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Abstract. Let Hh be the h-dimensional Hausdorff measure on Rd. Besi-

covitch showed that if a set E is null for Hh, then it is null for Hg , for
some dimension g smaller than h. We prove that this is not true for pack-

ing measures. Moreover, we consider the corresponding questions for sets of

non-σ-finite packing measure, and for pre-packing measure instead of packing
measure.

1. Introduction and statements of results

1.1. Introduction. We begin by recalling some definitions. A continuous nonde-
creasing function h : (0,∞) → (0,∞) that verifies h(t) → 0 as t → 0 is called a
dimension function, and the set of these functions is denoted by D.

We will be concerned with packing measures. Recall that, given δ > 0, a δ-
packing of a subset E ⊂ Rd is a collection of disjoint open balls centered at E with
diameter less than δ. Given h ∈ D, the h-dimensional packing premeasure Ph0 is
given by

Phδ (E) = sup

(X
i

h(|Bi|) : {Bi} is a δ-packing of E

)
,

Ph0 (E) = inf
δ>0

Phδ (E) = lim
δ↓0

Phδ (E),

where |B| denotes the diameter of the ball B. The function E → Ph0 (E) is monotone
and finitely subadditive, but fails to be countably subadditive, even on nice sets.
The h-dimensional packing measure of E (or h-packing measure of E) is defined
by

Ph(E) = inf

( ∞X
j=1

Ph0 (Ej) : E ⊂
∞[
j=1

Ej

)
.

It is well known that Ph is an outer measure on Rd (i.e. a monotone, countably sub-
additive set function which vanishes on the empty set), and is a measure (countably
additive on disjoint collections) on the class of analytic (or Suslin) sets.

For a given dimension function h, the packing measure Ph is in some sense dual to
the Hausdorff measure Hh (for whose definition the reader is referred to [4, Section
2.5]; in this note we do not use Hausdorff measures other than for motivation).
Just as Hausdorff measures, packing measures are used to provide fine information
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on the size of fractal sets. For many random sets, especially related to Brownian
motion, packing measures (rather than Hausdorff measures) provide the “right”
concept to measure the size of the set, see e.g. [3] and [8] for two deep recent
examples. Packing measures have also been recently applied to the study of Cantor
sets defined in terms of their gaps [2] and their rearrangements [6].

Given g, h ∈ D, we say that g is a smaller dimension than h, denoted by g ≺ h,
whenever

lim
t→0

h(t)

g(t)
= 0.

This relation defines a partial order on D. A basic property of packing measures
states that if Ph|E is a σ-finite nontrivial measure space, then Pf (E) = 0 for any
f ∈ D such that h ≺ f , and Pg|E is non-σ-finite for any g ∈ D such that g ≺ h
(here Ph|E is the restriction of the measure Ph to the set E).

It follows from the above that the poset {f ∈ D : Pf (E) = 0} has no maximal
elements, and a natural question is whether it may have minimal elements; likewise,
one may ask whether {f ∈ D : Pf |E is non-σ-finite} has maximal elements. In
the context of Hausdorff measures, Besicovitch proved that the answer is always
negative, at least if the set E is analytic (see also [9, Theorem 42]). More precisely,
we have

Theorem 1 ([1]). Let E ⊂ Rd and h ∈ D.

(a) If Hh(E) = 0 then there exists g ∈ D such that g ≺ h and also Hg(E) = 0.
(b) If E is analytic and Hh|E is non-σ-finite, then there exists f ∈ D such that

h ≺ f and also Hf |E is non-σ-finite.

In this note we discuss Besicovitch’s Theorem but in the setting of packing
measures.

1.2. Results. Our first result is that the first part of Theorem 1 fails for packing
measures. In fact, let Dd ⊂ D be the set of the ‘at most’ d-dimensional doubling
dimension functions, that is, functions h ∈ D that verifies

(1)
td

h(t)
< c0, ∀t > 0, for some c0 = c0(h)

and

(2) h(2t) ≤ c1h(t), ∀t > 0, for some c1 = c1(h).

For example, Dd contains the power functions ts for 0 < s ≤ d as well as tsϕ(t)
when ϕ(t) is slowly varying.

Theorem 2. Given h ∈ Dd, there is a Borel (in fact, Gδ) set E ⊂ Rd such that
Ph(E) = 0 but Pg|E is non-σ-finite for any g ∈ D such that

(3) lim inf
t→0

h(t)

g(t)
= 0.

In particular, Pg|E is not σ-finite if g ≺ h.

Now we turn to the second part of Besicovitch’s Theorem. Recall that an analytic
set is the continuous image of NN, where NN is endowed with the product topology.

Theorem 3. Let A ⊂ Rd be an analytic set of non-σ-finite Ph measure. Then
there exists g ∈ D such that h ≺ g and A has non-σ-finite Pg measure.
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Finally, for prepacking measures we have the following general result.

Theorem 4. Let A ⊂ Rd and h ∈ D.

(a) If Ph0 (A) = 0, then exists g ∈ D such that g ≺ h and P g0 (A) = 0.
(b) If Ph0 (A) = +∞, then exists g ∈ D such that h ≺ g and P g0 (A) = +∞.

In Section 2 we give the proofs of the results, and in Section 3 we conclude with
remarks and a question.

2. Proofs

2.1. Proof of Theorem 2. In this note, Br(x) always denotes the open ball with
center x and radius r.

We need the following version of the mass distribution principle, which is an
immediate consequence of the density theorem for packing measures (see [10] and
also [7, Theorem 6.11] for the case when h is a power function).

Lemma 5. Let A ⊂ Rd and h ∈ Dd. If there is a finite Borel measure µ on Rd
that verifies

C−1h(r) ≤ µ(Br(x)) ≤ Ch(r), ∀r < 1, ∀x ∈ A,
for some positive and finite constant C, then 0 < Ph(A) < +∞.

Proof of Theorem 2. It is well known that a dense Gδ subset of Rd always has
full packing dimension, even though it may have zero Lebesgue measure and even
zero Hausdorff dimension. Our idea is to replace Rd by an appropriate set K of
positive, finite h-dimensional packing measure, construct such a dense Gδ set of
zero Ph measure, and show that dense Gδ sets (relative to K) have non-σ-finite
measure for any g satisfying (3).

First step. Construction of the Cantor set K. Without loss of generality
we assume that c0 = 1, where c0 is the constant in (1). Let (an)n≥1 be defined by
h(an) = 2−dn. From (1) and (2) we have that 2nan < 1 and 2an+1 < an, whence we
can construct a 2d-corner Cantor set K in the unit cube as follows. Let K0 = [0, 1]d

and define Kn =
S2d

j=1Q
n
j , for n > 0, as the union of the 2dn basic cubes Qnj of

side an contained in Kn−1 that have a common vertex with a cube of Kn−1. Then
K =

T
n≥0Kn.

Let µ be the uniform Cantor measure on K, which is constructed by repeated
subdivision setting

µ(Qnj ) = 2−dn, 1 ≤ j ≤ 2dn, n ≥ 0.

(See for example [4, Chapter 1].) Now fix r < 1 and x ∈ K. Let n be the greatest
integer such that Br(x) contains a basic cube of Kn but none of Kn−1. Then

an ≤ 2r and r <
√
d an−1, whence

Ch(r) ≤ h(an) ≤ c1h(r),

where C > 0 is independent of r. Moreover, Br(x) intersects at most 2d+1 basic
cubes of Kn. Then, by the definition of an, we have

h(an) ≤ µ(Br(x)) ≤ 2d+1h(an),

and 0 < Ph(K) < +∞ by Lemma 5. Since Ph is invariant under isometries of
Rd, it assigns the same mass to all basic cubes of Kn for all n ≥ 0. Invoking also
the Borel regularity of these measures, it follows that µ = (1/Ph(K))Ph|K . In
particular, µ and Ph|K have the same null sets.
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Second step. Construction of the zero measure, dense Gδ set E. For
n ≥ 0, let Vn be the set of all the vertices of basic cubes of Kn. Let

Uk =
[
n≥0

[
v∈Vn

K ∩Ba2n+k
(v) \ {v}.

Each Uk is dense in K and open with respect to the relative topology. We define
E =

T
k≥1 Uk. The Baire category theorem implies that E is a dense subset of K.

Moreover, for each k ≥ 1,

µ(Uk) ≤ 2d+1
X
n≥0

X
v∈Vn

h(a2n+k) =
22d+1

2d − 1
2−dk,

which implies Ph(E) = 0.
Third step. Conclusion of the proof. Now let g ∈ D satisfy (3). Let (rk)

be a sequence decreasing to 0 such that h(rk)/g(rk)→ 0 and let (nk) be such that
ank+1 < rk ≤ ank

.
We first claim that

(4) P g0 (U ∩K) = +∞ for any open set U ⊂ Rd, with U ∩K 6= ∅.
Indeed, it is enough to show that P g0 (Q ∩ K) = +∞ for each basic cube Q but,
since P g0 is invariant under Euclidian isometries, the symmetry of K implies that
P g0 (Q ∩ K) is constant over all basic cubes in Kn for each n whence, by finite
subadditivity of P g0 , it is enough to show that P g0 (K) = +∞. Let δ > 0 and pick
k large enough that rk < δ. For each basic cube, let v(Q) = min{v ∈ Q}, where
the minimum is taken with respect to the lexicographical order (that is, v(Q) is
the down-left vertex of Q). Then {Brk(v(Q)) : Q is a basic cube in Knk−1} is a
δ-packing of K, and it follows that

P gδ (K) ≥ 2d(nk−1)g(rnk
) =

�
2d(nk−1)h(rnk

)
� g(rnk

)

h(rnk
)
.

Since nk is arbitrarily large, this shows that P gδ (K) = +∞ for all δ > 0, establishing
(4).

Now suppose E has σ-finite Pg-measure. Then E =
S
iEi, where Pg(Ei) < +∞

for all i. In particular, each Ei can be written as Ei =
S
Eij , where P g0 (Eij) < +∞

for all i, j. Since the packing pre-measure of a set and its closure are equal, we
also have P g0 (Eij) < +∞ for all i, j. Hence, by the claim (4), each Eij is nowhere
dense. But this would imply that K = (K \E)∪E is the union of two meager sets,
contradicting the Baire category theorem. This contradiction finishes the proof. �

2.2. Proof of Theorem 3. The proof of the theorem uses the ideas of Haase
([5], Theorem 2), where it is shown that an analytic set of non-σ-finite h-packing
measure contains a compact subset of non-σ-finite h-packing measure. We provide
full details for the reader’s convenience.

We endow NN with the metric ρ defined for i = (i1, i2, . . .) and j = (j1, j2, . . .)
in NN by ρ(i, j) = 1/k0, where k0 is the smallest integer k such that ik 6= jk. This
metric induces the product topology on NN. Given (i1, . . . , ik) ∈ Nk, the cylinder
in NN of level k associated to (i1, . . . , ik) is the clopen set Gj1,...,jk = {i ∈ NN : i1 =
j1, . . . , ik = jk}. For each k ≥ 1, note that NN is the countable (disjoint) union of
all the cylinders of level k. Also, each such cylinder has diameter 1/k.

We say that a set E ⊂ Rd has locally non-σ-finite h-packing measure if U ∩ E
has non-σ-finite h-packing measure for each open set U with U ∩ E 6= ∅. We need
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a preliminary lemma. Let ϕ : NN → A be a surjective continuous function, which
exists because A is analytic.

Lemma 6. Given k > 0 and a closed set C ⊂ NN whose image ϕ(C) has non-σ-

finite h-packing measure, then there is a closed subset C̃ ⊂ C such that ϕ(C̃) has

locally non-σ-finite h-packing measure and diam(C̃) ≤ 1/k.

Proof. Note that for some (j1, . . . , jk) ∈ Nk, the image of the closed set D =
C ∩Gj1,...,jk under ϕ has non-σ-finite measure. Also D has diameter at most 1/k.
Let

U =
¦
U : U open, and U ∩ ϕ(D) is nonempty and has σ-finite measure

©
.

By the Lindelöf property, there is a countable subfamily {Un} of U for whichS
n Un =

S
U∈U U . Then F = ϕ(D) \

S
n Un has locally non-σ-finite measure.

Hence, the set C̃ := ϕ−1(F ) ∩ D = D \ ϕ−1(
S
n Un) verifies the statement of the

lemma. �

Proof of Theorem 3. We begin with some notation. For i = (i1, i2, . . .) ∈ NN let
in = (i1, . . . , in). Also inj denotes the (n+ 1)-tuple (i1, . . . , in, j).

Let C1 ⊂ NN be the set obtained applying Lemma 6 to C = NN and k = 1. Set
a2 = 1 and let {Br1j (x1j)}j∈I be a finite a2-packing of ϕ(C1) such thatX

j∈I
h(2r1j) > 42.

Since I is finite, there exists 0 < a3 < minj∈I 2r1j such that if yj ∈ Ba3(x1j) for
each j ∈ I, then the balls Br1j (yj) are disjoint. Next, for j ∈ I, we define C1j ⊂ C1

applying Lemma 6 to ϕ−1(Ba3(x1j)) ∩ C1 and k = 2.
Continuing inductively in this fashion, we construct the following items:

(1) A sequence (an) strictly decreasing to 0.
(2) A subset T ⊂ NN such that #I(i, n) < +∞ for each i ∈ T and n > 0,

where

I(i, n) = {j ∈ N : inj = k for some k ∈ T }.
(3) A family of closed subsets Cin ∈ NN, indexed by taking i ∈ T and n > 0,

that verifies
(a) Cin+1

⊂ Cin ;
(b) diam Cin ≤ 1/n;
(c) ϕ(Cin) has locally non-σ-finite h-packing measure.

(4) For each i ∈ T and n > 0, a finite an+1-packing
¦
Brinj

(xinj)
©
j∈I(i,n)

for

the set ϕ(Cin) such that
(a) X

j∈I(i,n)

h(2rinj) > 4n+1;

(b) an+2 < 2rinj < an+1 for all j ∈ I(i, n);

(c) given j ∈ I(i, n) and yj ∈ Ban+2(xinj), the open balls Brinj
(yj) are

pairwise disjoint;
(d) ϕ(Cin) ⊂ Ban+1

(xin).
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The set K =
T
n

S
i∈T Cin is compact because it is closed and totally bounded

(by (2) and (3)). Hence E = ϕ(K) is a compact subset of A.
We define

g(t) =

¨
h(t)/2

n− t−an
an−1−an , t ∈ (an, an−1], n > 1

h(t), t > a1
.

It is easy to check that g is continuous and h ≺ g.
Let U be an open set such that U ∩ E 6= ∅. Then there exist i ∈ T and

n0 > 0 such that Ban+1
(xin) ⊂ U for all n ≥ n0, whence E ∩ Ban+1

(xin) 6= ∅
using that K ∩ Cin 6= ∅ and (4d). In particular, for each j ∈ I(i, n) there exists
yj ∈ E ∩Ban+2

(xinj). By construction, the balls Brinj
(yj) are a packing of E ∩ U ,

and by (4a) and (4b) we have

P gan+1
(U ∩ E) ≥

X
j∈I(i,n)

g(2rinj) > 2n,

whence P g0 (U ∩ E) = +∞. By a Baire category argument (see [5, Lemma 4]), we
conclude that the compact set E has non-σ-finite g-packing measure, which implies
that the same holds for A. �

2.3. Proof of Theorem 4.

Proof of Theorem 4(a). It is enough to find f ∈ D such that f ≺ h and P f0 (A) <
+∞, because in this situation any g ∈ D such that f ≺ g ≺ h satisfies the conclusion
of the theorem.

Let (δn)n≥0 ↘ 0 be a decreasing sequence of positive reals such that

(1) Phδn(A) ≤ 1/22n, and
(2) 2h(δn+1) < h(δn).

If 0 < δ < δ0 and B is a δ-packing of A, set

Bn = {B ∈ B : δn+1 ≤ |B| < δn}.
Then, by (1) X

n≥0

X
B∈Bn

2nh(|B|) ≤
X
n≥0

2nPhδn(A) ≤
X
n≥0

2−n = 2.

We define f by

f(t) =

§
max

�
2nh(t), 2n+1h(δn+1)

�
, t ∈ [δn+1, δn)

h(t), t ≥ δ0
.

It follows from (2) that f(δn) = 2nh(δn), hence f is (left) continuous. It is also
monotone nondecreasing and f(t)→ 0 as t→ 0 since

f(δn) = 2nh(δn) ≤ 2nPhδn(A) ≤ 1/2n.

Moreover, f ≺ h because

h(t)

f(t)
≤ 1

2n
for t ∈ [δn+1, δn).

Finally, for t ∈ [δn+1, δn) we have f(t) ≤ 2n+1h(t), therefore if B is an arbitrary
packing and Bn is as above, thenX

n≥0

X
B∈Bn

f(|B|) =
X
n≥0

X
B∈Bn

2n+1h(|B|) ≤ 4,
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and the result follows. �

For the proof of Theorem 4(b) we use the following lemma.

Lemma 7. Let C ⊂ Rd and h ∈ D. Then, Ph0 (C) = +∞ if and only if there is a
1-packing {Bj} of C which verifies

P
j h(|Bj |) = +∞.

Proof. We assume that C is bounded, for otherwise the equivalence is trivial from
the definition of Ph0 .

Let δ > 0 and assume that there exists a 1-packing as in the statement. Then,
there exists J > 0 such that |Bj | < δ for all j ≥ J , since C is bounded. Hence
{Bj}j≥J is a δ-packing and

P
j≥J h(|Bi|) = +∞. Then, Phδ (C) = +∞ for all δ > 0

and therefore, Ph0 (C) = +∞.
Now suppose Ph0 (C) = +∞. The packing is constructed as follows. We begin

with a 1-packing {B1
i }
N1
i=1 of C that satisfies

•
PN1

i=1 h(|B1
i |) > 2h(1);

• Ph0 (C ∩B1
N1

) = +∞;

• dist(B1
i , B

1
N1

) > 0, 1 ≤ i < N1 (this holds because h is left continuous).

As a consequence of these conditions, we can select a 1-packing {B2
i }
N2
i=1 of C∩B1

N1

such that

•
PN2

i=1 h(|B2
i |) > 2h(1);

• Ph0 (C ∩B2
N2

) = +∞;

• dist(B2
i , B

2
N2

) > 0 and dist(B1
j , B

2
N2

) > 0, 1 ≤ i < N2, 1 ≤ j < N1;

• B2
i ∩B1

j = ∅, for all 1 ≤ i ≤ N2, 1 ≤ j < N1.

Then, {B1
1 , . . . , B

1
N1−1, B

2
1 , . . . , B

2
N2
} is a 1-packing of C of size

N1−1X
i=1

h(|B1
i |) +

N2X
i=1

h(|B2
i |) > 3h(1),

where we used that |B1
N1
| < 1 and the monotonicity of h. Continuing with this

procedure ad infinitum we obtain the desired packing. �

Proof of Theorem 4(b). By Lemma 7, there is a 1-packing {Bi} of A such thatX
i

h(|Bi|) = +∞.

Let N1, N2, . . . be an increasing sequence of integers such thatX
i≤Nj

h(|Bi|) > 4j for all j ≥ 1.

Let tj ↘ 0 be a sequence of reals such that tj < min
¦
|B1|, . . . , |BNj

|
©

for all j ≥ 1.

We define g : [0,+∞)→ [0,+∞) by

g(t) =

¨
2

t−tj
tj−1−tj

−j
h(t), t ∈ (tj , tj−1], j > 1

h(t), t > t1
.

It is easily seen that g ∈ D. Also, observe that for any t ∈ (tj , tj−1],

g(t)

h(t)
≤ 1

2j−1
,

whence h ≺ g.



8 IGNACIO GARCIA AND PABLO SHMERKIN

Now let j > 1. Note that if tj < t for some j, then t ∈ (tk, tk−1] for some k ≤ j,
and hence

g(t) ≥ h(t)

2k
≥ h(t)

2j
.

(If k = 1 then t ∈ (t1,+∞).) Therefore, we obtainX
i

g(|Bi|) ≥
X

i:tj<|Bi|

g(|Bi|)

≥
X

i:tj<|Bi|

h(|Bi|)
2j

≥ 1

2j

X
i≤Nj

h(|Bi|)

> 2j ,

hence {Bi} is a 1-packing of A such that
P
i g(|Bi|) = +∞, and the theorem follows

by Proposition 7. �

3. Remarks and a question

We finish the article with some remarks and an open question.

Remark. In Theorem 2, we showed that for a large class of dimension fuctions h,
there exist sets E with the property that the poset {g ∈ D : Pg(E) = 0} has h
as a minimal element. We remark that, for general sets E, the poset may have no
minimal elements. For example, if K is the Cantor set constructed in the proof
of Theorem 2 (for the given dimension function h), it is not hard to check that
Pg(K) = 0 if and only if h ≺ g, and this class clearly has no minimal elements (see
[2] for the proof of the equivalence when d = 1).

Remark. Theorem 3 can be generalized to a complete separable metric space but
considering the radius-based definition of packing measure instead of the diameter-
based definition (of course in Rd both definitions agree, but not in general metric
spaces). Indeed, the method of Haase that we adapt works in that general setting.

In Theorem 2, the sets we construct are Gδ but not closed. This suggests the
following question:

Open question. Does there exist a closed set E ⊂ Rd such that the poset
{h ∈ D : Ph(E) = 0} has a minimal element? If so, what are the possible minimal
elements?
Acknowledgement. We thank the referee for helpful comments.
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