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Abstract

TiO, films were deposited onto glass substrates by pulsed laser deposition (PLD) in high vacuum
under monopulse and multipulse excitation. After deposition, a thermal treatment on air atmosphere
was done to promote crystallization. Films were studied by x-ray diffraction, energy dispersive
spectroscopy, scanning electron, atomic force microscopy, UV—vis spectroscopy, and ellipsometry.
After air annealing, films gain a different amount of oxygen: TiO, gy in multipulse regime versus TiO ,
in the monopulse one. Splashing is observed in both regimes although in the multipulse mode greater
particles are found, that derived in a less compact film after annealing which could be the cause of the
better oxygen diffusion. The optical band gap of the film prepared with monopulse excitation is

3.09 eV. This value increased to 3.34 eV with annealing, corresponding to that of anatase. The film
made with multipulses hasan E, = 3.12 eV which was invariant upon annealing. The difference in the
properties of the films grown in the different regimes was attributed to the re-excitation of the plasma
during the ablation process in the multipulse ablation that leads to an increased splashing density and
thereafter aless compact film and the presence of off-stoichiometry inclusions within the film bulk.

1. Introduction

Pulsed laser deposition (PLD) technique is a widely known deposition technique whose operating principle
relays on the removal of material by laser ablation from a surface [1]. The plasma formed during the ablation
process expands at high speeds (approximately 400 ms~") with a well-defined direction and finally condenses
on a substrate to form the thin film [2]. One of the exciting particularities of PLD is that the target stoichiometry
is usually kept intact in contrast, for example, with RF sputtering [3]. Opposite to the simplicity of the operation,
the phenomena involved in PLD are very complicated. One of the primary disadvantages of this technique is the
ejection of fused material during the ablation process via a phenomenon known as splashing, which can be
observed in the form of micrometric and sub-micrometric droplets on the surface of the generated film [4-6].
Most of the studies have reported thin films fabricated using PLD in single-pulse emission regime. In the
literature, there are some papers dealing with laser ablation under multipulse excitation, those studies have
shown that the splashing effect can be significantly reduced/eliminated using a second laser parallel or collinear
to the target that re-excites the plasma where each laser emission was composed of multiple pulses with an
interpulse separation between 10 and 100 ps [7, 8]. In a recent study, some of the interactions reported by
Galbacs et al were confirmed using the multi-pulse regime to deposit titanium dioxide (TiO,) thin films,
demonstrating that a lower deposition rate and roughness is obtained when using the multi-pulse regime for the
same total emission energy, attributable to enhanced adatom mobility after plasma reexcitation [8, 9].
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Figure 1. Temporal profile and pulse width in the investigated ablation regimes: (a) multi-pulse and (b) single-pulse.

TiO, is an n-type semiconductor that has emerged as an extremely valuable oxide for numerous applications
because of its unique electrical and optical characteristics, in addition to being non-toxic and inexpensive [ 10].
TiO, in thin film form has a large variety of applications in photocatalysis, photovoltaic and optical systems such
as in multilayer structures that can be anti-reflective or exhibit high reflectivity at a specific wavelength [11-13].
The most significant limitation for TiO, use in photocatalysis and photovoltaics is its low absorption in the
visible region. Thus there are substantial efforts in sensitizing TiO, with visible absorbing materials or by
producing non-stoichiometric TiO,, i.e., TiO,_, which is usually known as ‘black’ TiO, [14, 15]. On the other
hand, in photocatalysis and photovoltaic applications anatase is the phase of choice because of its higher
photoelectron yield, while rutile is most used in optical devices because of its higher stability [16, 17].

This paper aims to compare the structure, composition, morphology and optical properties of TiO, films
with similar thickness, as-grown and after an air annealing, deposited with multi and monopulse laser excitation
under high vacuum.

2. Methods

The films were deposited by PLD on soda-lime glass substrates using a commercial TiO, target (Kurt J Lesker
with a purity 0f99.99%). In the ablation process, a Nd:YAG laser with a passive Cr*":YAG Q-Switch was
employed; the laser emitted at 1064 nm and was operated at a frequency of 10 Hz. The deposition was performed
at5 x 107 Torr, with a target-substrate distance of 5 cm and a substrate temperature of 130 °C. The laser
system was configured to emit in the single-pulse and multi-pulse regimes. In the initial configuration, the laser
module emitted in the multi-pulse regime, where each emission comprised three individual pulses with a
duration of 60 ns separated each one by 45 us (see figure 1(a)). In the second configuration, an additional
Cr*":YAG Q-Switch was added to the optical cavity of the laser, reducing the emission to a single pulse of 40 ns
(see figure 1(b)).

The total energy for each emission was adjusted to 104 m]J in both regimes, which fixed the working fluence
at2J.cm ™2 In this paper ‘mono pulse’, ‘single pulse’ or ‘single laser pulse’ means a burst of pulses, i.e., a laser
shot, composed by only one laser pulse, similarly ‘multipulse’ or ‘multipulse laser’ means a burst of 3 individual
pulses. In other words, when we mention ‘sample prepared by 6000 pulses impinging the target’, if the regimen
was single pulse, it means that 6000 individual pulses impinged the target. Otherwise, when we refer to 12 000
pulses in multipulse regime, it means that 36 000 (12 000 x 3)lasers pulses did impinge the sample.

In a previous contribution, the relation of the number of shots against the film thickness was studied [9]. It
was found that multipulse regime leads to reduced growth rate and lower surface roughness, thus, in the present
contribution a comparative study was conducted by growing films with similar thicknesses of ca. 64 nm in both
regimes, i.e., the films were obtained using 6000 laser shots for the single-pulse regime and 12 000 laser shots for
the multi-pulse regime respectively. The analysis consisted of evaluating the morphology by scanning electron
microscopy (SEM) and atomic force microscopy (TT AFM Workshop) with a Si tip in the contact mode. The
optical properties were evaluated by UV—vis-NIR spectroscopy (Cary 5000, Agilent Technologies) and
spectroscopic ellipsometry (Uvisel LT M200AGMS, HORIBA Jobin Yvon). The chemical composition of the
films was determined by energy dispersive x-ray spectroscopy (EDS) (Apollo XL-SDD, EDAX) and the
crystalline structure by x-ray diffraction (XRD) using the grazing incidence configuration with the incident
beam at 1.5° (X Pert PRO MRD, PANalytical). Films were characterized before and after a post-deposition
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Figure 2. X-ray diffractograms for TiO, thin films deposited through single-pulse and multi-pulse ablation, without thermal
treatment (Mn, Mt) and with thermal treatment (Mn~+T, Mt+T).

Table 1. Film nomenclature.

Label Sample

Mn Thin film made by single-pulses

Mn+T Thin film made by single-pulses with thermal treatment
Mt Thin film made by multi-pulses

Mt+T Thin film made by multi-pulses with thermal treatment

thermal treatment done in the air for 2 h at 500 °C. Table 1 shows the nomenclature used to refer to the
investigated samples.

3. Results and discussions

3.1. Crystalline structure

Figure 2 shows the XRD diffractograms obtained for the samples with and without thermal treatment. Before
thermal treatment, no diffraction peaks are observed indicating that the films are amorphous for both ablation
regimes. The film grown in the single-pulse regime shows diffraction peaks corresponding to the anatase phase
after thermal treatment is done. By another way, the multi-pulse-deposited film exhibits diffraction peaks
corresponding to the rutile phase. The observed peaks are broad and have a low intensity, indicating that there is
an early or partial transition to the crystalline phase. Sharma et al suggested that the grains and voids in the films
may form differently depending on the plasma energy and laser wavelength used for ablation [18]. In that
reference, films produced from more energetic plasma generated at 355 nm and thermal treatment at 600 °C
resulted in the formation of the rutile-brookite phase. By another way at 1064 nm with less energetic plasma, the
same thermal treatment induced a transition to the anatase-brookite phase. Following our previously published
analyses, it is possible to assume that the plasma was re-excited in the multi-pulse regime in the ablation process,
i.e., this plasma is more energetic than that generated in the single-pulse regime, thus creating adatoms with
higher energy, this could be a plausible explanation of the transition to the rutile phase with thermal treatment in
the sample grown using multi-pulses [9, 19].

3.2. Composition

Figure 3 presents the photographs of the samples prepared before and after thermal treatment. The color of the
untreated films varies from black to light blue, suggesting that these films would contain either amorphous semi-
metallic Ti—O entities or Tisuboxide inclusions as due to oxygen deficiency. After thermal treatment, both
samples exhibit lighter tones, which are indicative of oxygen incorporation and film crystallization, as observed
in the XRD results.
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Figure 3. (a) Appearance of TiO; films deposited through single-pulse ablation (Mn and Mn+T), before and after thermal treatment,
respectively, and through multi-pulse ablation (Mt and Mt+T), before and afterthermal treatment; (b) Composition analysis
performed by EDS on TiO, thin films fabricated by single-pulse and multi-pulse ablation, before and after thermal treatment; error
bars account for composition in 5 different points.

Figure 4. SEM micrographs of TiO, thin films deposited using single-pulse and multi-pulse ablation, before (a) and (b) and after
thermal treatment (c) and (d).

The oxygen and titanium content in the films was quantified using EDS and presented in figure 3(b) together
with the estimated ‘compounds’ formulae. The films deposited using multi-pulses have a higher O/Tiratio
before thermal treatment, with a composition of TiO; 4, whereas the films formed in the single-pulse regime
have a structure of TiO, 5. The thermal treatment increased the O/Ti ratio in both samples; however, the film
deposited with multi-pulses after thermal treatment follows most closely the TiO, stoichiometry, with an O/Ti
ratio of 1.9. Meng et al attributed oxygen losses in films growth by sputtering, to the low friction coefficient of
these deposits relative to that of Ti [3]. Considering Meng’s hypothesis, oxygen is more volatile than Tiand is,
therefore, more vulnerable to the deviation of the propagation trajectory of the plasma plume during the growth
process, which would reduce the O/Tiratio in both films. However, the difference between the O/Ti ratios in
the two regimes remains as a subject for future research. A remarkable result is the possibility to obtain
‘black-TiO,’ by PLD; in a future work a more extensive study on the films properties prepared without air
annealing, for example in photocatalysis applications, is intended.

Figures 4(A) and (B) show the SEM micrographs for the films deposited in the single-pulse and multi-pulse
regimes, respectively, as reported in [9]. The splashing effect produced the large particles in the images for both
regimes. However, the films grew using multi-pulses exhibit droplet-shaped particles, whereas the particles in
the film grown using single-pulses have a peculiar, elongated form and alower particle density. Figures 4(C)
and (D) show the micrographs of the films after thermal treatment. The film surface is restructured in both
deposits, and the particles produced by splashing are no longer observed. Instead, there are many irregularly
shaped particles, suggesting that a re-nucleation process occurred at the material surface, because of the
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Figure 5. AFM images from 40 x 40 yzm? scans for the as-prepared (upper figures) and annealed samples (lower figures).

formation of a crystalline phase as observed in XRD. The surface of the annealed film prepared with multipulse
excitation seems less compact for that of the annealed sample prepared in the monopulse regime, in
correspondence to the AFM data in which indicate that Rrms roughness is slightly higher within the number of
laser shots used for the deposition of these particular films [9].

Figure 5 shows the AFM images from 40 x 40 zim” scans for both deposition cases, before and after thermal
treatment. Figures 5(A) and (B) present the pictures of the as-deposited films; the film prepared with monopulse
excitation presents elongated structures, and droplets sparsely spread all over the surface in comparison with the
surface of the film made with multipulse excitation where more droplets are observed although non-elongated
structures appear.

After film annealing, the surface of the film prepared with single pulses seems more compact, with smaller
dots while the image of the film made with multipulses still presents a surface decorated with dots of similar
appearance upon annealing, the particle sizes decrease in the films deposited with single pulses; on the other
hand, the particles are around the same size no matter the annealing for the case of the films deposited with
multipulses.

Figures 6(A) and (B) display three representative linear profiles for each sample, obtained from the AFM
images, to represent the particles observed in the surface. It can be readily seen that.

Figure 6(C) presents the height distribution obtained from the AFM 40 x 40 ;zm” images for both
deposition cases, before and after thermal treatment with the Rrms values indicated. All the distributions are
symmetric, suggesting that a single nucleation event followed by nuclei growth on subsequent shots is the
predominant mechanism. The height distribution of the film deposited by single-pulses (Mn) shows a mean
height of 27 nm and roughness of 7 nm; upon annealing (Mn+T) the average height reduces to 21 nm and the
roughness to 5 nm. Correspondingly, the film as-deposited using multi-pulses (Mt) exhibits an average height of
61 nm with a Rrms of 8 nm that reduce upon annealing (Mt+T) to 27 nm with a slight increment in R, to
9 nm. For the particle size distribution, the films prepared with single pulses are narrower than those prepared
with multipuses. Annealing tends to reduce the distribution width. The observed trends in the AFM morphology
and surface roughness coincide with those seen in the SEM images and can be attributed to recrystallization and
strain relaxation upon annealing [20]. The large particle size in the as-deposited film Mt (multipulses) is
consistent with a significant amount of splashed particles.
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Figure 6. Linear profiles obtained from the AFM images for the sample prepared with single pulses (figure (A)) and multipulses
(figure (B)), before and after annealing. Height distribution for TiO, thin films fabricated with single-pulse and multi-pulse ablation
(figure (C)), before and after thermal treatment.
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Figure 8. Refraction index and extinction coefficient of TiO, thin films deposited through single-pulse and multi-pulse ablation,
before (closed symbols) and after (open symbols) thermal treatment; the continuous lines correspond to the dispersions of n and k of
TiO,; (reported) and the linear sum of the n and k coefficients of TiO, and Ti (best fit).

3.3. Optical properties

Figure 7 shows the transmittance spectra of the films prepared in both regimes, with and without thermal
treatment, compared to that of the glass substrate as well as the absorption coefficients of the films (o) as a
function of the wavelength. There is a very sharp difference in the spectra between the two regimes, with the film
prepared using multi-pulses exhibiting a transmittance above 0.9 in the medium range and starting to absorb
strongly at approximately 350 nm, which corresponded to the TiO, absorption [21]. The spectrum for the film
grown using single-pulses exhibits a maximum absorption centered at approximately 900 nm and after
annealing, another absorption peak near 450 nm. The maximum absorption at 900 nm and 450 nm could be
attributed to the insufficient incorporation of oxygen during film growth and the possible formation of Ti
suboxides, which would be consistent with the dark coloration of the film. The absorption spectra of the films
prepared with multipulses display a monotonous behavior, i.e., no absorption peaks before the edge at ca.

350 nm and only a short absorption tail that reduces upon annealing.

Figure 8 shows the refraction index (n) and the extinction coefficients (k) dispersion of the films for the
wavelength, obtained by spectroscopic ellipsometry at a 70° angle. The n values of all the samples are within the
reported range for TiO, (2.3-2.7). The n and k dispersions of the film deposited using ablation with multi-pulses
and without thermal treatment coincide with those reported by Cronemeyer et al for amorphous TiO,. The
spectrum for the film grown using single-pulses exhibits a maximum absorption centered at approximately
900 nm and after annealing, another absorption peak near 450 nm. The maximum absorption at 900 nm and
450 nm could be attributed to the insufficient incorporation of oxygen during film growth and the possible
formation of Tisuboxides, which would be consistent with the dark coloration of the film. The absorption
spectra of the films prepared with multipulses display a monotonous behavior, i.e., no absorption peaks before
the edge at ca. 350 nm and only a short absorption tail that reduces upon annealing.

Figure 8 shows the refraction index (n) and the extinction coefficients (k) dispersion of the films for the
wavelength, obtained by spectroscopic ellipsometry at a 70° angle. The n values of all the samples are within the
reported range for TiO, (2.3-2.7). The n and k dispersions of the film deposited using ablation with multi-pulses
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and without thermal treatment coincide with those reported by Cronemeyer et al for amorphous TiO, [22].
However, neither of the dispersions coincides with the stable phases of TiO,, rutile, anatase or brookite. Both
dispersions tend to increase toward the infrared range, particularly for the sample prepared using single-pulses.
The n and k dispersions were compared with a simulated spectrum consisting of a linear sum of the indexes n
and k that have been reported for TiO, and Ti. From the observed behavior, it can be concluded that the
dispersions reflect the presence of non-stoichiometric Ti-oxide inclusions.

The samples grown with single pulses and subjected to thermal treatment exhibits a refraction index that
decreased sharply in the region between 350 and 400 nm following a considerable increase in the visible region
and then gradually decreases approximately in the infrared region. This erratic behavior may result from the
formation of suboxides. The extinction coefficient decreases rapidly very near 370 nm, which corresponded to
an absorption edge very close to that of anatase (383 nm) [23]. However, the dispersion in the visible region
indicates a strong absorption that does not correspond to that crystalline phase.

For the sample deposited using multi-pulses, thermal treatment decreases the n value in the visible-infrared
region, maintaining the dispersion characteristics of TiO,, whereas k was approximately zero, confirming that
stoichiometric TiO, formation caused the reduction in the absorption in the region mentioned above.

Figure 9 shows Tauc graphs for an indirect transition of TiO, for calculation of the forbidden band gap (Eg)
in the films deposited with both laser regimes, before and after thermal treatment [24]. For the film grown using
multi-pulses the calculated band gap is 3.12 eV, within the range of the reported values for rutile, and did not
chang after thermal treatment [18]. However, the thermal treatment shifts the band gap of the film formed with
single-pulse deposition from 3.09 eV to 3.34 eV. The latter value was within the range of the calculated values for
anatase of 3.23-3.59 eV, which indicates that the anatase phase may have nucleated [18]. The results are
consistent with the XRD diffractograms of the studied samples.

4. Conclusions

High vacuum pulsed laser deposition deposited TiO, films under monopulse and multipulse excitation. The
structure, composition, morphology and optical properties were studied to compare the effects of the laser pulse
regime as well as that of an air annealing. As-deposited films are amorphous although, upon annealing, the film
prepared with mono pulse regime crystallizes in the anatase phase while that made in the multi-pulse regime
crystallizes in the rutile form. As deposited films are sub-stoichiometric and after annealing the stoichiometries
approach to that of TiO,. Film morphology reflects the effect of plasma re-excitation with the multi-pulsed laser,
as more splashing and higher average height is observed; after annealing, surfaces are more homogenous
although the film prepared with multi-pulsed laser keeps large surface particles that suggest they arise from the
initial stages of deposition. The optical dispersion curves and the optical band gap behavior before and after
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annealing, indicate the presence of TiOy inclusions as well as a better compositional homogeneity in the film
prepared in the multipulse regime. The results indicate that for the deposition with multi-pulse, the particles
that impinged on the substrate have higher surface mobility than the corresponding particles for the single-pulse
regime, confirming they come from plasma with higher energy than those from the single-pulse regime.
Moreover, the results showed that is possible to deposit black titania films (TiO,_,) by PLD from TiO,, with the
possibility to modulate the final phase, anatase or rutile, by changing the laser regime and annealing conditions.
Future work is intended to explore the properties and applications either in photocatalysis and photovoltaics of
such films.
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