced by the W37E mutation and is
further adopted by the a2-chain when the alternative outward
Tyr conformation is considered.

To analyze the mechanism of Fe-His bond shortening, we fol-
lowed in detail the behaviour of heme pocket residues. Interestingly,
in the a1-chain of both HbA and HbA2W37E we observed a strict
correlation between the movement of Tyr140a side chain, the posi-
tioning of the bridging water molecules, the flipping of proximal His
residue and the decrease of the Fe-His distance. These findings are
shown by Figs. S3–S5, where we report the time evolution of the dis-
tances between the bridging water molecule and either the hydroxyl
oxygen of Tyr140a (Fig. S3) or the imidazole nitrogen (ND1) of His87
(Fig. S4), along with the time evolution of the C-CA-CB-CG dihedral
angle of Tyr140a (Fig. S5). These data clearly show that when
Tyr140a changes its conformation, water can no longer be tightly
hydrogen bonded to His87a. The absence of the bridging water fa-
vors the flipping of His87a side chain, allowing it to form a hydrogen
bond with the carbonyl of Leu83a and to coordinate to the heme
iron. Similar results were obtained in HbA2W37E_Yout. The evolu-
tion of the v1 dihedral angle (CA-CB-CG-ND1) of His87 as function
of time for the five simulations is reported in Fig. S6. As expected,
the His side chain can adopt two different conformations: one with
v1 close to 90� (Conformation I), where the imidazole can form the
hydrogen bond with the carbonyl of Leu (83a or 88b, as in Fig. 2B),
and another with v1 close to �90� (Conformation II, Fig. 2A). Simu-
lations starting with Conformation I (i.e. W37E, W37E2HbA) main-
tain this conformation, and, except for the a2-chain of HbA, the
other simulations (HbA, HbA2W37E and HbA2W37E_Yout) adopt
this conformation after a few nanoseconds, suggesting that Confor-
mation I is more favorable. Conformation I also favours the shorten-
ing of the Fe-His distance. The outward swing of Tyr140a drives the
proximal His to this conformation.



Fig. 4. Normalized population of Fe-His distance in the a1 (black), a2 (green), b1 (red), b2 (blue) chains of HbA (A), HbA2W37E (B), HbA2W37E_Yout (C), W37E (D) and
W37E2HbA (E).
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Altogether these findings indicate that the conformational
changes of Tyr140a correlate well with lower Fe-His distances.
Specifically, the inward conformation of the Tyr140a side chain,
which is favoured by the presence of W37b, Thr137a and Phe98a
in HbA, and the presence of the bridging water molecule in the
heme pocket together stabilize Conformation II of the proximal
His that, in turn, favours the Fe-His bond breakage (Fig. S7A). In
the b-chain of HbA, Tyr145 is not biased inward, due to the lack
of a residue corresponding to Trp37b in the a-chain at the ab inter-
face and due to the replacement of the residue corresponding to
the Thr137a with an Ala (Ala142b) (Fig. S7B). These data also ex-
plain the behaviour of NO binding to the T-state of other Hbs, like
those from the Antarctic fish Trematomus bernacchii (HbTb), which
shows hexacoordination in both a- and b-chains [46]. In fact, HbTb
exhibits a more variable solvent-exposed conformation of Tyr141a
(and of Tyr145b), due to its Thr137a-to-Ala replacement (Gly in
the b-chain) and to a slightly different conformation of Phe99a
and positioning of W37b (Fig. S7C and D).

4. Conclusions

Using computational techniques we studied the molecular basis
for the differential NO binding behaviour of a- and b-chains in
HbA. Our results suggest that a subtle balance of electronic effects,
tertiary structure changes, and protein conformational flexibility
must be invoked to explain the experimentally observed NO bind-
ing characteristics of HbA and W37E. We found that in the a-
chains of HbA, the His-Fe bond breakage induced by NO binding
is facilitated by the NO trans influence and stabilized by the pres-
ence of a water molecule interacting with the proximal His and
held in its position by fixed side chain conformation of Tyr140a.
Higher flexibility of Tyr140a in W37E and of the corresponding
residue (Tyr145) in the b-chain of HbA, on the other hand, favors
the NO hexacoordination.
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