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Abstract Using the Weitzenböck representation of a
Riemann-flat 5D spacetime, we study the possible exis-
tence of primordial gravito-magnetic currents from Gravito-
electromagnetic Inflation (GEMI). We found that these cur-
rents decrease exponentially in the Weitzenböck representa-
tion, but they are null in a Levi-Civita representation because
we are dealing with a 5D Riemann-flat spacetime without
structure or torsion.

1 Introduction and motivation

It is well known that magnetic monopoles have been elu-
sive as regards detection, despite the efforts. Such monopoles
arise as a theoretical possibility from the dual formula-
tion of an electrodynamic theory [1]. The fate of primor-
dial monopoles is very closely linked to the history of the
very early universe. Preskill [2] realized that this possible
monopole production could create a crisis for cosmology,
implying far more monopoles than observational limits allow.
Because the expected energy scale of grand unification is
quite high, the geometrical size of a monopole core must be
quite small. Linde [3] and Vilenkin [4] independently pointed
out that such monopoles could expand exponentially in the
context of inflationary cosmology.

However, there is an even more interesting possibility,
which arises from a theory that extends and unifies concep-
tually the electrodynamics with a theory of gravity: gravito-
electrodynamics. This theory was first outlined in 2006
[5,6] in a cosmological context and later studied in greater
detail [7–9], but the dual formalization has not yet been
addressed. In this paper we shall study the dual formal-
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ism from a 5D vacuum and we will try and formalize their
dual streams, which in a gravito-electrodynamic context are
related gravito-magnetic currents. This formalism is inspired
by the Induced Matter Theory (IMT), which is based on the
assumption that ordinary matter and physical fields that we
can observe in our 4D universe can be geometrically induced
from a 5D Ricci-flat metric with a space-like noncompact
extra dimension on which we define a physical vacuum [10–
12]. The Campbell–Magaard theorem [13–17] serves as a
ladder to move between manifolds whose dimensionality dif-
fers by one. This theorem, which is valid in any number of
dimensions, implies that every solution of the 4D Einstein
equations with arbitrary energy–momentum tensor can be
embedded, at least locally, in a solution of the 5D Einstein
field equations in vacuum. Because of this, the stress–energy
may be a 4D manifestation of the embedding geometry. An
extension of the IMT was realized recently using the Weitzen-
böck Induced Matter Theory (WIMT) [18]. This approach
makes possible a geometrical representation of a 5D vacuum
(with a zero curvature in the Weitzenböck representation), on
a nonzero curvature tensor (in the sense of the Levi-Civita
representation).

2 Weitzenböck Induced Matter Theory (WIMT)

We consider the basic elements for the extension of the IMT
to a geometrical description with the Weitzenböck connec-
tions. The connections are constructed from certain 5D viel-
beins related to the transformation defined by

−→e a = eA
a
−→
E A, (1)

where
−→
E A is an element of a base {−→E A} that we shall call

“initial base” (IB). In our case we shall work with a 5D
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Minkowski space. Furthermore−→e a is an element of the “final
base” (FB), which is obtained through the transformation (1).
In general, {−→E A} cannot be coordinated.1

We can write the components of any tensor through the
5D vielbein eA

a and their inverses ēa
A, which comply with

eA
aēb

A = δb
a and with eA

aēa
B = δA

B . In particular for the
metric tensor, we have

gab = eA
aeB

bgAB . (2)

If we use the Weitzenböck connections (W )�c
ab = ēc

N
−→e b(eN

a ),
it can be seen that

(W )∇−→e b
(
−→
E A) = (W )∇−→e b

(ea
A
−→e a)

= ea
A{(W )�c

ab − ec
N
−→e b(e

N
a )}

︸ ︷︷ ︸

−→e c = 0.

[(W )∇−→e b
(
−→
E A)]c = [−→E A]c; b = ēc

A; b.

(3)

It can be seen that the expressions [(W )∇−→e b
(
−→
E A)]c =

[−→E A]c; b represent the c-component of the application of the
derivative operator characterized by the Weitzenböck con-
nections with respect to the b-component of the base of the
FB over the A-component of the vector of the ST. In general,
for any vector field

−→
A = Ac−→e c,2 we have [−→A ]c; b = Ac

; b.

When the field
−→
A is the A-component of the IB,

−→
A =−→

E A, the vector field is given by
−→
E A = ēa

A
−→e a and it is

clear that [−→E A]c = ēc
A. In this sense the connections of

Weitzenböck imply ēc
A; b = 0, and the vielbeins are seen as

coefficients of the development of one base in another base.
The expression (3) is fulfilled if we are working with the
Weitzenböck connections.

1 • Capital Latin letters A, B,C, .., H = 0, 1, 2, 3, 4 run on the 5D
“initial space” (IS).

• Lowercase Latin letters a, b, c, .., h = 0, 1, 2, 3, 4 run on the 5D
“final space” (FS).

• Greek letters α, β, ... = 0, 1, 2, 3 run on the 4D hypersurface
embedded in the FS.

• Indices i, j, k, ... = 1, 2, 3 and I, J, K , ... = 1, 2, 3 run on the 3D
pure space of the FS and IS, respectively.

2 We denote by “;” the covariant derivative

−→
A = Ab−→e b = A0−→e 0 + Ai −→e i ⇒

∇−→e b
(
−→
A ) = ∇−→e b

(A0−→e 0)+ ∇−→e b
(Ai −→e i )

= −→e b(A
0)

−→e 0 + A0 ∇−→e b
(
−→e 0)

︸ ︷︷ ︸

+−→e b(A
i )

−→e i + Ai�c
ib

−→e c

�c
0b

−→e c

= (
−→e b(A

0)+ A0�0
0b + Ai�0

ib)
−→e 0

+(−→e b(A
i )+ A0�i

0b + A j�i
jb)

−→e i .

Therefore [∇−→e b
(
−→
A )]0 = A0

; b. This is not only valid for the superscript

0, but also for the other indices, so that [∇−→e b
(
−→
A )]c = Ac

; b.

Now we consider a 5D spacetime described by the met-
ric gAB in the IS and gab describing the FS. It is obvious
that the latter space is Weitzenböck-flat in the sense that the
Riemann tensor constructed through this kind of connection
is null: (W )Ra

bcd = 0. However, it cannot be Riemann-flat
with respect to the Levi-Civita connections: (lc)Ra

bcd �= 0.
The Riemann tensor written with the Weitzenböck represen-
tation for the spacetime characterized by the metric gab is
given by

(W )Ra
bcd = −→e b(

(W )�a
dc)− −→e c(

(W )�a
db)

+ (W )�n
dc
(W )�a

nb −(W ) �n
db
(W )�a

nc − Cn
cb
(W )�a

dn = 0,

(4)

where (W )�a
bc are the Weitzenböck connections and Ca

bc
are the coefficients of the structure of the FB, which can
be expressed through Ca

bc = ēa
N
−→ec (eN

b ) − ēa
N
−→eb (eN

c ) =
(W )�a

bc − (W )�a
cb, when the absence of structure of the IB

makes the Weitzenböck torsion null. Both representations are
related by the expression

(W )�a
bc = (lc)�a

bc − (W )K a
bc, (5)

where the Weitzenböck contortion (W )K a
bc is related to the

Weitzenböck torsion (W )T a
bc,

(W )K a
bc = gma

2
{gbm;c + gmc;b − gbc;m}

+gma

2
{(W )T n

cm gbn + (W )T n
bm gnc − (W )T n

cbgnm}. (6)

Here, we have considered the nonzero non-metricity gab; c =
(W )Qabc. When gab; c = 0, the tensor (W )K a

bc reduces to the
well-known contortion tensor in the Weitzenböck representa-
tion (W )K a

bc = gma

2 {(W )T n
cm gbn + (W )T n

bm gnc− (W )T n
cbgnm}.3

On the other hand, if the Weitzenböck torsion becomes
zero (this holds when the IB has no structure), we have
(W )K a

bc = gma

2 {gbm;c + gmc;b − gbc;m}.
By contracting the null-tensor (W )Ra

bcd we obtain the fol-
lowing tensors: (W )Sbc = (W )Ra

bca (which is antisymmetric)
and (W )Rcd = (W )Ra

acd (which is symmetric), that is4

(W )Sbc = (W )Ra
bca = −→e b(

(W )�a
ac)− −→e c(

(W )�a
ab)

+ (W )�n
ac
(W )�a

nb

−(W )�n
ab
(W )�a

nc − Cn
cb
(W )�a

an = 0,

(7)

(W )Rcd = (W )Ra
a(cd) = −→e a(

(W )�a
(dc))− −→e (c(

(W )�a
d)a)

+ (W )�n
(dc)

(W )�a
na −(W )�n

(d|a
(W )�a

n|c)−Cn
(c|a

(W )�a
|d)n =0.

(8)

3 In this work we shall use this definition with zero nonmetricity.
4 The expressions (W )�n

(d|a (W )�a
n|c) indicate the symmetrization of the

indices d and c, inside the parentheses, but excepting the indices a and
n inside the vertical bars “|′”.
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From (4), (5), (7), and (8) we obtain the expressions for the
corresponding curvature tensors with the Weitzenböck repre-
sentation by means of those of the Levi-Civita representation
(and vice versa). Hence, we have

(W )Ra
bcd = (lc)Ra

bcd − −→e b(
(W )K a

dc)+ −→e c(
(W )K a

db)

− (W )K n
dc
(W )K a

nb − (lc)�n
dc
(W )K a

nb − (W )K n
dc
(lc)�a

nb

+ (W )K n
db
(W )K a

nc + (lc)�n
db
(W )K a

nc + (W )K n
db
(lc)�a

nc

+ Cn
cb
(W )K a

dn . (9)

Using (7) and (8) in the last expression we found the
analogous equations for (W )Sbc and (W )Rcd , or for (lc)Sbc

and (lc)Rcd . Usually it is simple to determinate the lat-
ter, because they comply with the transformation (lc)Sbc =
eB

b eC
c
(lc)SBC = 0 and (lc)Rcd = eD

d eC
c
(lc)RC D , where, if

the IB has no structure, the tensors with capital indices are
calculated in a coordinate base with the Levi-Civita connec-
tions.

Now we shall consider the Einstein equations with the
Weitzenböck representation. We shall try to obtain the effec-
tive 4D equations after making a constant foliation from a
5D Weitzenböck vacuum. Taking (8), we obtain

5D
︷ ︸︸ ︷

(W )Rζ δ

∣

∣

∣

∣

∣

∣

∣

l=l0

=
5D

︷ ︸︸ ︷−→e α(
(W )�α(ζδ))− −→e (ζ (

(W )�αδ)α)+(W ) �ν(ζδ)
(W )�ανα −(W ) �ε(δ|α

(W )�αν|ζ ) − Cν
(ζ |α

(W )�α|δ)ν

∣

∣

∣

∣

∣

∣

∣

l = l0

+[(−→e 4(
(W )�4

(ζ δ))− −→e (ζ (
(W )�4

δ)4))

+ ((W )�4
(ζ δ)

(W )�α4α + (W )�ν(ζδ)
(W )�4

ν4
(W )�4

(ζ δ)
(W )�4

44

− (W )�4
(δ|α

(W )�α4|ζ ) − (W )�ν(δ|4
(W )�4

ν|ζ )
(W )�4

(δ|4
(W )�4

4|ζ ))

− (C4
(ζ |α

(W )�α|δ)4 + C4
(ζ |4

(W )�4
|δ)ν + C4

(ζ |4
(W )�4

|δ)4)]|l = l0 = 0. (10)

In this work we shall deal with canonical metrics [19–21].
An interesting example is [22]

dS2 =
(

l

l0

)2

hαβ(y
γ ) dyαdyβ − dl2, (11)

where l is related to the noncompact extra dimension and l0
is a constant. After making the constant foliation, we obtain

5D
︷ ︸︸ ︷

(W )�εβα |l=l0 =
4D

︷ ︸︸ ︷

(W )�εβα , where

4D
︷ ︸︸ ︷

(W )�εβα is a Weitzenböck con-
nection defined on the embedded 4D hypersurface obtained
through the foliation: l = l0. It makes it possible to obtain
the effective 4D Ricci–Weitzenböck tensor,

4D
︷ ︸︸ ︷

(W )Rζ δ = −[(−→e 4(
(W )�4

(ζ δ))− −→e (ζ (
(W )�4

δ)4))

+((W )�4
(ζ δ)

(W )�α4α + (W )�ν(ζδ)
(W )�4

ν4 + (W )�4
(ζ δ)

(W )�4
44

− (W )�4
(δ|α

(W )�α4|ζ ) − (W )�ν(δ|4
(W )�4

ν|ζ ) − (W )�4
(δ|4

(W )�4
4|ζ ))

−(C4
(ζ |α

(W )�α|δ)4 + C4
(ζ |4

(W )�4
|δ)ν + C4

(ζ |4
(W )�4

|δ)4)]|l = l0 ,

(12)

which is symmetric with respect to the indices ζ, δ. The anti-

symmetric tensor is obtained as

5D
︷ ︸︸ ︷

(W )Sβζ |l = l0=
5D

︷ ︸︸ ︷

(W )Ra
βζa |l = l0

= 0, so that we obtain

4D
︷ ︸︸ ︷

(W )Sβζ = −[(−→e β(
(W )�4

4ζ )− −→e ζ (
(W )�4

4β))

+ ((W )�4
αζ

(W )�α4β + (W )�ν4ζ
(W )�4

νβ

− (W )�4
αβ

(W )�α4ζ − (W )�ν4β
(W )�4

νζ )

− (C4
ζβ

(W )�αα4+Cν
ζβ

(W )�4
4ν+C4

ζβ
(W )�4

44)]|l = l0 .

(13)

The Ricci–Weitzenböck scalar curvature can be obtained
from a 5D vacuum,

5D
︷ ︸︸ ︷

(W )R =
5D

︷ ︸︸ ︷

gab (W )Rab =
5D

︷ ︸︸ ︷

gαβ (W )Rαβ +
5D

︷ ︸︸ ︷

g55 (W )R55 = 0. (14)

Hence, from (14) we obtain

4D
︷ ︸︸ ︷

(W )R =
5D

︷ ︸︸ ︷

gβγ (W )Rβγ

∣

∣

∣

∣

∣

∣

∣

l=l0

=
4D

︷ ︸︸ ︷

hβγ (W )Rβγ , (15)

which means that the scalar Ricci–Weitzenböck curvature
has the source

4D
︷ ︸︸ ︷

(W )R = −
5D

︷ ︸︸ ︷

g44 (W )R44

∣

∣

∣

∣

∣

∣

∣

l=l0

, (16)

and finally the induced Einstein–Cartan–Weitzenböck equa-
tions are

4D
︷ ︸︸ ︷

(W )Gβγ =
4D

︷ ︸︸ ︷

(W )Rβγ −1

2

4D
︷ ︸︸ ︷

hβγ
(W )R = −8πG

4D
︷ ︸︸ ︷

T̄(βγ ), (17)
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4D
︷ ︸︸ ︷

(W )Sβγ = −8πG

4D
︷ ︸︸ ︷

T̄[βγ ], (18)
(W )Ra5 = 0, (19)
(W )Sa5 = 0, (20)

where we have taken into account in (18) that gβγ (W )Sβγ =
0. Furthermore, the symmetric and antisymmetric parts of
the energy-momentum tensor in (17) and (18) are given by

4D
︷ ︸︸ ︷

T̄(βγ ) = 1
2 (

4D
︷︸︸︷

T̄βγ +
4D

︷︸︸︷

T̄γβ ) and

4D
︷ ︸︸ ︷

T̄[βγ ] = 1
2 (

4D
︷︸︸︷

T̄βγ −
4D

︷︸︸︷

T̄γβ ). Equa-
tion (17) describe the dynamics of the gravitational field
using the Weitzenböck representation on the effective 4D
hypersurface.

2.1 Effective 4D dynamics with the Levi-Civita
representation

Now we shall intend to write the curvature and the Ricci
tensors (in the Levi-Civita representation) with respect to the
Weitzenböck connections and contortions. The Ricci tensor
in the Levi-Civita representation is related to the Ricci tensor
in the Weitzenböck representation plus additional terms that
depend on contortions and structure,

4D
︷ ︸︸ ︷

(lc)Rζ δ = −→e α(
(lc)�α(ζδ))− −→e (ζ (

(lc)�αδ)α)

+(lc)�ν(ζδ)
(lc)�ανα −(lc) �ε(δ|α

(lc)�αν|ζ ) − Cν
(ζ |α

(lc)�α|δ)ν |l=l0

= (W )Rζ δ + −→e α(K
α
(ζδ))− −→e (ζ (K

α
δ)α)

+K ν
(ζ δ)K

α
να + (W )�ν(ζδ)K

α
να + K ν

(ζ δ)
(W )�ανα

−K ν
(δ|αK α

ν|ζ ) − (W )�ν(δ|αK α
ν|ζ )

−K ν
(δ|α

(W )�αν|ζ ) − Cν
(ζ |αK α

|δ)ν . (21)

The scalar curvature is

4D
︷︸︸︷

(lc)R = −
5D

︷ ︸︸ ︷

g44 (lc)R44

∣

∣

∣

∣

∣

∣

∣

l=l0

. (22)

Hence, the Einstein–Cartan equations are given by

4D
︷ ︸︸ ︷

(lc)Gβγ =
4D

︷ ︸︸ ︷

(lc)Rβγ −1

2

4D
︷ ︸︸ ︷

hβγ
(lc)R = −8πG

4D
︷ ︸︸ ︷

T(βγ ), (23)

4D
︷︸︸︷

Sβγ = −8πG

4D
︷ ︸︸ ︷

T[βγ ] = 0, (24)

joined with (W )Ra5 = 0 and (W )Sa5 = 0, which are addi-

tional conditions. Here,

4D
︷ ︸︸ ︷

T(βγ ) and

4D
︷ ︸︸ ︷

T[βγ ] are the symmetric

and antisymmetric energy-momentum tensors induced on the
4D hypersurface written in the Levi-Civita representation.5

3 Dual action and equations of motion

We shall consider the conditions by which we can induce
curvature and currents by means of WIMT [18], on a 5D
spacetime represented by cartesian coordinates. The 5D ten-
sor metric can be written as

[η]AB = diag[1,−1,−1,−1,−1]. (26)

We can construct an FB with interesting cosmological prop-
erties if we take the appropriate vielbein. The action for the
gravito-electromagnetic fields in a 5D vacuum can be written
in the form

S =
∫

d5x
√|η|

[

R

16π G
− 1

4
FAB F AB − λ

2
(AB

; B)
2
]

. (27)

In order to maybe render the dual currents interesting, rewrite
the last action in terms of the dual tensors FABC

S1 =
∫

d5x
√|η|

[

R

16π G
− k

4
FABCF ABC − λ

2
(AB

; B)
2
]

,

S =
∫

d5x
√|η|

[

R

16π G
− 1

4
FAB F AB − λ

2
(AB

; B)
2
]

.

(28)

It is evident that 1
3!FABCF ABC = 1

3! 4εABC DEε
ABC N M F DE

FN M = F N M FN M , where we have used εABC DEε
ABC N M =

3! 2! (δN
D δ

M
E − δN

E δ
M
D ), so that when k = 1

3! , we see that both
actions describe the same physical system:

S1 = S.
In our case, when we use the Lorentz gauge and we deal
with a 5D vacuum with R = 0, we have S1 ∼ S and both
actions give us the same equations of motion. In order to
describe the dual sources of these equations we shall deal with
the action S1. The dynamics of the gravito-electromagnetic
fields obtained taking the extreme with the action (27)) is

AK
; B

;B − (1−λ)AB
; B

; K = 0. On a 5D vacuum (R = 0), and

when we take λ = 1 and the Lorentz gauge AB
; B = 0, they

reduce to

�AK = ηBC AK
; BC = 0, (29)

5 Equations (24) take into account the Cartan equations which describe
spinor contributions:

4D
︷︸︸︷

Sβγ = −8πG

4D
︷ ︸︸ ︷

T[βγ ]
︸ ︷︷ ︸

spin

, (25)

where S = σμν Sμν , σμν = 1
2 [γ μ, γ ν ] and γ μ are the Dirac matrices.
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which are the Klein–Gordon equations for massless fields.
The gravito-magnetic currents come from the solutions for
the fields (29). The last equations are compatible with a cur-
rent which has its source in

F N B
; B = −ηAN [AM RB

AB M + AB
; M T M

B A], (30)

where we have used (29) and the Lorentz gauge in absence
of nonmetricity. We have used the fact that

F N B
; B = ηANηB M FAM;B = g AN AB

; AB − ηB M AN
;M B

︸ ︷︷ ︸

,

0

where clearly we have imposed the absence of currents on
the 5D vacuum with respect to the Levi-Civita representation.
Hence

(lc)F N B
; B = 0 ⇒ (31)

(W )F N B
;B = −((W )F M B + ηRM AP K B

P R − ηRB AP K M
P R)K

N
M B

−((W )F N M + ηRN AP K M
P R − ηRM AP K N

P R)K
B
M B ,

(32)

where (lc)FAB = −→
E A(AB) − −→

E B(AA) + AN (C N
AB) y

(W )FAB = −→
E A(AB)− −→

E B(AA)+ AN (
(W )T N

B A + C N
AB).

6

Notice that in (31) we use the covariant derivative with
respect to the Christoffel symbols, but in (32) we use the
derivative covariant with respect to the Weitzenböck connec-
tions. Hence, we can adopt both representations in a comple-
mentary mode to describe the 5D vacuum.

The Weitzenböck currents are related by one expression
analogous to (31), but it is more complicated:

(lc)(m) JAB − (W )(m) JAB =
√|η|

2
εABC DE

1

4
M [C DE], (33)

where M [C DE] = ηC FηDGηE H M[FG H ] and we define
M[FG H ] as

M[FG H ] = (AM
(W )T M[FG) ; H ] − 2 (W )T N

[F H |
(W )T M

N |G] AM

−2 (W )T N
[G H

(W )T M
F]N AM

−(W )T N
[F H |

−→
E N (A|G])+ (W )T N

[G H |
−→
E N (A|F])

+ (W )T N
[F H

−→
E G](AN )− (W )T N

[G H
−→
E F](AN ).

(34)

Once we required the gauge condition (lc)AN
; N = 0, it is

preserved in the Weitzenböck representation: (W )An
; n = 0.7

6 Using the expression (lc)�A
BC =(W ) �A

BC + K A
BC it is possible to

obtain the following expression for both Faraday tensors: (lc)F N B =
(W )F N B + ηRN AP K B

P R − ηRB AP K N
P R . If we make the derivative of

this expression and we use (31), we can check the validity of (32).
7 One can show that (lc)eN

n ;m = (W )eN
n ;m + eN

k K k
nm , but since

the Weitzenböck connections comply with (W )eN
n ;m = 0, it is

possible to express the covariant derivative of the vielbein in the

4 Gravito-magnetic currents from WIMT

We intend to explore the flat-spacetime in order to learn under
what conditions we can introduce gravito-magnetic currents
using WIMT on 5D. We shall consider an orthogonal base
without structure and trivial connections.

4.1 Quantization of the fields

Starting from the vacuum action (27) with (lc)R = 0, one
obtains the dynamics of the gravito-electromagnetic fields

�AK = ηBC AK
; BC = ηBC AK

, BC

= AK
, t t − AK

, xx − AK
, yy − AK

, zz − AK
, ll = 0, (35)

where
−→
A = AK −→

E K . The differential equations (35) are
separable, so that we can propose a solution of the kind

AK = T K (t)X K (x)Y K (y)Z K (z)L K (l). (36)

The vector field can be written as a Fourier expansion,

−→
A =

∫

K N
x

∫

K N
y

∫

K N
z

d3(K N ) e
−K N

l
l−l0

l0

×[A(KN , K N
l , N )e

i(K N
x

x
x0

+K N
y

y
y0

+K N
z

z
z0

−K N
t

t
t0
)

+B(KN , K N
l , N )e

−i(K N
x

x
x0

+K N
y

y
y0

+K N
z

z
z0

−K N
t

t
t0
)]−→E N .

(37)

We have expanded the vector field as a function of the com-
ponents of the tangent base {−→E N }. These fields comply
with �AM = ηBC AM

; BC = 0, where the metric ηBC =
η−→−→
(
−→
E B,

−→
E C ) describe an inner product through the appli-

cation on the elements of the tangent space. It is clear
that the connections are null. The fields can be expanded
with any base with the following requirement for the polar-
ization vectors: ξM (

−→
K N , L)ξM (

−→
K N , L ′) = ηL L ′ , where−→

ξ (
−→
K N ,M ′) = ξM (

−→
K N ,M ′)−→E M . In general the choice

of the polarization vectors is independent of
−→
K N , which is

the wave vector of the N -component for the field related to
the directional propagation of flat waves.

Footnote 7 continued
Levi-Civita representation as a function of the contortion of Weitzen-
böck: (lc)eN

n ;m = eN
k K k

nm . If we use this on the gauge condition and we

take into account that AN = eN
n An , we can prove that (lc)AN

; N = 0 ⇒
(lc)An

; n + K m
mn An = (W )An

; n = 0. Hence, one can show the following
equalities:

• (W )An ;n = (W )AN ;N ,
• ēk

K η
BC (W )AK

; BC = gab (W )Ak
;bc,

• eN
n η

MC (W )FN M; C = gmc (W )Fnm; c,
• (lc)�AK = eK

k
(W )�Ak − eK

k gbc (W )Ak
;n K n

bc. Furthermore,

gbc K n
bc = gmn (W )T c

cm .

123



3043 Page 6 of 7 Eur. Phys. J. C (2014) 74:3043

The expression
−→
ξ (

−→
K N ,M ′) = ξM (

−→
K N ,M ′)−→E M says

in a general manner that the elements ξM (
−→
K ,M ′) are exactly

the vielbein eM
M ′ that relate the base {−→E M }, with a certain

base {−→E ′
M ′ := −→

ξ (
−→
K N ,M ′)}, with the same normaliza-

tion. The vector
−→
K N := K N

t
−→
E t + K N

x
−→
E x + K N

y
−→
E y +

K N
z

−→
E z + i K N

l
−→
E l , is a field in a 5D vacuum and complies

with |K N |2 = 0, which describes the propagation of a light
cone. It is usual to propose the radiation gauge A0 = 0 and
AN

; N = 0. After taking into account the isotropy of the space

it is obvious that (for N ,M = 1, 2, 3) K N
i = K M

j , where
i, j = 1, 2, 3.

The field vector A(KN , K N
l , N ) depends on the compo-

nent of the field which we are describing (which we rotulate
with the superscript N ), with the spatial part of the wave
vector KN and with the extra dimensional component of
K N : K N

l . An important point is the second quantization of
the field, from which is guaranteed the interpretation of this
field as an hermitian operator capable to act on the Fock
space through certain operators of creation and annihila-
tion. Hence, we shall promote the elements A(KN , K N

l , N )
and B(KN , K N

l , N ) to operators which comply with the

condition
−→
A = −→

A †. Hence, we obtain the relationship
B†(KN , K N

l , N )
−→
E ∗

N = A(KN , K N
l , N )

−→
E N ,8 where in our

case
−→
E ∗

N is merely symbolic because the bases are given by
real vector fields. Hence

−→
A =

∫

K N
x

∫

K N
y

∫

K N
z

d3(K N ) e
−K N

l
l−l0

l0

×[A(K N )e
i(K N

x
x

x0
+K N

y
y

y0
+K N

z
z

z0
−K N

t
t
t0
)−→

E N

+A†(K N )e
−i(K N

x
x

x0
+K N

y
y

y0
+K N

z
z

z0
−K N

t
t
t0
)−→

E ∗
N ]. (38)

Using (38) we obtain the canonical momentum �N :=
δL

δ(AN , 0)
, and we have

8 The adjoint operator is given by

−→
A † =

∫

K N
x

∫

K N
y

∫

K N
z

d3(K N ) e
−K N

l
l−l0

l0

× [A†(KN , K N
l , N )e

−i(K N
x

x
x0

+K N
y

y
y0

+K N
z

z
z0

−K N
t

t
t0
)

+B†(KN , K N
l , N )e

i(K N
x

x
x0

+K N
y

y
y0

+K N
z

z
z0

−K N
t

t
t0
)]−→E ∗

N ,

so that we see from (37) that
−→
A = −→

A †; it is fulfilled when

1. A(KN , K N
l , N )

−→
E N = B†(KN , K N

l , N )
−→
E ∗

N ,

2. B(KN , K N
l , N )

−→
E N = A†(KN , K N

l , N )
−→
E ∗

N .

We see that both conditions are equivalent. With respect to the interpreta-

tion of
−→
E ∗

N , we claim that it is
−→
E ∗

N = (en
N
−→e n)

∗ = en ∗
N

−→e n = en
N
−→e n .

�N = ηN (N )A(N ), 0 = AN
, 0

= i
∫

K N
x

∫

K N
y

∫

K N
z

d3(K N ) e
−K N

l
l−l0

l0

×
[−K N

t

t0
A(KN , K N

l , N )e
i(K N

x
x

x0
+K N

y
y

y0
+K N

z
z

z0
−K N

t
t

t0
)−→

E N

+ K N
t

t0
A†(KN , K N

l , N )e
−i(K N

x
x

x0
+K N

y
y

y0
+K N

z
z

z0
−K N

t
t

t0
)−→

E ∗
N

]

,

(39)

which complies with the algebra
[AN (t, x, l),�M (t, x′, l)]
= i a b (2π)3 ηN M δ(x − x′) e

−Kl
l−l0

l0 ,

[AN (t, x, l), AM (t, x′, l)] = [�N (t, x, l),�M (t, x′, l)]
= 0,
[A(KN , K N

l , N ), A†(K′M , K ′M
l ,M)] = a δN M δ(KN

− K′M ) δ(K N
l − K ′M

l ),

[A(KN , K N
l , N ), A(KM , K M

l ,M)]
= [A†(KN , K N

l , N ), A†(KM , K M
l ,M)] = 0,

TK N (t) T ∗
K N (t), t − T ∗

K N (t) TK N (t), t = i b.

We have used the notation x = (x, y, z), AN (t, x, l) and
�M (t, x′, l) for the components of the corresponding fields.
Furthermore, A(KN , K N

l , N ) is an annihilation operator and
A†(KN , K N

l , N ) is a creation operator. For the constant val-

ues b = 2 K N
t

t0
and a = t0

2 (2π)3 K N
t

, we obtain

[AN (t, x, l),�M (t, x′, l)] = i ηN M δ(x − x′) e
−K N

l
l−l0

l0 ,

[A(KN , K N
l , N ), A†(K′M , K ′M

l ,M)]
= δN M t0

2 (2π)3 K N
t
δ(KN − K′M )δ(K N

l − K ′M
l ).(40)

These expressions extend to the 5D Minkowski spacetime the
canonical quantization obtained in a 4D spacetime.9 There-
fore, we can transform the commutators in the Fock space as
second rank tensors, in the following manner:

[An(t, x, l),�m(t, x′, l)] = i gnm δ(x − x′) e
−K n

l
l−l0

l0 ,

[A(Kn, K n
l , n), A†(K′m, K ′m

l ,m)]
= gnm t0

2 (2π)3 K n
t
δ(Kn − K′m)δ(K n

l − K ′m
l ),

where �m = ēm
M�

M and K m = ēm
M K M . These expressions

provide us with the algebra in an arbitrary metric obtained
from a 5D Minkowski spacetime, which is free of structure.
In order to illustrate the formalism, in the following section
we shall apply it to a de Sitter expansion, which describes
the early inflationary universe.

9 In order to avoid any problems of the commutators, we shall use the
quantization of Gupta [23] and Bleuler [24]: 〈AN

; N 〉 = 0.
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5 An example: monopoles from a 5D Minkowski
spacetime with contortion

We shall study an example in which we take as an ini-
tial spacetime a 5D Minkowski described with the carte-
sian coordinates φ(p) = (t, x, y, z, l)p , in which the ten-
sor metric is given by the orthonormal matrix ηAB (26).
We choose a IB which is not coordinated, and the struc-
ture coefficients are given by C I

I 0 = −e−N

l2 , C I
I 4 =

−e−N

l2 and C0
04 = −1

l2 . The vielbein transforms as ēn
N =

diag(1/ l, e−N/ l, e−N/ l, e−N/ l, 1), so that we obtain the
metric

[g]ab =

⎛

⎜

⎜

⎜

⎜

⎝

ψ2(l) 0 0 0 0
0 ψ2(l) e2N 0 0 0
0 0 ψ2(l) e2N 0 0
0 0 0 ψ2(l) e2N 0
0 0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎠

,

(41)

with ψ2(l) = l2/ l2
0 . The final spacetime is described by a

coordinate base. This implies that the Weitzenböck torsion
in the final spacetime will be nonzero. This torsion will be
a possible geometrical source for the emergence of gravito-
magnetic monopoles, once there has been made a constant
foliation on the extra noncompact coordinate. The current
components in this case are given by

(lc)(m) Ji = C j
0i, k A j (1 − δk

i ) = 0, (42)
(W )(m) Ji = εi jk∂ j Ak e−Ht , (43)

and we have (W )(m) J0 =(lc)(m) J0 = 0. Notice that the spatial
components of the magnetic currents decay with time in the
Weitzenböck representation. The study of the dynamics for
the field fluctuations during de Sitter inflation in the frame-
work of Gravito-electromagnetic Inflation (GEMI) was stud-
ied with detail in [25,26], and this goes beyond the scope of
this paper. However, as has been demonstrated in (43), from
the point of view of the Levi-Civita representation there are
no currents related to gravito-magnetic sources.

6 Conclusions

We have extended the WIMT formalism to GEMI with the
aim to show that gravito-magnetic currents may be obtained,
at least in a Weitzenböck representation. The WIMT formal-
ism was introduced with the idea to generalize the foliation
method in the Induced Matter Theory of gravity, in which
foliations which are not static as a result are very difficult to
deal with. With the WIMT formalism, one can make static
foliations from a 5D curved spacetime on which one defines
a 5D vacuum from the point of view of a Weitzenböck rep-
resentation. Once done the foliation is possible to pass to the

representation of Levi-Civita. It opens a huge versatility to
make static foliations to obtain arbitrary 4D hypersurfaces
from 5D curved manifolds, which could be very important
for quantum field theories, gravitation, cosmology, etc.

In particular, we have centered our study of the WIMT
in the dual formalization of the GEMI applied to the cos-
mology of the early inflationary universe. We have obtained
nonzero gravito-magnetic currents with the representation
of Weitzenböck. The currents decrease exponentially with
time with the expansion of the universe, so that at the end
of inflation they become negligible. This should agree with
present observations. However, these currents are null in a
Levi-Civita representation because in this geometrical rep-
resentation the coordinate base has no structure or torsion.
In a future work we shall study an example where gravito-
magnetic sources are nonzero in any representation [27].
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