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Rat ventral prostate microsomal fraction was able to biotransform ethanol to
acetaldehyde and 1-hydroxyethyl radicals (LHEt) in the presence of NADPH and
oxygen. The enzymatic processes involved were not inhibited by desferrioxamine,
CO. SKF 525A, 4-methylpyrazole, or potyclonal antibody against P450 reductase
but they were significantly inhibited by diethyldithiocarbamate, 2-mercapto-1-
methylimidazol, thiobenzamide, or diphenyleneiodonium chloride. Results would
suggest the partial participation in these ethanol bioactivation processes of flavin
containing monooxygenase (FMO) and/or other flavin dependent oxidases/
peroxidases and of a non-iron metal-containing enzymes. Acetaldehyde and free
radicals production by prostate microsomal fraction might potentially contribute
to tumor promotion in heavy alcohol drinkers. Teratogenesis Carcinog. Mutagen.
22:335-341, 2002. 13 2002 Wiley-Liss, Inc.
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INTRODUCTION

Epidemiological studies on a potential correlation between alcohol drinking and
prostate cancer were recently reviewed and their authors found no convincing
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correlation between alcohol consumption and prostate cancer incidence [1,2].
However, the authors did mention six out of thirty-two studies analyzed where
positive correlations were reported. Most negative studies, however, did not assess
the risk of heavy drinking, where there has been some suggestion of increased risk
[3-6]. ‘ :
There is a need for research on possible mechanisms by which ethanol might
theoretically promote the development of cancer in prostatic tissues. According to
present views, ethanol ability to promote cancer was linked to its biotransformation
to acetaldehyde and free radicals, to its ability to modulate procarcinogens
biotransformation, or to its impairing action on immune function or depress levels
of DNA repair enzymes [7,8].

In a recent study from our laboratory, we reported that rat ventral prostate
cytosolic xanthine oxidase/xanthine dehydrogenase enzymes were able to activate
ethanol to acetaldehyde and to I-hydroxyethyl radicals (1HEt) [9]. In the present
work, the ability of rat ventral prostate microsomal fraction to biotransform ethanol
to reactive metabolites is discussed and initial efforts to characterize the enzymes
involved are reported.

MATERIAL AND METHODS
Chemicals

Absolute ethanol (analytical grade) was from Sintorgan (Argentina). N-tert-
Butyl-(-phenylnitrone (PBN) and the drugs tested for their effects on the metabolism
of ethanol were from Sigma Chemical Co. (St. Louis, MO): SKF 525A, 4-
methylpyrazole (4MP), thiobenzamide (TBA), N,N-diethyldithiocarbamic acid
sodium salt (DDTC), 2-mercapto-1-methylimidazole (MMI), NAD*, NADP™,
acetylsalicylic acid (ASA), desferrioxamine mesylate (DFA), 3-amino-1,2,4-triazole
(AT), diphenyleneiodonium chloride (DPI), and indomethacin (IM). Nitrogen (ultra
high purity) was from AGA (Argentina) and carbon monoxide was from Matheson
Co (Newark, CA). Both gases were further deoxygenated by bubbling through a
solution containing 0.05% 2-anthraquinone sulfonic acid sodium salt and 0.5%
Na,S;04 in 0.1 N NaOH. The polyclonal antibody against rat liver microsomal
NADPH P450 reductase was from Gentest Corp (Woburn, MA).

Animals ahd Treatments

Non-inbred male Sprague Dawley rats (220-260 g, age range: 8-9 weeks) were
used. The animals were starved for 12-14 h before sacrifice. Water was available ad
libitum. Animals were killed by decapitation and their ventral prostates were rapidly
excised and processed. Microsomes were obtained as previously described and were
essentially free from cross contamination [10]. For the experiments involved in
detection of 1HEt free radicals, microsomal pellets were resuspended in buffer
containing 0.5 mM DFA and recentrifuged in order to remove traces of free iron.

Ethanol Biotransformation to Acetaldehyde in the Microsomal Fraction

Preparations containing microsomes (1.84+0.50 mg of microsomal
protein/ml), NADPH generating system (0.45 mM NADP*, 4 mM d l-isocitric
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acid trisodium salt, and 0.25 units of isocitric dchydrogenase), and 0.21 M ethanol in
STKM bufter (0.25 M sucrose/S0 mM Tris-HCI, pH 7.5/2.5 mM KCI/S mM MgCl,),
3 ml final volume, were incubated for 1 h at 37°C under different atmospheres [air,
nitrogen, CO:0, (80:20 v/v)]. Incubations were performed in aluminium-sealed-
neoprene-septum-stoppered glass vials (15 ml). In the case of the antibody against
P450 reductase, incubation conditions were essentially as described by Diaz Gomez
et al. [11] and a control reaction was run using normal serum. The reaction was
stopped by placing the vials on ice. After adding 1 ml of saturated NaCl solution,
samples were maintained at 40°C for 10 min and an aliquot (100 ul) of the head
space analyzed by GC-FID. Chromatographic conditions were the following:
column, Poraplot Q, 25 m x 0.53 mm i.d. (Chrompack, Netherlands); temperature
140°C isothermal. injection port temperature, 150°C, FID: 200°C [12].

Biotransformation of Ethanol to 1-Hydroxyethyl Radical by Rat Prostate
Microsomes

The spin adduct of the 1HEt radical was detected by the method described
previously [13,14]. Purified microsomes (1.3-2.3 mg protein per ml) were added to
NADPH generating system, 0.15 M MgCl,, 24 mM PBN, and 0.21 M ethanol in 0.25
M STKM. After | h at 37°C, the volume (3 ml) was extracted with 500 i toluene,
centrifuged, and the organic layer evaporated under nitrogen. The residue was
silylated with BSTFA and analyzed by GC/MS. Chromatographic conditions were
at follows: column. 5% phenylmethyl silicone, 12 m x 0.2 mm i.d., programmed
from 100 to 300°C at a ramp of 10°C/min. Injection port was at 250°C and transfer
line to MS, 300°C. Selected ion monitoring (SIM) of mass spectra was employed to
increase sensitivity. Selected masses were 250 (M-- CHCH;OTMS) and 194 (m/z
250-C4Hy).

Statistics

The significance of the difference between two mean values was assessed by the
Student’s t-test [15].

RESULTS

Ethanol biotransformation to acetaldehyde in the ventral prostate microsomal
fraction. Results on acetaldehyde levels for incubations containing microsomes are
summarized in Table [. The reaction was sensitive to heating 5 min at 100°C.
Replacing air by a 80:20 mixture of CO to O, atmosphere or including in the mixture
I mM SKF 525A were not able to appreciably decrease aerobic biotransformation.
Indeed, SKF 525A caused a significant increase in response. Other chemicals 4MP
and DDTC, known for their inhibitory effect on P450 (CYP2E1) mediated reactions,
were tested [16]. Only the latter compound appeared to inhibit acetaldehyde
production. Its effect would not be related necessarily to inhibition of CYP2E! in
light of the lack of response of the others. The antibody against liver microsomal
P450 reductase was not able to inhibit the biotransformation of ETOH to
acetaldehyde. Acetaldehyde production was strongly dependent on the presence of
oxygen. Inhibitors of prostaglandin endoperoxide synthase such as ASA or IM [17]
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TABLE 1. Ethanol Biotransformation to Acetaldehyde by Ventral Prostate Microsomes

Experimental*® Acetaldehyde (ng)/protein (ing)
+ NADPH : -NADPH
Air 38.2+44 144427
Heated (100°C, 5 min) 104418 “6.440.5
C0:0, (80:20) 38.0+27 15.7+1.9
| mM SKF 525A 51.9+19° 18.34+1.0
SmM 4MP 39.34+0.6 15.540.3
ImM DDTC 8.5+1.2 56403
Nitrogen 26+04 3.840.1
ImM ASA 2.4+1.0° 142+24 -
30uM IM 38.4+0.9¢ 13.5+0.3
10mM AT . 40.4+0.9" 13.5+1.0
I mM MMI 23.240.5° 13.0+1.1
I mM TBA 22.040.2° 11.2+1.0
10 uM DPl/air 12.740.1 8.0+07
10 uM DPI/nitrogen 3.2402 37409
1 mM DFA 36.5+1.7 9.7+0.2
Polyclonal antibody against P450 red (air) 39.4+09 36.1+1.3°
Polyclonal antibody against P450 red (nitrogen) 8.1+03 3.6+0.1°

“Incubation mixtures containing microsomal preparations (1.84+0.50mg of microsomal protein/ml),
NADPH generating system, and 0.2i M ethanol were conducted for 1 h at 37°C. Incubations containing
the polyclonal antibody against P450 reductase were performed as previously described [11]. Acetaldehyde
was measured in the head space of each sample after adding | ml NaCl saturated solution. (See Methods
for details). Each result is the mean of three separate lots of pooled prostate samples.

PASA, acetylsalicylic acid; AT, 3-amino-1,2,4-triazole; DDTC. N,N-diethyldithiocarbamic acid sodium
salt: DFA. desferrioxamine mesylate; DPI, diphenyleneiodonium chloride; IM, indomethacin, MMI,
2-mercapto-1-methylimidazole; 4MP, 4-methylpyrazole; TBA, thiobenzamide.

P <0.05 when compared to “Air+ NADPH.”

4p~0.05 when compared to “Air+ NADPH."

*Corresponding to the antiserum, in the presence of NADPH.

or of catalase, like AT [16,17] did not cause any significant depletion in the
production of acetaldehyde.

The role of non heme iron in the metabolism to acetaldehyde was checked by
the use of desferrioxamine (DFA) but, under air, no effect was observed.

MMI, TBA, and 10 pM DPI were tested as potential inhibitors of bio-
transformation. In both cases significant differences were observed, when compared
to the acetaldehyde formed under air + NADPH.

1-Hydroxyethyl Radical Determination in the Ventral Prostate Microsomal
Fraction

Figure la shows the capillary GC analysis with TIC detection of reaction
products when free radicals were derived from ethanol biotransformation by ventral
prostate microsomes in the presence of the spin trap PBN. The spin adduct of the
|HEt radical was detected (Fig. 1a) when NADPH was present and only traces were
observed when NADPH was absent (Fig. 1b). In addition, two peaks (A and B in
Fig. 1a) due to the interaction between hydroxyl radicals and PBN were observed.
No ethanol was necessary for them to be formed (Fig. 1c). These compounds were
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Fig. 1. a: Selected-ion current profile obtained froimn GC-MS-SIM analysis of a sample of incubation that
contains microsomes, NADPH, ethanol, and PBN, after trimethylsilylation. Masses selected for SIM were
250 and 194 (see Methods for details). Peaks: PBN-1HEt, 1-hydroxyethyl adduct of PBN; A and B, two
isomers of aromatic-hydroxylation derivatives of PBN. b: The same as in a but in the absence ofl NADPH.
c: The same as in a but in the absence of ethanol.

previously observed by us to be formed in other biological situations and identified
as aromatic-hydroxylation derivatives of PBN [14].

DISCUSSION

The present results provide evidence that rat prostate microsomes have
enzymatic NADPH-dependent pathways of ethanol biotransformation to acetalde-
hyde. Those processes do not appear to be mediated by cytochrome P450 (P450)
enzymes (e.g., CYP2EI or others) as has been shown to occur in liver [16]. General
inhibitors of P450 biotransformations such as CO or SKF 525A [18] did not inhibit
NADPH-mediated oxidation of ethanol. In contrast to previous findings in the liver
[16] specific inhibitors of CYP2EI, such as 4MP, did not decrease ethanol
biotransformation in rat prostate microsomes.

These processes require oxygen from air since they do not proceed under
nitrogen. The lack of inhibition by DFA excludes the possibility that an iron-
catalyzed reaction was involved as an artefact [19]. Potent inhibitors of
prostaglandin endoperoxide synthase, such as ASA or IM [17], or of catalase, like
AT [16], were not inhibitory in this case and that excludes their participation in
biotransforming ethanol to acetaldehyde in prostate microsomes. DPI, a known
inhibitor of flavoprotein catalyzed reactions [20,21], appeared to completely inhibit
the prostate microsomal oxidation of ethanol implicating the involvement of flavin
monooxygenases such as FMO. This conclusion was supported by inhibitory effects
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of MMI and TBA on acetaldehyde formation, since both of these are relatively
specific competitive inhibitors of FMO [22,23]. FMO participation in this
biotransformation, even when significant, cannot account for all the aerobic
NADPH-flavoprotein that requires ethanol metabolism. Another enzyme possibly
involved in ethanol oxidation could be cytochrome P450 reductase. This enzyme is
able to promote the oxidation of ethanol to acetaldehyde in a NADPH and oxygen-
independent process even in the absence of P450 and also under air via generation of
oxygen reactive species [11]. In the presence of the P450, the biotransformation is
significantly enhanced [24]. However, ethanol oxidation was not inhibited by the
polyclonal antibody against P450 reductase and consequently the nature of the
flavoenzyme-mediated additional bioactivation pathway not related to FMO
remains to be established.

Besides the bioactivation of ethanol to acetaldehyde by the rat ventral prostate
microsomes, formation of other extremely reactive moieties was found. They are
hydroxyl and 1HEt radicals. Their formation cannot be mediated by the microsomal
flavoprotein FMO. The reactive moiety in this enzyme is not a free radical but a
FAD-hydroperoxide [22,23] and consequently the production of these radicals might
not be explained via FMO participation. The process leading to their formation
remains to be established.

Concerning the toxicological relevance of the present studies, it is of interest to
point out that production of acetaldehyde and free radicals might be of some
relevance to prostate cancer induction observed in heavy alcohol drinkers [3-6].
Acetaldehyde is a known mutagen and carcinogen [25,26] and reactive oxygen
species, free radicals, and the oxidative stress potentially that result from them were
postulated to have cancer promotion effects [7,8,27-29]. The presently described
microsomal ethanol bioactivation system and the recently reported xanthine
oxidoreductase mediated cytosolic system [9] might be mechanistical clues that link
heavy alcohol drinking and prostate cancer induction observed in some studics.
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