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Abstract We present numerical evidence that diffusion in the herein studied multidimen-
sional near-integrable Hamiltonian systems departs from a normal process, at least for realistic
timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the vari-
ance evolution of the unperturbed integrals fails. We review some topics on diffusion in the
Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the exam-
ples we considered, a standard coefficient would not provide a good estimation of the speed
of diffusion. However, numerical experiments concerning diffusion would provide reliable
information about the stability of the motion within chaotic regions of the phase space. In
this direction, we present an extension of previous results concerning the dynamical struc-
ture of the Laplace resonance in Gliese-876 planetary system considering variations of the
orbital parameters accordingly to the error introduced by the radial velocity determination.
We found that a slight variation of the eccentricity of planet c would destabilize the inner
region of the resonance that, though chaotic, shows stable when adopting the best fit values
for the parameters.
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1 Introduction

An issue of relevance in several fields of astronomy, such as planetary and galactic dynamics
among many others, is whether chaos could lead to large variations of the orbital parameters.
Indeed, the Solar System as well as almost all the discovered exoplanet systems are chaotic as
revealed in Laskar (1990) and more recently in Gayon et al. (2008), Rivera et al. (2010), Deck
et al. (2012), Martí et al. (2013), Barnes et al. (2015), among others. Also in most models of
elliptical and disk galaxies, the amount of chaos turns out to be significant as already shown
many years ago in for instance Merritt and Friedman (1996), Merritt and Valluri (1996),
Papaphilippou and Laskar (1998), Contopoulos and Grosbol (1986) and Contopoulos (2009).
Though chaos is often associated with large instabilities, it should be noticed that this is not
necessarily the case, as the so-called stable chaos observed in Milani and Nobili (1992)
illustrates.

The drift of the unperturbed integrals or orbital elements due to a chaotic dynamics is
known as chaotic diffusion, and in general, this instability is a global property of near-
integrable Hamiltonian systems with more than two degrees of freedom. The latter problem,
particularly for large instabilities, is still open as it was pointed out in Lochak (1999) almost
two decades ago. However, progress in this direction can be found for instance in Delshams
and Shaefer (2017) and references therein. Thus, we briefly summarize below what is actually
well known about these intriguing phenomena.

A first point to be stressed is that local exponential divergence of nearby orbits (i.e., a
positive Lyapunov characteristic number) does not necessarily imply chaotic diffusion. (We
refer again the example of the observed stable chaos.) In general, “fast diffusion” occurs
when an overlap of several resonances takes place, as shown in Chirikov (1979) for low-
dimensional systems like the standard map for a large value of the perturbation parameter
[this issue was previously discussed in Izrailev and Chirikov (1968)] or in Wisdom (1980)
for the planar–circular restricted three-body problem in asteroidal dynamics. The overlap
criterion requires, in general, that the perturbation exceeds some critical value; probably, the
first report of this instability condition is given in Chirikov (1966). So much so that usually a
system is said to be in Chirikov’s regime when most of the invariant tori are destroyed by the
overlap of resonances, thus giving rise to large chaotic domains. In such a case, diffusion is
assumed to be fast. Conversely, a system is said to be in Nekhoroshev’s regime when chaos
(or any instability) is confined to the thin layers surrounding resonances (Nekhoroshev 1977).
KAM theory is then required, i.e., the size of the perturbation should be small enough, and
from Nekhoroshev theorem the timescale for any instability is exponentially large. Let us
notice that though both KAM theory and Nekhoroshev estimates are rigorous, they only yield
upper bounds for stability conditions and for the speed of the rather slow diffusion along the
narrow chaotic layers, the so-called Arnold diffusion [see for instance Froeschlé et al. (2005)
or (2006) for a detailed discussion]. On the other hand, Chirikov’s approach (Chirikov 1979)
(Ch79 hereafter) though heuristic provides constructive ways to compute local and global
diffusion coefficients in both scenarios, characterized either by fast or slow diffusion like in
the standard map for large values of the parameter or along the very thin chaotic layer of a
single resonance, respectively. Therefore, strictly speaking, it seems not completely correct
to refer to Chirikov’s regime as a strongly chaotic one.
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Studies on diffusion in multidimensional near-integrable Hamiltonian systems were con-
ducted by many authors, most of them concerning the slow diffusion regime in the limit of
weak chaos where KAM and Nekhoroshev theories apply; for example, we refer to Lega
et al. (2003, 2008), Froeschlé et al. (2005, 2006), Guzzo et al. (2005), Efthymiopoulos and
Harsoula (2013) and Cincotta et al. (2014). There, the effort was devoted to show both local
and global diffusion for very large timescales along the narrow chaotic layers of simple 3
degree of freedom Hamiltonian systems or 4D-maps and to establish the relation between
the obtained diffusion coefficient with the perturbation parameter of the model. Only a few
works deal with diffusion in the strong chaotic regime for multidimensional realistic systems.
In Tsiganis et al. (2005) and Tsiganis (2008), the general diffusion theory is revisited, with
applications to the chaotic dynamics of asteroids and Jupiter’s Trojans, while in Cachucho
et al. (2010) Chirikov’s theory is used to investigate diffusion in the asteroidal three-body
resonance (5,− 2,− 2). More recently in Batygin et al. (2015) and Martí et al. (2016), the
dynamics and diffusion in the Laplace resonance in the GJ-876 planetary system is discussed.
Mathematical studies about the Arnold mechanism and diffusion, by means of geometrical
methods in different scenarios of the three-body problem, are presented in Delshams et al.
(2016), Capiński et al. (2017) and Féjoz et al. (2016), while by recourse of variational methods
are addressed in for instance Bessi (1997), Bernard et al. (2016) and references therein.

Let us recall that the derivation of a diffusion coefficient in near-integrable Hamiltonian
systems (or in systems with divided phase space) is still an open problem. In fact, in all the
above-mentioned works the Brownian motion or normal diffusion approximation is assumed
and, in spite of our systematic and profuse search, we failed to find any other approach to
estimate a measure of diffusion in the literature. Thus, the aim of the present work is to
review the past and present efforts in this direction and study the limits of application of
normal diffusion approximation in a simple model.

In the present work, we revisit and discuss the nature of diffusion in a well-known 2 1
2

degrees of freedom Hamiltonian, the Arnold Hamiltonian introduced in Arnold (1964), which
is the paradigmatic model for the so-called Arnold diffusion (actually the Arnold mechanism
that leads to an instability) but for perturbation parameters sufficiently large so that no ana-
lytical estimates apply. We present evidence that for the adopted values of the parameters and
considered timescales, the diffusion is far from normal and thus the derivation of a diffusion
coefficient from the variance evolution of the actions does not seem to be well sustained
in case of large instabilities. Anyway, we show that diffusion experiments would serve to
discriminate stable and unstable regions within a chaotic domain. Further, an extension of
the results presented in Martí et al. (2016) is addressed, varying the main parameters of the
system within the error tolerance.

2 Diffusion in the Arnold Model

The classical Arnold Hamiltonian (Arnold 1964) [already discussed in Ch79, Giorgilli (1990),
Simó (2001), Lega et al. (2008), Efthymiopoulos (2012) among others] has the form1

H(I1, I2, θ1, θ2, t; ε, μ) = 1

2
(I 2

1 + I 2
2 ) + ε(cos θ1 − 1)(1 + μB(θ2, t))

(1)

B(θ2, t) = sin θ2 + cos t,

1 We follow the same approach given in Cincotta and Giordano (2016).
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with I1, I2 ∈ R, θ1, θ2, t ∈ S
1, where μ should be exponentially small with respect to ε, so

that εμ � ε � 1. (The implications of the latter assumption will be discussed later on.) For
ε = 0 the system allows two global integrals of motion, namely I1 and I2, which determine
the invariant tori supporting the quasiperiodic motion with frequencies ω1 = I1, ω2 = I2.
Therefore, we have a very simple dynamical system consisting of two uncoupled free rotators,
so that, θ1(t) = I1t + θ0

1 , θ2(t) = I2t + θ0
2 .

For the case in which ε �= 0, μ = 0 we still have two integrals,

H ε
1 (I1, θ1) = 1

2
I 2
1 + ε(cos θ1 − 1), I2, (2)

and the unperturbed Hamiltonian could be written as

H ε
0 (I1, I2, θ1) = H ε

1 (I1, θ1) + 1

2
I 2
2 . (3)

Notice that H ε
1 is the pendulum model for the resonance ω1 = 0; H ε

1 ≡ h1 = −2ε

corresponds to the exact resonance or stable equilibrium point at (I1, θ1) = (0, π) while
h1 = 0 to the separatrix, and thus, (I1, θ1) = (0, 0) is the unstable point or whiskered torus.2

The frequencies are now

ω1 = ωp(h1, ε), ω2 = I2,

where ωp(h1, ε), the pendulum frequency is given by

ωp(h1, ε) = πω0(ε)

2K
(
kh1

) , − 2ε ≤ h1 < 0,

(4)

ωp(h1, ε) = πωr (h1, ε)

2K
(
k−1
h1

) , h1 > 0,

where

k2
h1

= h1 + 2ε

2ε

and

ω0(ε) ≡ √
ε, ωr (h1, ε) = ω0(ε)kh1

are the small oscillation and the half-rotation frequencies, respectively, being K (κ) the com-
plete elliptical integral of the first kind. For rotations, the second line in (4) provides the
half-rotation frequency in order to keep similar values of the frequency at both sides of the
separatrix.

In the oscillation regime ωp(h1, ε) ≤ ω0(ε) and close to the separatrix for both oscillations
and rotations, ωp(|h1| � 1, ε) ≡ ωsx (h1, ε) takes the asymptotic form

ωsx (h1, ε) = πω0(ε)

ln
(

32ε
|h1|

) , ωsx (h1, ε) → 0 as |h1| → 0. (5)

In the rotation regime, for h1 large enough 2ωp(h1, ε) ≈ √
2h1 ≈ I1.

2 The generalization of a saddle equilibrium point, it is defined as the connected intersection of the stable
and unstable manifolds or, in Arnold jargon, arriving and departing whiskers, W− and W+, respectively [see
Arnold (1964), Giorgilli (1990) for further details].

123



On the chaotic diffusion in multidimensional Hamiltonian systems Page 5 of 23 7

The half-width of the resonance ω1 = 0 in action space is (�I1)r = 2
√

ε, so within
this resonance the variation of I1 is bounded by |�I1| ≤ 2

√
ε while I2 remains constant.

Therefore, in action space, ω1 → ωsx (h1, ε) → 0 when I1 → 2
√

ε (h1 → 0).
For ε �= 0, μ �= 0 the original system (1) can be written as

H(I1, I2, θ1, θ2, t; ε, μ) = H ε
0 (I1, I2, θ1) + μV ε(θ1, θ2, t),

(6)

μV ε(θ1, θ2, t) = εμ(sin θ2 + cos t)(cos θ1 − 1),

where H ε
0 is given by (3) and θ2(t) = ω2t + θ0

2 .
The perturbation μV ε, for εμ � 1, mainly affects the motion close to the separatrix of

the resonance ω1 = 0 leading to the formation of the chaotic layer; the dynamics becomes
unstable, chaotic in a small domain |I1 ± 2

√
ε| ≤ ws , where ws denotes the width of the

layer.
However, due to the dependence of V ε on θ2, also the integral I2 changes, and therefore,

motion along the stochastic layer could proceed. Due to the chaotic character of the dynamics
inside this narrow layer, the variation of I2 should also be chaotic, giving rise to diffusion in
I2. Thus, as I2 might change unboundedly, a large instability could exist. This is the way in
which Arnold diffusion is discussed in Ch79.

In this particular model, since the perturbation V ε vanishes at (I1, θ1) = (0, 0), for μ � ε

it is possible to build up a transition chain (Arnold 1964; Giorgilli 1990) such that if ω2 is
irrational, then all tori defined by I1 = 0, I2 = ω2 are transition tori, so, when t → ∞,
|I2(t) − I2(0)| = O(1), independently of ε and μ. Therefore, a “large variation” of I2 could
take place.

In (6) ω1 = 0 is just one of the six first-order resonances involved. Indeed, it is easy to
show that the primary resonances at order ε and εμ are

ω1 = 0, ω2 = 0, ω1 ± ω2 = 0 ω1 ± 1 = 0, (7)

Regarding the resonances in action (or energy) space, we should consider (7) with ω1 =
ωp(h1, ε) for h1 < 0 and ω1 = 2ωp(h1, ε) for h1 > 0.

The resonances intersect at seven fixed different points in frequency space, namely
(ω1, ω2) = (0, 0), (0,±1), (±1,±1).3 Hence, as pointed out in Ch79, the diffusion would
spread over all this resonance set. Notice, however, that for εμ � ε � 1 the diffusion rate
should be negligible along all resonances except for ω1 = 0, since the latter has the main
strength, its amplitude being ε, while all the remaining resonances have amplitudes εμ � ε.
Indeed, it is known that the theoretical diffusion rate depends exponentially on −1/

√
Vmn ,

where Vmn stands for the amplitude of the above-considered resonances [see for instance
Ch79 and Cincotta (2002)].

Considering the fully perturbed motion, besides the ones given in (7), the full set of
resonances (in action-energy space) is given by a linear combination of the form

m1ωp(h1, ε) + m2 I2 + m3 = 0, m1,m2,m3 ∈ Z. (8)

Figure 1(left) shows the resonance web in action space for ε = 0.25, for |m1| + |m2| +
|m3| ≤ 6 and setting θ1 = π so that I 2

1 = 2h1 + 4ε. We clearly observe vertical resonances
corresponding to m2 = 0, horizontal ones to m1 = 0 and an infinite but countable set of
curves for m1,m2 �= 0 that accumulate toward the separatrix at I1 = 2

√
ε.

For the sake of illustration, in Fig. 1 (right) we present the result of a numerical experiment
for ε = 0.25 and μ = 0.025. This figure displays the actual resonances while plotting just the

3 Note that their intersections in action space are different.
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Fig. 1 Arnold web in action space defined by (8) with ε = 0.25, taking θ1 = π so I 2
1 = 2h1 + 4ε and

|m1| + |m2| + |m3| ≤ 6 (left). Actual resonances in the Arnold model according to a MEGNO mapping
for I1 > 0, I2 > 0, θ1 = π, θ2 = t = 0, ε = 0.25, μ = 0.025. Region in black corresponds to chaotic
domains, while those in white correspond to periodic or quasiperiodic motion (right). For the given value of
ε, the separatrix lies at I1 = 1

MEGNO (Cincotta and Simó 2000; Cincotta et al. 2003; Cincotta and Giordano 2016) values
for 106 initial conditions along a given region in the (I1, I2) space, fixing θ1 = π, θ2 = t = 0
and after a total motion time t f = 104. The actual resonance web is well revealed by the
MEGNO contour plot; in particular, take notice of the complex chaotic structure around the
separatrix of the resonance ω1 = ωp = 0. The strongest resonances, besides the main one,
can be distinguished in the figure with their corresponding chaotic layers surrounding the
separatrices: ω1 = 1, ω2 = ω1 and ω2 = 0. Clearly the largest width of the chaotic layers,
ws , corresponds to the resonance of amplitude ε (ω1 = 0). A similar plot for ε = μ is given
in Simó (2001), while the one for small values of the parameters and θ1 = θ2 = t = 0,
obtained by recourse to the FLI [introduced first in Froeschlé and Lega (2000)], is presented
in Lega et al. (2008).

2.1 Numerical experiments

Let us numerically investigate the diffusion in this model. To this end, we fix the value of ε

and take two different values of μ. We will be concerned with diffusion on the chaotic layer
of the main resonance, ω1 = 0, and for different values of ω2 = I2. According to Chirikov’s
theoretical results Ch79, when ε � 1 and μ � ε, the local diffusion rate for |ω2| < 1
should be larger than for |ω2| > 1. The estimates of the width of the chaotic layer of the
main resonance and the diffusion coefficient (assuming a normal local character, see below)
along the latter are given by (see Ch79 eqs. (7.17)–(7.20) and the concomitant discussion)

ws ∼

⎧
⎪⎪⎨

⎪⎪⎩

μ

ε3/2 exp
( −π

2
√

ε

)
, |ω2| > 1

μ|ω2|
ε3/2 exp

(−π |ω2|
2
√

ε

)
0 < |ω2| < 1,

(9)

D(ω2) ∼

⎧
⎪⎪⎨

⎪⎪⎩

8πω4
2μ2

Ta(ω2)
exp

(−π |ω2|√
ε

)
, |ω2| > 1

8πμ2

Ta(ω2)
exp

(−π√
ε

)
0 < |ω2| < 1,

(10)

123



On the chaotic diffusion in multidimensional Hamiltonian systems Page 7 of 23 7

where Ta is the mean period of motion within the chaotic layer of the resonance ω1 = 0:

Ta(ω2) ≈ 1√
ε

ln

(
32e

ws

)
, (11)

that in terms of the perturbation parameters and ω2 becomes

Ta(ω2) ≈ π

2ε
+ ln(8eε3/2/πμ)√

ε
+ ξ

(
−3 ln |ω2| − (1 − |ω2|)π

2
√

ε

)
(12)

with ξ = 1 if |ω2| < 1 and ξ = 0 if |ω2| > 1.

The above derivation of the diffusion coefficient rests on the assumption that for |ω2| < 1,
the strongest perturbation to the motion close to the separatrix of the guiding resonance
ω1 = 0 corresponds to the closest resonance to the guiding one in frequency space, the layer
resonances ω2 = ±ω1 (corresponding to the harmonics θ1 ± θ2) that give rise to the chaotic
layer around the separatrix of the guiding resonance, and thus the diffusion along this chaotic
layer is due to the smaller perturbing terms (the more distant resonances to the guiding one
in frequency space), the driving resonances ω1 = ±1. For |ω2| > 1, the layer resonances
become ω1 = ±1, while the driving resonances are ω2 = ±ω1.

Around |ω2| ≈ 1, all these arguments and estimates no longer applies, as well as when
ε � 1. Indeed, only when ε � 1, the Melnikov integral (see Ch79) could be approximated
by an exponential of argument 1/

√
ε and thus, the relative amplitude

v ≡ ω2
2 exp

(1 − ω2)π

2
√

ε

is such that v � 1 if ω2 > 1 and v � 1 if ω2 < 1. In fact, Chirikov’s estimates are given for
diffusion along the thin chaotic layer of the guiding resonance, i.e., Arnold diffusion.

On adopting not too small values of the parameters, ε = 0.25 and μ = 0.025, 0.01 and
|ω2| ≤ 2, the above estimates for the diffusion coefficient are not applicable and numerical
experiments are definitively required. For the given values of the parameters, the center of the
chaotic layer (the unperturbed separatrix) of the guiding resonance lies at I1 = 1 and typical
timescales for the motion inside the chaotic layer are Ta � 20. We focus on the diffusion
within a range of |ω2| in which the guiding and secondary resonances exhibit overlapping
and crossings as Fig. 1 (right) shows. We will only discuss the results corresponding to
μ = 0.025 since those for μ = 0.010 are rather similar. From that figure, we observe that
for |ω2| > 2 resonances interaction decreases significantly with |ω2| and thus any instability
is expected to be almost negligible over any physical timescale. In fact, for |ω2| � 1, the
relative amplitude v is small and thus Chirikov’s estimates become a plausible assumption.

For the numerical experiments, we selected action values on the chaotic layer, I1 = 1,
I2 = ω2, and adopted θ1 = π, θ2 = t = 0 as initial values for the angle variables (the same
initial values of the angles as those used to compute the MEGNO in Fig. 1). In rigor, we consid-
ered a set of six ensembles of 100 initial values of the actions around (1, ω2) of size ∼ 10−7.
The center of each ensemble lies at ω2 = − 1.69,− 1.13,− 0.173, 0.053, 0.55, 1.55, respec-
tively. We integrated the equations of motion with a time-step of size 0.01, for a total motion
time 4×106 ≈ 2×105Ta , which is large enough in order to look for any significant diffusion
at moderate times. Indeed, we are not focusing on instabilities over timescales that exceed
any possible physical time as we shall see in the next section. The results are reported in
Fig. 2. There, the wandering of the actions for the initial ensemble (depicted in white) are
pursued and superimposed on the MEGNO contour plot (for |I1| ≤ 1.5, |I2| ≤ 2), each color
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Fig. 2 Six initial ensembles (indicated as white circles) are followed onto the MEGNO contour plot for
μ = 0.025, the concomitant trajectories that intersect the section |θ1(t) − π | + |θ2(t)| < 0.01 are depicted
with different colors

identifying a different set of 100 trajectories. In order to visualize the diffusion in the 2D
plane, (I1, I2), we considered the section defined by |θ1(t) − π | + |θ2(t)| < 0.01.

From this set of experiments, we clearly observe that despite the initial location of the
ensemble, the diffusion spreads almost uniformly over the range |I2| ≤ 2 and in all cases the
same secondary resonances are visited after a motion time t ≈ 2 × 105Ta . Then, for these
values of the adopted parameters, the instability is large with an expected nearly uniform
mean diffusion rate of ∼ 10−6 in the domain |I2| � 2.

In order to envision the diffusion in the 3D space (I1, θ1, I2), we regarded the section
|θ2| < 10−5. The plot in Fig. 3 respects the same palette for individualizing the first four
ensembles, where the normal form or pendulum model for the guiding resonance shows up.
All the ensembles appear almost completely overlapped for |I2| � 2, only for I2 ≈ 2 the
ensemble that starts with the larger value of ω2 being distinguishable.
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Fig. 3 3D-plot using the same
palette to individualize the
diffusion for the first four
ensembles shown in Fig. 2

 0 1 2 3 4 5 6

-2 -1  0  1  2
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 1

I 1

ε = 0.25, μ  = 0.025,  t = 4 • 106,  |θ2|  < 10-5

θ1
I2

I 1

2.2 Numerical derivation of a diffusion coefficient

In dynamical systems, the diffusion coefficient is introduced through a generalization of
the statistical properties of Brownian motion (i.e., Varvoglis 2005). In this direction, Chan-
drasekhar review (1943) is one of the most outstanding references in the field. In such systems,
where the motion is ergodic, the diffusion coefficient D is just the constant rate at which the
variance of any coordinate q evolves with time. This is usually called normal diffusion in the
sense that

σ 2
q = Dt, t > Tm,

being D independent of the position, direction and time. In other words, after certain initial
transient Tm , the system reaches the steady state and turns out completely mixed, diffusion
becoming homogeneous and isotropic. Under this assumption, time and space averages are
equivalent and thus the variance σq could be defined in two ways. In the first case, a single
orbit is followed along a large time span T and the average is performed over time intervals
�t � T . For the second average, an ensemble of several trajectories in a small neighborhood
around the same initial orbit is considered and the average is done over the whole ensemble
at different times (for instance, tk = kδt with δt � �t). The space average naturally turns
out to be much less sensitive to the selected orbit than the time average and of course, in any
system exhibiting a divided phase space, both averages in general do not coincide [see for
instance Meiss (1992) or Tsiganis (2008)].

Therefore, following the above-mentioned arguments, the numerical derivation of the
diffusion coefficient should rest on the computation of the variance of a given ensemble of
some appropriate variables. Just for the sake of simplicity, we discuss three different ways
of this calculation for the results presented in Fig. 2.

Let Np be the number of initial orbits in a small neighborhood of (I1(0), I2(0)) and
define, in case of a single resonance, (Ir , I f ) as the corresponding resonant and fast actions
and their conjugate angles (θr , θ f ) (in the present example Ir = I1, I f = I2)4 and take
t j = t0 + jδt, j ∈ Z, δt being for instance the integration time step (or a given multiple of

4 For a multiple resonance or an overlapped domain of resonances where there is not any specific direction

I f =
√
I 2
1 + I 2

2 .
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it); thus, the ensemble variance is defined as

σ 2
e (t j ) = 1

Np

Np∑

k=1

(
I (k)
f (t j ) − I (k)

f (0)
)2

. (13)

In general σ 2
e (t) could be rather noisy and for small perturbations, its time evolution

may hide any slow secular growth. However, it could be significantly improved if instead of
using of the original variables (Ir , I f ), new “optimal” actions are considered by a normal
form construction to eliminate the deformation effect due to oscillations, as for instance
it is discussed in Giorgilli (1990), Efthymiopoulos (2012) and Cincotta et al. (2014). In the
present example, this procedure is not necessary since we have already shown that the Arnold
model is in fact a normal form for the resonance ω1 = 0, as Fig. 3 shows.

Another way to eliminate oscillations is to compute the variance over a double section
[see for example Lega et al. (2003)], like that used to obtain Fig. 2. Formally, let S be defined
as the section |θr | + |θ f | < η � 1, and take a fixed time interval �t � δt . Let tl = l�t
and consider motion times tl−1 < t ≤ tl , l ∈ Z. Assume that the Np initial trajectories
have Nl � 1 intersections with S at different times τl ∈ (tl−1, tl ]; thus, the variance over
the section S is defined as

σ 2
s (tl) = 1

Nl

Nl∑

k=1

(
I (k)
f (τl) − I (k)

f (0)
)2

. (14)

A variant is the cumulative variance over the section S. Let now t0 < t ≤ tl , and assume
that the Np initial trajectories have Ml � 1 intersections with S at different times τl ∈ (t0, tl ],
then

σ 2
c (tl) = 1

Ml

Ml∑

k=1

(
I (k)
f (τl) − I (k)

f (0)
)2

. (15)

It is simple to show that if Nl ≈ N0 � 1, nearly constant, then

σ 2
c (tl) ≈ 1

l

l∑

j=1

σ 2
s (t j ),

and for any power law σ 2
s (t) ∝ tα , it is

σ 2
c (t) ≈ 1

α + 1
σ 2
s (t).

In Fig. 4 we present as an example, the evolution of these three variances for the ensemble
given at the top right of Fig. 2. Since σ 2

s looks nearly linear with time and Nl ≈ N0, we
observe that 2σ 2

c behaves very similar to σ 2
s but in a smoother way. The ensemble variance σ 2

e
also evolves, besides oscillations, as σ 2

s . Since in all cases we observe the very same behavior
of the three variances, in what follows we shall present the results just for σ 2

e . Let us mention
that when this linear trend is observed, the diffusion is called normal, while if σe ∝ tb, for
b < 1 we speak about subdiffusion and when b > 1 the process is called superdiffusion as
Cordeiro (2006) and Cordeiro and Mendes de Souza (2005) show for the dynamics in the
asteroid belt or Venegeroles (2008) for the standard map.

Taking into account the nearly linear character of the variances for the ensemble located
at ω2 = 1.55 and considering that for the six ensembles presented in Fig. 2 the diffusion
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Fig. 4 Evolution of the three
variances, σ 2

s , σ 2
e , σ 2

c for the
ensemble around ω2 = 1.55
corresponding to the plot at the
top right in Fig. 2
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t
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σs
2

σe
2

2σc
2

spreads over nearly the same domain in action space for the given time span, we should
expect a similar linear evolution of the ensemble variance for all of them.

In the numerical investigations about diffusion we have reviewed, the estimation of a
constant coefficient is performed by a linear fit on the evolution of any of these variances
(e.g., Lega et al. 2008; Froeschlé et al. 2005; Cincotta et al. 2014). For instance, in Cincotta
et al. (2014) the ensemble variance is computed after a normal form construction in order to
compare the numerical estimates of the diffusion coefficient with the theoretical ones provided
by Ch79 and also with Nekhoroshev estimates. In this work, the local diffusion coefficient
is derived by a linear fit on the evolution of σ 2

e for different values of the perturbation
parameter in a fixed ensemble of orbits on the very same location in the chaotic layer of
a single resonance. On the other hand, in Cachucho et al. (2010) Chirikov’s formalism is
applied to an asteroidal three-body resonance, where the diffusion coefficient is computed
locally for a grid of initial conditions along the chaotic layer of the guiding resonance by
means of a time average on a single orbit. In Guzzo et al. (2005), Lega et al. (2008) and
Guzzo et al. (2011) the local diffusion and global diffusion in the limit of weak chaos are
studied, where the diffusion coefficient is estimated by a linear fit on σ 2

s , since the normal
diffusion approximation seems to work in such a case.

Figure 5 shows the evolution of σ 2
e for the six ensembles adopting the same color palette

revealing very different evolution, in all cases σ 2
e /t depends on both, the initial position and

time. Any attempt to derive a mean diffusion coefficient through a linear fit on σ 2
e would

provide quite different values depending on the considered ensemble. It could be possible that
for extremely large motion times they reveal a similar behavior; however, we are interested
in the character of the diffusion on moderate or physical times (see next section).

All the numerical experiments considering different values of the parameters exhibit the
same behavior. Therefore, we observe that when a large instability sets up, it could not be
characterized by a standard diffusion coefficient obtained from the variance evolution of
the actions. Indeed, the diffusion coefficient is a local property, as for instance Chirikov’s
estimates (10) show for the Arnold model. For a generic multidimensional Hamiltonian, Ch79
derives an expression for the diffusion coefficient which is clearly local and it is only valid
in a small neighborhood of the initial condition on the guiding resonance [see also Cincotta
et al. (2014)]. Thus, if the diffusion is fast and it spreads far away from the starting point
P after a certain time span (as shown in Fig. 2), then any value of the diffusion coefficient
at P would be determined by the dynamical structure of regions of the phase space very
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Fig. 5 Evolution of σ 2
e for all

the ensembles in Fig. 2, using the
same color palette
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distant from P . Even though the layer of the guiding resonance within the domain |I1| � 2
is highly chaotic and unstable, its motion is far from ergodic. Stickiness among other effects
seriously prevents free diffusion,5 and thus, it would not be right to measure the diffusion at
P following the evolution of the ensemble over long time intervals.

Let us then consider the evolution of the variance in much shorter times, for instance
t � 50Ta � 1000, which are presumably large enough for the ensemble to move all over
across the chaotic layer but sufficiently short in order to locally characterize the diffusion at
ω2. Let us define the statistical moments of the actions and energies as

〈I j (t)〉 = 1

Np

Np∑

k=1

I (k)
j (t), j = 1, 2,

〈h1(t)〉 = 1

Np

Np∑

k=1

h1(I
(k)
1 , θ

(k)
1 , t), 〈h2(t)〉 = 1

Np

Np∑

k=1

h2(I
(k)
2 , t),

〈h2
1(t)〉 = 1

Np

Np∑

k=1

h2
1(I

(k)
1 , θ

(k)
1 , t), 〈h2

2(t)〉 = 1

Np

Np∑

k=1

h2
2(I

(k)
2 , t),

where h1 and h2 are the energies of each degree of freedom of the Hamiltonian H ε
0 (I1, I2, θ1)

given in (3); and we compute

�I 2
j (t) = 〈I 2

j (t)〉 − 〈I j (t)〉2, �h j (t) =
√

〈h2
j (t)〉 − 〈h j (t)〉2, (16)

where �I 2
j is a slight variation of σ 2

e and �h j is the mean deviation of the energies of
the unperturbed motion, which is quadratic in the actions. Then, we follow the evolution of
both magnitudes in (16). Figure 6 shows �I 2

j (t) for an ensemble of 2000 orbits located at

ω2 = 1.55. After an initial transient, both variances increase, �I 2
1 exhibiting fast oscillations

and reaching an asymptotic value three orders of magnitude larger than �I 2
2 . About t ≈ 500

the ensemble fills completely the width of the chaotic layer and thus �I 2
1 cannot increase

any longer. Approximately at the same time, the oscillations in �I 2
2 decay and this quantity

starts to increase almost linearly with a slope D ≈ 4 × 10−7. Though such a value matches

5 See for instance Efthymiopoulos et al. (1999), Miguel et al. (2014) for the standard map in case of large
values of the perturbation parameter.
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Fig. 6 Evolution of �I 2
1 (left) and �I 2

2 (right) for an ensemble of 2000 orbits at ω2 = 1.55

Fig. 7 Evolution of �h1 and
�h2 for the same ensemble of
Fig. 6
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Chirikov’s estimates (10), this does not mean that they are applicable in our experiments, as
it has already been discussed.

The evolution of �h j is given in Fig. 7. Since we are computing energies at ω2 � 1, �h1

and �h2 are of the same order of magnitude. For t � 500, the perturbation μV ε to H ε
0 allows

both degrees of freedom to vary (and exchange) its energy, but when the motion reaches the
borders of the chaotic layer, �h1 is bounded by εws and thus any increase of the total energy
of the system could only be due to changes in h2 or I2. The fact that �h j is quadratic in I j
explains the similarities of Figs. 6 and 7.

For ensembles at different locations, the results are in a broad sense similar: for small
values of ω2, motion times of the order of 100Ta are needed in order to observe a nearly
linear increase of �h2 or �I 2

2 . However, in some experiments, for instance for ω2 = 0.55,
we did not find any similar evolution as those presented in Figs. 6 and 7. This could be
explained by the fact that at ω2 ≈ 0.5 we observe the crossing of the guiding resonance
with the coupling resonance ω2 = ω1 (see Fig. 2) and thus I1, I2 are not the resonant and
fast actions, respectively, the width of the chaotic layer around this value of ω2 is not well
defined, and thus, the arguments on the expected behavior given in the above paragraph do
not apply in the case of a multiple resonance.

From the above discussion, it seems that the normal character of diffusion could be
assumed locally, for a relatively short timescale, the latter being determined by the time
required for the ensemble to reach the steady state in its motion across the layer. But for
larger timescales, nothing could be said about the character of the diffusion. In this direc-
tion, we expect that in a generic near-integrable Hamiltonian system diffusion would be time
dependent and inhomogeneous. Thus, a diffusion coefficient derived from the time evolu-
tion of any action variance over a large time span might not be a meaningful measure for
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large instabilities. In our experiments, a realistic measure of the diffusion over an extended
region of phase space could be provided, for instance, by a mean or macroscopical coefficient
defined as the size or diameter of the region swept by diffusion over the considered time span.
However, in Giordano and Cincotta (2017) an alternative measure of diffusion is provided
by means of an entropy-like estimator.

In conclusion, though it seems that a diffusion coefficient derived from the variance evo-
lution of the actions could not be well defined in case of a macroscopic instability, we suggest
that numerical experiments like those presented in Fig. 2 are actually very useful to investigate
stability/instability domains within chaotic regions of phase space over physical timescales.
Moreover, the evolution of the variance would provide information about the character of the
diffusion as we shall show in the next section.

3 The Gliese-876 planetary system

In this section, we analyze how diffusion works in the case of an observed planetary system.
Possibly one of the most interesting cases is Gliese-876, consisting of four known planets
orbiting a low-mass star (M� = 0.32M� Marcy et al. 1998). The innermost planet, known
as GJ-876 d, is very small, extremely close to the central star, and dynamically detached
from the rest of the system. Consequently, we will restrict our dynamical analysis to the
three other bodies (i.e., GJ-876 b, GJ-876 c, GJ-876 e—hereafter referred to as planets
1, 2 and 3). Two independent studies of radial velocity data, Rivera et al. (2010), Baluev
(2011), have indicated that these planets lie in the vicinity of a Laplace-type multiplanet
resonance such that the mean motion ratios of the consecutive bodies satisfy the relation
n1/n2 � n2/n3 � 2/1.

Though the inherent uncertainties of the detection method imply that the planetary masses
and orbital elements are not determined precisely, it is generally accepted that the dynam-
ics of the system is dominated by the Laplace resonance, whose critical angle librates
with a moderate amplitude (e.g., Baluev 2011; Nelson et al. 2015). Some resonant angles
associated with the individual 2/1 two-planet commensurabilities exhibit librational behav-
ior, indicating that the system is under the effects of several distinct resonant perturbation
terms.

In Batygin et al. (2015), the authors showed that for all the best fits the dynamics is
strongly chaotic with Lyapunov times of only a few decades although the orbits seem stable for
timescales of the order of the system’s lifespan. They also estimated diffusion timescales using
a simple 2D analytical model assuming normal diffusion, finding an analytical estimation
in excellent agreement with numerical simulations. Under the same assumptions, a crude
estimation of a diffusion coefficient in the context of a non-adiabatic regime is given, yielding
a slightly poor estimation compared to the coefficient derived via numerical simulations.
Although the authors claim that this discrepancy is due to the coarseness of the model, a
different interpretation is given in Martí et al. (2016) (from now on MCB16). In fact, therein
a more detailed analysis of the resonant domain associated with the Laplace resonance of
the GJ-876 system is provided. Namely, from dynamical maps drawn in the (a3, e3) plane,
we found the existence of two distinct regions, both within the librational domain: an outer
one, characterized by a strong instability similar to that pointed out in Batygin et al. (2015),
and also a chaotic but more stable inner resonance domain. The outer region seems to be
associated with the overlap of different two-body mean motion resonant terms, while the inner
one looks much more stable. Let us recall that even though MEGNO calculations indicated
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a chaotic dynamics within the whole resonance domain, none of our N-body simulations led
to disruptions of the orbits within the integration timescales.

Also in MCB16 diffusion studies were performed for several initial conditions selected
onto the (a3, e3) plane. Nearly normal diffusion was detected only outside the libration
domain, in highly chaotic, unstable regions of the phase space. Meanwhile, the many other
considered initial conditions, particularly those in the inner resonant domain, led to diffusion
rates (i.e., variances evolution) much smaller than those predicted by analytical models and
then inconsistent with Batygin’s conjectures (Batygin et al. 2015).

The studies presented in MCB16 considered variations in the values of the outer (less
massive) planet’s semimajor axis and eccentricity, while the remaining parameters of the
system (masses included) were taken equal to the best fit values given in Rivera et al. (2010).
Herein instead we will address the issue of the robustness of the diffusion rates estimates
regarding the uncertainty in the remaining parameters of the planetary system. This is an
important issue to be addressed when the times involved in the simulation are relatively short
in comparison with most studies on diffusion. In other words, we inquire how representative
of the global dynamics of Gliese-876 are the results delivered in MCB16.

3.1 Numerical experiments

To address this issue, we performed a new series of numerical experiments regarding the
evolution of ensembles of initial conditions for different values of the parameters of the
system.

In the first place, we considered a set of 8 ensembles, each consisting of 256 initial
conditions taken within a range of 10−3 in e3 and 2 × 10−4 AU in a3, which from now on
will be referred to as our “nominal set.” Such initial conditions were integrated for a total
time span of 2 × 105 years, adopting for mi , a j , e j , i = 1, . . . , 3, j = 1, 2 the values of the
best fit given in Table 1, which displays also the errors in their concomitant determination.6

We performed three different sets of simulations for the 8 ensembles, varying in turn the
parameters e1, e2 andm3 (which from now on will be termed �e1, �e2 and �m3 sets), taking
the values: e1 = 0.25498, m3 = 13.75MEarth ≈ 0.0433MJup and e2 = 0.0311, respectively,
which are close to the extreme values within the error of the corresponding best fit. (We refer
again to Table 1.)

During the evolution of each initial condition in the 8 ensembles, we kept track of each
time the system was close enough to its initial (or reference) plane, in order to account for the
diffusion in the parameters a3 and e3. As in MCB16, we considered that the system crossed
the reference plane (section S) whenever the following three conditions were satisfied during
the integration:

– �3
i=1(|Mi − M0

i | + |�i − � 0
i |) < εang ,

– �2
i=1|ei − e0

i | < εe ,
– �2

i=1|ai − a0
i | < εa ,

with εang , εe and εa predefined values, �i denotes the longitude of the perihelium of the
planets and � 0

1 = � 0
2 = 0,� 0

3 = 180◦. In particular, for our experiments we adopted
εang = 6◦, εa = 0.005AU and εe = 0.005. Let us recall that the values of e0

i and a0
i for

i = 1, 2 correspond to the initial values of the adopted eccentricities and semimajor axes of
the two innermost planets of the system. Since we are dealing with a six degrees of freedom
Hamiltonian, the above-defined conditions confine the phase space motion to the nearly two-
dimensional section S: (a3, e3). As a consequence, the number of intersections of a given

6 This nominal set is identical to those experiments labeled as 2–9 in MCB16.
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Table 1 Masses, semimajor axes and eccentricities for the three planets of GJ-876 involved in the Laplace
resonance

Orbital parameters for the GJ-876 system

Parameter Planet c Planet b Planet e

m (Mjup) 0.7142 ± 0.0039 2.2756 ± 0.0045 0.0459 ± 0.0053

a (AU) 0.129590 ± 0.000024 0.208317 ± 0.000020 0.3343 ± 0.0013

e 0.25591 ± 0.00093 0.0324 ± 0.0013 0.055 ± 0.012

These values were extracted from the best orbital coplanar fit from Rivera et al. (2010), with their respective
uncertainties

trajectory with S strongly depends on the stability of the motion. In case of stable regular
motion, the section S is just a slice of the six-dimensional torus and thus many crossings
would occur. Instead, for a unstable chaotic orbit, since the tori structure does not exist, only
a few intersections with S are expected.

A qualitative comparison between the diffusion of each ensemble of the different sets of
simulations with the nominal ensemble of MCB16 reveals that the only significant differences
are observed in the set of experiments corresponding to the modified value of e2, i.e., the
�e2 set. The results concerning any of the other sets are analogous to those displayed for
the nominal set in MCB16, in particular they confirm the existence of dynamically detached
regions in the (a3, e3) plane.

3.2 Ensembles for the �e2 set

It is worth noting that, as Table 1 shows, e2 is the parameter with the greatest observational
indetermination. The results of the integration of the ensembles in the �e2 set are shown in
Fig. 8. Let us state clear that the contour plot serving as background corresponds actually
to a �e3 dynamical map performed with the nominal set of orbital parameters. The general
overview of the evolution of the 8 ensembles discloses a significant decay in the relative
number of crossings to the number of initial conditions. As already mentioned, though this is
not a rigorous dynamical indicator, it should be expected that less unstable trajectories would
have much more intersections with the reference plane.

The differences between the set of ensembles corresponding to a modified value of e2

and any of the others are more than evident. In the first place, there is a significant drop in
the number of crossings with the reference plane for this set of simulations, which barely
amounts to one order of magnitude lower than that obtained for any of the other three sets.
The main differences are noticed in panels corresponding to ensembles 5, 7 and 9, which
starting inside the inner domain eventually reach the outer region.

Though none of the initial conditions of these highly chaotic ensembles becomes unstable
at least up to 2 × 105 years, since the orbits can reach the outer resonant domain from within
the inner region, such domains are no longer dynamically detached and these trajectories are
most likely to lead to disruption for a sufficiently large time span.

In order to gain some insight on this issue, we performed the numerical integration of
ensembles 7 and 9 from the set corresponding to the modified e2 value, but now taking 900
initial conditions for each ensemble so that the number of crossings with the reference plane
is increased.

The results concerning ensemble 9 are presented in Fig. 9, where we have zoomed out the
map range in order to clearly distinguish every crossing with the reference plane. Therein a
few intersections surrounding the initial condition and inside the stable region are observed.
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Fig. 8 Diffusion of the 8 ensembles of 256 initial conditions defined in different regions of the reference
plane in the �e2 set. The total integration time was 2 × 105 years. Black rectangles show the location of the
initial ensembles, while white dots indicate their diffusion over the representative plane during the 2 × 105

years integration time. Take notice that the contour plot corresponds to a �e3 dynamical map for the nominal
values of the orbital parameters, the color palette provides the value of the �e3 indicator
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Fig. 9 Zoom corresponding to ensemble 9 for which we have integrated 900 initial conditions during 2×105

years. The spread of the white points indicates a rather high diffusion in a3, and a less noticeable diffusion in
e3

Moreover a non-negligible number of crossings were obtained in the outer region where the
system is supposed to become unstable. It is remarkable that all these crossings are widely
spread along the semimajor axis of the third planet, though a much more restricted diffusion
is observed in e3.
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Fig. 10 Evolution of the
crossing orbits for ensemble 9
(Blue dots correspond to the
nominal ensemble, while red
points to that for which a varied
value of e2 was adopted.) The a3
and e3 values corresponding to
the crossings are shown in the top
and bottom panel, respectively

Similar results were obtained for ensemble 7, for which diffusion in the a3 parameter is
also much more effective than the one in e3.

Finally in Fig. 10 we display the values of a3 and e3 corresponding to the crossing points,
in terms of the time at which each crossing occurs, both, for the nominal ensemble 9 (in
blue), and for the ensemble of 900 initial conditions corresponding to the �e2 set (in red).
Despite the far lower amount of crossings for the latter ensemble, we can see that diffusion
is much more noticeable in the a3 parameter. For e3 instead, diffusion seems to be as limited
as for the nominal ensemble.

3.3 Diffusion rates

In order to characterize the diffusion in the parameters a3 and e3, we followed their vari-
ance evolution for each particular ensemble. (This procedure is the same as that carried out
in MCB16.) As already discussed herein, any estimation of a diffusion coefficient by just
adjusting a simple Brownian model does not work in general and, further, it fails inside the
resonant region, as already shown in MCB16. Nonetheless, it could well serve to compare
the different situations described in the previous subsection. Since the resonant domain is
dominated by a chaotic dynamics due to the overlap of several resonances (namely two-
body and three-body mean motion resonances), the ensemble variances could hide any slow
secular change of the orbital parameters, in particular when diffusion is confined to a small
region of the resonance. Thus, we decided to use the cumulative variance over the section to
characterize the diffusion evinced in Fig. 8 (see, however, the end of this subsection).

Therefore, in each panel of Fig. 11 we display the cumulative variances over the section
S attained for a3 corresponding to the 8 ensembles for each different set: the nominal, the
�e1, �e2 and �m3 sets. Notice that in every plot we have also depicted the curve corre-
sponding to normal diffusion for the sake of comparison and further analysis. Indeed, curves
with slopes close to that corresponding to the normal case would imply that the orbits are
dominated by an almost fully chaotic, diffusive dynamics, while variances evolving with
slopes smaller than the normal one are representative of a chaotic but much more stable
dynamics.
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Fig. 11 Evolution of the variances in the a3 parameter. Top-left panel shows the evolution for the ensembles
in the nominal set, top-right panel that of the 8 ensembles for the �e1 set, bottom-left panel displays the
evolution for each ensemble of the �e2 set and bottom-right panel that evolution of the ensembles in the �m3
set. In each plot, the curve corresponding to normal diffusion is depicted

Aside from a considerable lack of crossing points, which makes the sample statistically
poor, a substantial different variances’ evolution can be appreciated in the case of the �e2

set from those corresponding to the remaining sets. Indeed, almost every ensemble in the
�e2 set evolves with a slope much closer to the normal one than those ensembles in any
of the other scenarios (except maybe for some particular ensemble in the other sets, such
as ensemble 4). For nearly all the ensembles in the nominal, the �e1 and �m3 sets, the
curves describing the variances are significantly different from those corresponding to free
diffusion.

Figure 12 exhibits similar results as those presented in Fig. 11, but for e3. There we also
observe, as in the case of a3, that the variances’ evolution for the �e2 set is much closer to
the normal behavior than those corresponding to ensembles in any of the other sets.

The results allow the conclusion that the rate in which the variances evolve is, in general,
much smaller than what would be expected for a Brownian motion. Indeed, this is the case not
only for the nominal set, which has been discussed extensively in MCB16, but also for the �e1

and �m3 sets, which should present qualitatively the same diffusion rates. Meanwhile, even
though the �e2 set exhibits variances’ evolution sensibly different from those corresponding
to the other sets of ensembles, their diffusion rates depart appreciably from those associated
with the normal case.

Aside from ensemble 4, let us notice that the variances’ evolution for every ensemble in
a particular set is quite similar. Such a behavior clearly shows that the associated diffusion
rates are, not only lower than the expected one for normal diffusion, but they also appear to be
independent on the initial conditions. As long as the initial location of the ensembles is taken
inside the resonant region, the expected diffusion rates of the different ensembles become
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Fig. 12 Evolution of the variances in the e3 parameter. Top-left panel shows the evolution for each ensemble
of the nominal set, top-right panel shows the evolution for each ensemble of the �e1 set, bottom-left panel
shows the evolution for each ensemble of the �e2 set and bottom-right panel shows the evolution for each
ensemble of the �m3 set. In each of these plots, the curve corresponding to normal diffusion is drawn

comparable. The case of ensemble 4, taken rather close to the border of the inner Laplace
resonant region, exhibits a somewhat higher diffusion (as already discussed in MCB16).

Judging from the results of the Figs. 11 and 12, it appears that the �e2 set of ensembles
present faster diffusion. Although this might not be conclusive, mainly due to the lack of a
sufficiently large sample of crossing points, the resonant structure, which seems to act as a
protection mechanism for the system, appears to be more rapidly altered by the variation of
e2 than by that of the other parameters, namely e1 or m3.

In order to reinforce this conclusion, we computed for the ensemble 9, which appears to be
very sensitive to slight variations in e2, the variance over the ensemble instead of the cumula-
tive variance. Figure 13 shows that the evolution of the ensemble variances corresponding to
a3 and e3 are though subdiffusive, closer to the normal diffusion case, revealing that indeed
this particular ensemble becomes highly unstable under a small change in the eccentricity of
the second planet.

We can thus ensure that a small variation of the initial value of e2 from the orbital best fit
can lead to a significant change in the resonant structure of GJ-876, and may even incur on
a completely unstable domain, which could eventually lead to a disruption of the system.

4 Conclusions

In the present work, we have reviewed the diffusion process in near-integrable Hamiltonian
systems with more than two degrees of freedom. We showed that in a simple model like
the Arnold Hamiltonian (with parameters not too small), diffusion is inhomogeneous and
anisotropic since the system is quite far from the steady state. Therefore, the Brownian

123



On the chaotic diffusion in multidimensional Hamiltonian systems Page 21 of 23 7

Fig. 13 Evolution of the
ensemble variances for the
ensemble 9 corresponding to the
�e2 set. In both plots the curve
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motion approximation is not suitable to modelate the diffusion in our set of experiments.
Further, the estimation of a local diffusion coefficient from the variance evolution of the
ensemble fails, because it significantly departs from a linear trend. Our results show that
large instabilities are not well characterized by a standard diffusion coefficient, since the
latter only provides local information about the dynamics around the initial point. In fact,
a theory dealing with the correlations produced by stickiness that lead to a time dependent,
non-homogeneous and anisotropic diffusion coefficient is still lacking.

Anyway, we showed that diffusion experiments could be very useful to understand the
dynamics on chaotic domains. The application of this kind of studies to the well-known
planetary system GJ-876 allows us to argue that different dynamical scenarios are possible
for the Laplace resonance, in particular when considering allowed values of eccentricities
of the planet c. The system could exhibit a very stable inner resonant domain detached
from a highly unstable outer one when considering the best fit value of this eccentricity, but
after a slight variation of this parameter the inner region would become also unstable and
connected with the outer one. In sum, it seems that new (precise) numerical simulations in
the parameter space are definitively needed to get a clear understanding of the dynamics of
this multiresonant planetary system.
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