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Dynamics of the diode-pumped Kerr-lens
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We present a theoretical and experimental study of the dynamics of the diode-pumped Kerr-lens mode-locked
Nd:YAG laser. The theoretical approach, which is based on a two-variable Poincaré map, allows the calcula-
tion of the pulse parameters with satisfactory accuracy. It is concluded (both theoretically and experimen-
tally) that this laser does not present instabilities, which is an interesting feature for short-pulse laser engi-
neering. We also find a robust two pulses per round trip mode of operation that appears to be a simple way
for doubling the repetition rate. © 2001 Optical Society of America
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1. INTRODUCTION
Kerr-lens mode-locked (KLM) lasers are not only a prac-
tical source of short and ultrashort light pulses, but also
a nonlinear system of dynamical interest. The KLM
Ti:sapphire laser has been the subject of much theoretical
and experimental study. Quasi periodicity, multistability
period-doubling cascades, tangent and period-three bifur-
cations, and chaos have been observed and described from
different points of view.1–4 In this paper we present the
results of our study on the dynamics of the KLM Nd:YAG
laser. This study is of interest because the Nd:YAG laser
is, in a dynamical sense, complementary to the Ti:sap-
phire laser. In a Ti:sapphire the ultrashort-pulse-
formation process is ruled by the balance of group-
velocity-dispersion effects and the nonlinear self-
amplitude and self-phase modulation effects. In
Nd:YAG, instead, dispersion effects are negligible, and
spatial-aperture-based effects are determinant. Besides,
the former operates in the weak-saturation-gain regime,
whereas the latter operates in the strongly saturated-gain
regime.

The experimental part of this study is performed in a
recently developed diode-pumped KLM Nd:YAG laser
prototype.5 The pump stability and repeatability allow
reliable observation of the dynamical behavior. The the-
oretical part is based on iterative or Poincaré maps. This
approach has been successfully demonstrated in Ti:sap-
phire, where a five-variable map is able to describe most
of the observed dynamics.6 In the case of Nd:YAG, a two-
variable map suffices, as is explained in Section 2, where
we compare theoretical predictions with observed results.
In Section 3 we consider in some detail the case of a ro-
bust ‘‘instability’’ that is promising as a simple way of
doubling the mode-locking repetition rate.

2. POINCARÉ MAP FOR THE KLM Nd:YAG
LASER
The laser cavity is sketched in Fig. 1. It is described in
detail in Ref. 5. For a cw pump power of 3 W (at 808 nm),
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the output is a train of (sech2 shaped) 4.5-ps transform-
limited pulses at a repetition of 101.5 MHz and 800-mW
average power (at 1064 nm). The mode locking starts
spontaneously; no external perturbation is needed (i.e., it
is self-starting). The Kerr lens formed (at the passage of
the laser pulse) in the high-nonlinear-index SF57 glass fo-
cuses the beam in the laser rod. In this way the losses at
the aperture, formed by the pump-generated thermal-lens
aberrations, are lower for pulsed operation than for cw
operation.7 This effect can be described by writing the
round-trip Gaussian matrix and obtaining a recursive
equation, linking the pulse-variable values at the n 1 1
round trip with the values taken at the nth round trip.
This leads naturally to a four-dimensional map where the
variables are the pulse duration and chirp and the beam
size and radius of curvature. A fifth equation (for the
pulse energy) is obtained from the equation of gain satu-
ration. This is the way the five-variable map for the
Ti:sapphire laser is obtained.8 In Ti:sapphire the ray
and ray-pulse matrices have real elements (i.e., no imagi-
nary parts), which means that no spatial apertures or
bandwidth-limiting elements are included in the model.
The simplification works well if one considers the stability
against cw operation separately. But this simplification
is impossible in Nd:YAG, where the KLM is of the pure-
saturable-absorber type (i.e., determined by the spatial
aperture). On the other hand, including matrices with
complex elements in the five-dimensional approach used
for Ti:sapphire leads to expressions that are almost im-
possible to handle.

Fortunately, in the case of Nd:YAG we have other sim-
plifications at hand. The observed pulses are practically
transform limited, and, because of their duration, they
suffer negligible dispersion during one round trip. As a
consequence, in a first approximation to the problem, the
equation for the chirp can be disregarded. More impor-
tantly, the effect of the variation of the beam size and the
radius of curvature can be taken into account in a com-
pact way through the small-signal relative spot-size
variation parameter9 (note that we define it as positive):
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d [ 2~1/w !dw/dPuP50 , (1)

where w is the beam radius and P is the pulse power. We
refer to this d parameter as the KLM strength, as it mea-
sures the ability of the cavity to perform a discrimination
between the high-power (pulsed) and the low-power (con-
tinuous) regimes. In this way, three out of five variables
become unnecessary for the description, as is described
below. The map takes into account the effect of the peak-
power sensitive aperture (nonlinear glass plus aperture)
and the laser amplifier.

At this point we remark that an approach of this type is
not meant to be a precise quantitative description of the
KLM laser. A complex nonlinear system is sensitive to
noise and fluctuations of the parameters, which makes a
precise numerical prediction hopeless. Instead, our ap-
proach is meant to reveal the structurally stable proper-
ties of the system, such as the instabilities that appear if
a given parameter is varied in a certain way. These prop-
erties depend on deeper topological properties of the dy-
namical system, which are presumably robust. Of
course, in the cases that the approach does provide an ad-
equate numerical estimation of the observable variables,
we have a good reason to consider it reliable and poten-
tially useful to help in laser design.

We assume that the electric field in the laser pulse has
a Gaussian shape:

E~t ! 5 E0 exp~2at2 1 iv0t !, (2)

where v0 is the carrier optical frequency, and a
5 2 ln 2/t 2, where t is the (intensity) FWHM pulse du-
ration. As the pulse propagates into the cavity, it is af-
fected by the spatial aperture, the amplifier’s bandwidth
(both in the laser rod), and the linear losses, mostly at the
output coupler. The spatial aperture consists of the
thermal-lens aberrations produced by the strong absorp-
tion of the pump light within a few millimeters of the
Nd:YAG crystal. The transmission at the aperture is as-
sumed:

Tap~t ! ' exp 2 @w~t !/wap#2, (3)

where wap is the equivalent radius of the aperture. The
beam radius w(t) is a function of time because it varies
with the instantaneous value taken by the Kerr lens,
which in turn is a function of the instantaneous pulse
power P(t). Therefore from Eq. (1),

Tap~t ! 5 exp$2~wcw /wap!2 exp@22dP~t !#%. (4)

Fig. 1. Scheme of the laser cavity (from Ref. 5). The output
coupler is wedged and has a transmission of 6%. The dimen-
sions are a 5 343 mm, b 5 104 mm, c 5 1006 mm, and x
5 56 mm.
We define the parameter m [ (wcw /wap)2, which is the
rate between the beam area (at cw) and the aperture
area, and we define the variable r [ 2dmPp , which is es-
sentially the pulse’s peak power scaled with the critical
power (in the SF57 material, ;80 kW) and the KLM
strength. The field E8(t) after the aperture is found sim-
ply by multiplying input field (2) by transmission (4):

E8~t ! 5 E0 exp$2@1 1 r exp~2r/m!#at2

1 iv0t 2 m exp~2r/m!%, (5)

where we approximate the pulse with a quadratic shape;
P(t) ' Pp(1 2 at2), and assume that r is not much
larger than 1. This is a reasonable assumption because
the Kerr nonlinearity is usually a small perturbation.7

The effect of the amplifier is well known,10 so we merely
transcribe the result:

1/~4aout! 5 1/~4a in! 1 4G/Dv2, (6)

Eout 5 E in exp~G !, (7)

where Dv is the amplifier’s bandwidth and G is the satu-
rated single-passage gain. In Eq. (6), aout(a in) follows
the notation of Eq. (2), and is proportional to the inverse
of the square of the pulse width after (before) the gain me-
dium. Similarly, Eout and E in denote the amplitude of the
field after and before crossing the gain medium. We now
scale the variable a with the bandwidth (a [ a/Dv2),
and we obtain the expressions that link the values of the
variables (a, r) at the n 1 1 round trip with those at the
nth round trip as

an11 5
an@1 1 rn exp~2rn /m!#

1 1 16Gan@1 1 rn exp~2rn /m!#
, (8)

rn11 5 rn exp$2@G 2 m exp~2rn /m! 1 ln~k !#%, (9)

where k is the (field) round-trip feedback factor, which ac-
counts for the linear losses. The value of G is obtained by
recalling that gain saturation is strong in Nd:YAG and
that it is produced in an averaged way over the mode-
locking train; thus

G ' gssIsat /^I& 5 gssIsatpw2trt /U

5 gssIsatpwcw
2 exp~2r/m!trt /U, (10)

where Isat is the saturation intensity for Nd:YAG ('2.9
kW/cm2), gss is the small-signal gain, trt is the round-trip
time, and U 5 tPp is the total pulse energy. This ex-
pression can be rewritten as

G 5 g~a1/2/r !exp~2r/m!, (11)

where g [ 2p(2 ln 2)21/2dmIsatwcw
2 trtDvgss ' 8, for typi-

cal values. Substituting Eq. (11) into Eqs. (8) and (9), we
finally have the complete map:

an11 5
an@1 1 rn exp~2rn /m!#

1 1 16gan
3/2

exp~2rn /m!

rn
@1 1 rn exp~2rn /m!#

,

(12)

rn11 5 rn exp$2@ g~an
1/2/rn!exp~2rn /m! 2 m exp~2rn /m!

1 ln~k !#%. (13)
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The two variables, of the map, an and rn , are related to
the pulse duration and power. There are three control
parameters: g, which is essentially related to the small-
signal gain and the KLM strength; m, which measures the
overlap between the laser mode and the aperture; and k,
which accounts for the linear losses. All of them are di-
mensionless.

3. COMPARISON WITH OBSERVATIONS
The fixed points a, r of map (12) and (13) are the observ-
able values of the variables of the laser pulse. The value
of a is obtained easily from r as

a 5 H r2

16g@1 1 r exp~2r/m!#
J 2/3

, (14)

and r is obtained by numerically solving the equation

SH g2

16r@1 1 r exp~2r/m!#
J 1/3

2 m D exp~2r/m! 1 ln~k ! 5 0.
(15)

Assuming g 5 8, k 5 0.95 (which means a 10% energy
loss per round trip) and m 5 1, we obtain r 5 1.56 and
a 5 0.06. For d 5 3/Pcritical ,

5 Pp 5 26 kW, in excellent
agreement with the measured value of 25 kW. For Dv
5 2p 3 120 GHz, t 5 6 ps, in acceptable agreement
with the 4.8-ps duration of the Gaussian fit (which is the
assumed pulse shape) to the observed autocorrelation
ion.5 The numerical agreement can be improved by fine
tuning the values of the physical parameters, but we pre-
fer using tabulated values. As we remarked before, the
approach is not meant to obtain a precise quantitative
agreement.

The variation trends of the fixed point with the control
parameters are plotted in Fig. 2. In Fig. 2(a) the pulse
power increases (almost linearly) with the gain param-
eter, as expected. The pulse duration decreases asymp-
totically to the minimum allowable by the amplifier’s
bandwidth. The variation with the overlap parameter m
[Fig. 2(b)] has an optimal value of the beam-aperture area
rate, which is near m 5 0.8 (for g 5 8 and k 5 0.95).
This prediction agrees with the observation that a careful
adjustment of pump focusing is critical to obtain mode
locking. Finally [Fig. 2(c)], the pulse duration increases
and power drops if the losses are increased, as expected.
Naturally, the pulse power diverges at the physically un-
attainable point k 5 1 (zero losses). We conclude that
the approach is a reliable description of the system.

One of the main advantages of the map approach is
that the stability of the solutions against small perturba-
tions can be easily computed by solving the eigenvalues
equation of the linearized map evaluated at the fixed
point.6,8 While the absolute value of one or more eigen-
values become equal to 1, the associated eigenvectors in-
dicate the directions (in phase space) along which the
fixed point loses stability. We indicate with dotted curves
in Fig. 2 the region where the fixed points are unstable.
In all cases the instability is related with one eigenvalue
that becomes smaller than 21, and the associated eigen-
vector is practically collinear with the variable r. This
means that we should expect to observe a period-doubling
bifurcation in pulse power, with almost no variation in
pulse duration. Instabilities of this type have been ob-
served in KLM Ti:sapphire lasers.3

However, no period doubling is observed in any position
in parameter space. A closer look at the curves in Fig. 2
reveals that the unstable boundary merely reflects the la-
ser threshold. The predicted period-doubling bifurcation
is a kind of artifact caused by the assumption of strong
saturation. Near the laser threshold the assumption
fails, and hence the map [Eqs. (12) and (13)] is no longer a
valid description. What really happens is that, as the
gain/loss ratio decreases, the laser turns off. In the op-
posite direction (i.e., increasing gain) no instabilities are

Fig. 2. Values of the fixed points as functions of the control pa-
rameters. The variable r is proportional to the pulse’s peak
power, and a21/2 is proportional to the pulse duration. The dot-
ted curves indicate that the fixed point is unstable in that region.
(a) The gain parameter g varies for k 5 0.95 and m 5 1. (b) The
beam-aperture overlap parameter m varies for g 5 8 and k
5 0.95. (c) The field feedback factor k varies for m51 and
g 5 8.
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predicted or observed in the range accessible to our setup.
This is a good indication of the feasibility of scaling this
laser’s output by pumping with high-power stacks of di-
odes. The fact that a Nd:YAG mode-locked laser shows
no anomalous behavior makes it an ideal source for high-
power picosecond pulses.

Finally, we note from Fig. 2(b) that the mode-locked so-
lution evolves in a stable way to the r 5 0 5 a limit (cw
operation) as m→0 (no aperture), which means that the
mode-locked solution is a continuous transformation of
the cw solution. This explains why the bistability cw
mode locking is not observed (as in Ti:sapphire).

4. TWO PULSES PER ROUND TRIP
During the scanning of the parameter values looking for
bifurcations, we consistently find a two-pulse per round
trip mode of operation that appears extremely robust.
The pulses are of the same intensity, but unevenly sepa-
rated by ; 2.7 and ; 7.3 ns from each other (see Fig. 3).
The average output power and spectral and beam charac-
teristics are the same as in the case of perfect mode-
locking, but the autocorrelation is 1.3 times longer. The
separation between pulses, and the figures and ratios of
the perfect mode-locking regime, are observed to remain
constant. We name this mode of operation P2 (we name
the perfect mode locking P1). It coexists with P1 : me-
chanical noise induces transitions from one mode of op-
eration to the other. But P2 is less sensitive to misalign-
ment or variations of the parameters, and it is observed
stable for a broader parameter range than is P1 .

In mode P2 the pulses induce a different KLM strength
when crossing the SF57 glass rod in one direction or the
other. In one direction the Kerr lens is induced by the
propagating pulse alone (as in the P1 mode). In the other
direction each pulse finds the other going in the opposite
direction, and both pulses cooperate to induce the Kerr
lens. As the pulses are coherent, the KLM strength is
four times larger when the pulses cooperate than when a
single pulse traverses the rod. This is the reason why
the two pulses are locked at 2.7 and 7.3 ns; these pulse
separations correspond to the relative position of the

Fig. 3. Trace of the two pulses per round trip mode of operation
(here named P2), obtained with a fast photodiode (,0.3-ns rise
time) and a 2-GSa/s sampling oscilloscope. The pulses have a
duration (Gaussian fit) of 6.2 ps (not measurable with this
method of observation). The small peaks between pulses are
electrical echoes.
SF57 rod inside the laser cavity (see Fig. 1). Any relative
displacement of the pulses cancels the cooperative effect,
and the total KLM strength becomes insufficient to sus-
tain two pulses per round trip mode locking. If the SF57
rod were in the middle of the cavity, the two pulses would
be equidistant, and they would cooperate with the KLM
force in both directions of propagation. This mode of op-
eration (which may be called the degenerate P2 mode) is
presumably the most robust cavity design for this type of
laser. A similar multiple-pulse regime in a femtosecond
KLM Ti:sapphire laser was reported by Lai et al.,11 and
its origin was attributed to an enhancement of the Kerr
effect caused by the superposition of the two pulses in the
nonlinear medium. According to Lai et al., there is a
narrow maximum of the KLM strength of the two pulses
when they collide inside the Ti:sapphire rod, which sets
the pulse separation tightly. A careful design that sets
the cavity length to an exact multiple of the distance be-
tween the nonlinear glass and the gain–soft-aperture me-
dium is thus a way to produce symmetric multipulse op-
eration. A cavity that quadruples the repetition rate is
currently under study.

The KLM strength is measured by the parameter d [Eq.
(1)]. In the case that the KLM strength is different for
each direction of propagation the total KLM strength is

d~P2 ! 5 d~P1 !~z1 1 z2!/2, (16)

where d (P1) is the KLM strength for the mode Pi , and
z1(z2) is the rate between the KLM strength induced
when the pulse propagates in the positive (negative) di-
rection and the KLM strength induced in the mode P1 .
Expression (16) is not as trivial as it may appear. It is
not immediate that the total KLM strength is the mere
sum of the going and the coming KLM strengths. Result
(16) is obtained by computing d (P2) and d (P1) in an explicit
way and comparing the final expressions.

Equation (16) allows us to estimate the pulse param-
eters in mode P2 . However, we warn that a complete de-
scription of P2 is a different and much more difficult prob-
lem. An enlargement of the model needs the inclusion of
other variables, such as the chirp and pulse bandwidth.
The curve in Fig. 2 can be used to obtain a rough estimate
of the pulse variables for this mode: as the total average
power and beam characteristics are the same as in P1 ,
the pulse energy is about half than in P1 . Assuming
that positive is the case of only one pulse in the rod, and
taking into account the expression of the Kerr-lens focal
length,8 we have

z1 5
KU ~P2 ! /w ~P2 !

4 t~P2 !

KU ~P1 ! /w ~P1 !
4 t~P1 !

5
t~P1 !

2t~P2 !

, (17)

where K is proportional to the Kerr coefficient. As dis-
cussed above, z2 5 4z1; thus

d~P2 ! 5 d~P1 !~5/4!~t~P1 ! /t~P2 !!. (18)

We assume now that the total KLM strength is roughly
the same in both modes, and hence t (P2) ' 1.25t (P1) , in
satisfactory agreement with the measured value (51.3).
Regarding the pulse power, we note that the gain seen by
each pulse in the mode P2 is (on average) about one half
of the gain seen by the single pulse in mode P1 ; so g (P2)



A. Hnilo and M. Larotonda Vol. 18, No. 10 /October 2001 /J. Opt. Soc. Am. B 1455
5 8/2 5 4, and then r (P2) 5 0.6 [see Fig. 2(a)]. This re-
sult agrees with the expected reduction in pulse power
due to the halved pulse energy and the increase in the
pulse duration (231.352.651.56/0.6).

5. SUMMARY
We study, both theoretically and experimentally, the dy-
namics of the KLM Nd:YAG laser. We present a descrip-
tion in terms of a two-dimensional Poincaré map. This
description is much simpler than the five-variable map
that describes KLM Ti:sapphire lasers. This is possible
thanks to the negligible intracavity dispersion of pulses in
the 5-ps range and to the use of the parameter d (the
KLM strength). The description provides satisfactory es-
timations of the observed values of the pulse variables
and a simple calculation of the regions of stability for per-
fect mode locking. It may be used as an auxiliary tool in
the design of lasers of this kind.

In the experimental setup used, diode pumping pro-
vides steadiness and reproducibility to the observations.
In agreement with the theoretical description, we con-
clude that the KLM Nd:YAG laser shows only the trivial
threshold instability.

The only nontrivial mode of operation is the two pulses
per round trip (P2) mode. It seems to be even more ro-
bust than perfect mode locking, and it provides a simple
way to double the repetition rate (which is of interest for
many applications) of a given cavity, without affecting the
beam characteristics nor the average power. However, a
complete description of the dynamics of P2 requires a sig-
nificant enlargement of the theoretical approach pre-
sented here.
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