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THE UNITY AND IDENTITY OF DECIDABLE OBJECTS AND
DOUBLE-NEGATION SHEAVES

MATÍAS MENNI

Abstract. Let E be a topos, Dec(E)→ E be the full subcategory of decidable objects, and E¬¬ → E
be the full subcategory of double-negation sheaves. We give sufficient conditions for the existence of a
Unity and Identity E → S for the two subcategories of E above, making them Adjointly Opposite. Typical
examples of such E include many ‘gros’ toposes in Algebraic Geometry, simplicial sets and other toposes
of ‘combinatorial’ spaces in Algebraic Topology, and certain models of Synthetic Differential Geometry.

§1. Introduction. The preface Contributors to Sets for Mathematics in [11] starts
by stating that the “book began as the transcript of a 1985 course at SUNY Buffalo
and still retains traces of that verbal record”. This is the same course that Lawvere
mentions in the beginning of [5]; notice the acknowledgments to Myhill for making
the course possible and for his incisive comment about Cantor’s lauter Einsen. Some
of the ideas in the 1985 course were also published in [7] whose influence may be
seen in more recent work onAxiomatic Cohesion [10]. The present article is another
step in the line of work indicated above, providing further evidence of the soundness
of Lawvere’s interpretation of Cantor’s work.
Let us recall from [6] that “AUnity and Identity (UI) of twomaps with a common
codomain C is a third map with domain C which composes with both to give
isomorphisms. The existence of such a third map obviously implies that the two
maps are subobject-inclusions, that these two inclusions have isomorphic domains,
and that C is retracted onto both of these subobjects, but moreover that there is
a common retraction in the following sense: any UI in any category is canonically
isomorphic to one in which both composite isomorphisms are actually the identity
map. In this view, a UI is just a map equipped with two sections, or equivalently,
is a common retraction for two subobjects whose underlying objects are identical”.
We recall also from that article that: “In a 2-category, two parallel maps may be
called adjointly opposite (AO) if there is a single third map which is right adjoint
to one of the given pair and left adjoint to the other. [. . . ] In case the third map is
also a UI for the adjointly opposites, then the AO are of course both full inclusions.
Such a map, having both left and right adjoints which are moreover full inclusions,
is a UIAO (unity and identity of adjointly opposites), also known as an ‘essential
localization’”.
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1668 MATÍAS MENNI

In [5], published in 1994, Lawvere suggests that “when studying the works of
the great mathematicians of the last century we must strive afresh to find the core
content of their thought, without being prejudiced by the opinions of the editors
of their collected works, and others during the period after the last decade of the
century”. Moreover, he puts this in practice in an analysis of the work of Cantor
which clarifies the distinction between Mengen and Kardinalen. In particular, he
proposes to study the “general situation in which we are given an arbitrary category
M ofMengen, itself containing two opposed subcategories of discrete and codiscrete
objects, each essentially identical with a category K of Kardinalen”. In other words,
he proposes to studyUIAOsM→ K following the intuition thatM is a ‘category of
spaces’, thatK is a category of ‘abstract sets’ and that theUIM→ K assigns, to each
space, the corresponding set of points. Also intuitively, the left and right adjoints
K→M send a set to the associated discrete and codiscrete space respectively.
In [7], it is observed that “often the needed categories of spaces are self-founded
in the sense that within them a subcategory playing the role of abstract structureless
sets can be defined [. . . ]”. One general explanation of this observation is obtained
in [10] where it is proved that, for any cohesive geometric morphism p : E → S sat-
isfying Stable Connected Codiscreteness, the subtopos p∗ � p! : S → E coincides
with the subtopos E¬¬ → E of sheaves for the ¬¬-topology in E . In other words, for
such p, the codiscrete spaces may be defined as the sheaves for the ¬¬-topology. As
mentioned after Corollary 9.4 loc. cit., one interpretation of that result involves the
conclusion that the real contrast betweenMengen and Kardinalen emerges from the
case of a topos whose double-negation part has additional remarkable properties;
in particular, the property that the subtopos of ¬¬-sheaves is essential. It is nat-
ural to wonder if, at least in the same context of a cohesive topos p : E → S,
the hyperconnected p∗ � p∗ : E → S can also be defined without reference
to p.

Remark 1.1. Let us emphasize that “the needed categories of spaces”mentioned
above include many categories in standard mathematical practice, such as ‘gros’
toposes in algebraic geometry [16], simplicial sets and other toposes of ‘combina-
torial’ spaces [12], certain well-adapted models of synthetic differential geometry
[4], as well as the cohesive Grothendieck toposes introduced in [15]. It is not a
coincidence that these are models of the axioms for Cohesion introduced in [8].

Recall that an object X in an extensive category E with finite limits is decidable if
the diagonal Δ : X → X × X is complemented. For example, in a Boolean topos,
every object is decidable. The full subcategoryof decidable objects will be denoted by
Dec(E)→ E . The category Dec(E) is extensive and has finite limits. The inclusion
Dec(E)→ E preserves finite coproducts and finite limits and it is closed under
subobjects. (See, for example, [1].)
Alsomotivated by thework of Cantor,McLarty proposes in [13] (see also [14]) to
consider 2-valued toposes E with global support and such that every object X in E
has a unique subobject �X : CX → X with CX decidable and every global element
of X factoring through �X . It follows easily that, under these hypotheses, the inclu-
sion Dec(E)→ E has a right adjoint but, moreover, the right adjoint E → Dec(E)
is a UIAO for Dec(E)→ E and E¬¬ → E .
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DECIDABLE OBJECTS AND DOUBLE-NEGATION SHEAVES 1669

Our purpose is to show that the conclusion of McLarty’s result holds for any
stably precohesive topos p : E → S (in the sense of [10]) with Boolean codomain.
In more detail, let E be a topos and consider the following statements.
1. The topos S is Boolean and p : E → S is a stably precohesive geometric
morphism.

2. The subcategories Dec(E)→ E and E¬¬ → E are the left and right inclusions
of a UIAO.

3. The inclusion Dec(E)→ E has a right adjoint that reflects initial object.
4. The inclusion E¬¬ → E of ¬¬ sheaves is the right inclusion of a UIAO.
By Proposition 4.4 in [10], the first item implies that the subtoposp∗ � p! : S → E
coincides with E¬¬ → E and so, that item implies the fourth. Trivially, the second
item also implies the fourth. We prove here that the second and third items are
equivalent, and that they are both implied by the first.

Remark 1.2. It seemsworth observing that the consideration of decidable objects
is also applicable to sites. Indeed, several of the examples of sites C for (pre)cohesive
toposes have the feature that the subcategoryDec(C)→ C has additional remarkable
properties. In particular, it has a finite-product preserving left adjoint. For example,
finite posets and (the opposite of) K-algebras for nice fields K [9, 16].

Assume now that E and S are toposes and letp : E → S be a geometric morphism
with unit α and counit � . Recall that p is said to be connected if p∗ : S → E is full
and faithful. Recall also that the geometric morphism p is hyperconnected if and
only if it is connected and the counit � is monic.
It is well-known that each object B in S determines a geometric morphism
p/B : E/p∗B → S/B whose inverse image (p/B)∗ is simply p∗ applied to mor-
phisms in S with codomain B. See Example A4.1.3 in [2]. If p∗ is fully faithful
so is (p/B)∗ and, in this case, (p/B)∗ : E/p∗B → S/B sends x : X → p∗B to the
composite

p∗X
p∗x �� p∗(p∗B)

α−1 �� B

as an object in S/B . Notice that α is an isomorphism because p is connected.
In other words, if p : E → S is connected then so is p/B : E/p∗B → S/B . See
Lemma 5.1 in [10].

Lemma 1.3. If the geometric p : E → S is hyperconnected then so is
p/B : E/p∗B → S/B for every object B in S.
Proof. By hypothesis, p∗ is fully faithful and the counit � of p∗ � p∗ is monic.
We already know that (p/B)∗ is fully faithful so we need only check that the counit
of p/B is monic. Using the description above, it is easy to check that the counit of
(p/B)∗ � (p/B)∗ is the top map in the following diagram

p∗(p∗X )

p∗(p∗x)
��

� �� X

x

��
p∗(p∗(p∗B))

p∗(α−1)
�� p∗B

thought of as a map (p/B)∗((p/B)∗x)→ x in E/p∗B. �
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1670 MATÍAS MENNI

If the map p : E → S is hyperconnected, the inclusions p∗ : S → E and
Dec(E)→ E share the following important properties: preservation of finite limits
and finite coproducts, and closure under subobjects.

Lemma 1.4. If the inclusion Dec(E)→ E has a right adjoint then Dec(E) is a
topos and the coreflection is the direct image of a hyperconnected geometric morphism
E → Dec(E).
Proof. Let p∗ : Dec(E)→ E be the full subcategory of decidable objects. If p∗
has a right adjoint p∗ : E → Dec(E) then Dec(E) is the category of coalgebras for a
lex (and idempotent) comonad and hence it is a topos. Also, p∗ is the direct image
of a connected geometric morphism p : E → Dec(E) and, since p∗ : Dec(E)→ E is
closed under subobjects, p is hyperconnected by Proposition A4.6.6 in [2]. �
The following is surely a folklore result about extensive categories with finite
products. We state it for toposes because we are dealing mainly with these.
Lemma 1.5. Let E and S be toposes, and let F : E → S be a functor that preserves
finite products and finite coproducts, and also reflects initial object. Then, for any X
in E , if X is decidable and FX is subterminal then X is subterminal.
Proof. Since X is decidable we have a coproduct diagram as on the left below

X
Δ �� X × X K

k�� FX
Δ �� FX × FX FK

Fk��

and, since F : E → S preserves finite products and finite coproducts, the cospan
on the right above is also a coproduct diagram. Since FX is subterminal,
Δ : FX → FX × FX is an isomorphism, so FK is initial. As F reflects initial object
by hypothesis, K is initial, and then Δ : X → X × X is an isomorphism; which
means that X is subterminal. �

§2. Decidable objects in the domain of an essential map. Let p : E → S be a geo-
metric morphism. It is called essential if p∗ has a left adjoint, typically denoted
by p! : E → S . For brevity and emphasis, we introduce the following ad-hoc termi-
nology. The morphism p is called pressential if it is essential and the left adjoint
p! : E → S preserves finite products.
Lemma 2.1. Assume that p : E → S is pressential. If X in E is decidable and p!X
is subterminal in S then X is subterminal.
Proof. As p is pressential, p! preserves finite products and finite coproducts. If
p!K is initial the isomorphism p!K → 0 transposes to a mapK → p∗0 = 0, soK is
initial. That is, p! reflects initial object and so Lemma 1.5 is applicable. �
The next result is well-known. It follows, for example, from A1.5.9 in [2].

Lemma 2.2. If p : E → S is pressential then, p is connected if and only if
p∗ : S → E is cartesian closed.
If p is essential then, for every B in S, the geometric morphism
p/B : E/p∗B → S/B is also essential. Indeed, if we let � be the counit of p! � p∗
then the functor (p/B)! : E/p∗B → S/B sends each object x : X → p∗B in E/p∗B
to the composite

p!X
p!x �� p!(p∗B)

� �� B

as an object in S/B . See, for example, Lemma 5.2 in [10].
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DECIDABLE OBJECTS AND DOUBLE-NEGATION SHEAVES 1671

Let us say that p : E → S is stably pressential if, for every B in S,
p/B : E/p∗B → S/B is pressential. Of course, a stably pressential geometric
morphism is pressential.

Proposition 2.3. If p : E → S is stably pressential then, for every decidable X in
E , the unit X → p∗(p!X ) of p! � p∗ is monic.
Proof. Assume that X is decidable and let B = p!X . By Theorem 11(10) in [1],
every map with decidable domain is decidable, so the unit � : X → p∗(p!X ) = p∗B
of p! � p∗ is decidable as an object in E/p∗B . By the explicit description of
(p/B)! : E/p∗B → S/B after Lemma 2.2, (p/B)!� = idB . That is, (p/B)!� is termi-
nal in S/B. Lemma 2.1 implies that the object � : X → p∗(p!X ) = p∗B in E/p∗B
is subterminal. Hence, the unit � : X → p∗(p!X ) is monic in E . �
If p : E → S is hyperconnected then we say that an object X in E is discrete if the
counit �X : p∗(p∗X )→ X is an isomorphism. It is well-known that, subobjects of
discrete objects are discrete.

Corollary 2.4. If p : E → S is stably pressential and hyperconnected then every
decidable object in E is discrete.
Proof. Every object of the form p∗B is discrete and, by Proposition 2.3, we have
a monomorphism X → p∗B if X is decidable. �
If we strengthen the hypotheses we obtain a characterization.

Corollary 2.5. If S is Boolean and p : E → S is stably pressential and
hyperconnected then, an object in E is decidable if and only if it is discrete.
Proof. If X is discrete then it is trivially decidable because S is Boolean and
p∗ : S → E preserves finite products and finite coproducts. The converse follows
from Corollary 2.4. �
A geometric morphism p : E → S is called precohesive if it is local, hypercon-
nected and pressential (see [10, 16]). In other words, it is a string of adjoints
p! � p∗ � p∗ � p! with full and faithful p∗, p! : S → E , such that p∗ : S → E is
closed under subobjects and p! : E → S preserves finite products.
We know from [10] that, if p : E → S is precohesive then, for every object B
in S, the sliced geometric morphism p/B : E/p∗B → S/B is ‘almost’ precohesive,
in the sense that all the defining conditions hold except, perhaps, finite-product
preservation of the leftmost adjoint (p/B)! : E/p∗B → S/B . For this reason we
say that p : E → S is stably precohesive if p/B : E/p∗B → S/B is precohesive for
every B in S; that is, if the leftmost adjoints (p/B)! : E/p∗B → S/B preserve finite
products. Alternatively, a precohesive geometric morphism is stably so if and only
if it is stably pressential.

Corollary 2.6. If S is Boolean and p : E → S is a stably precohesive geometric
morphism then p∗ : E → S is a Unity and Identity for the subcategoriesDec(E)→ E
and E¬¬ → E , making them Adjointly Opposite.
Proof. Since stably precohesive implies stably pressential and hyperconnected,
Corollary 2.5 implies that p∗ : S → E coincides with Dec(E)→ E . By Proposi-
tion 4.4 in [10] the subtopos p∗ � p! : S → E coincides with E¬¬ → E . �
We end this section with a brief discussion on the relation between (stably)
precohesive, (stably) essential and (stably) locally connected geometric morphisms.
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Lemma 2.7. If p : E → S is a geometric morphism then the following are
equivalent:

1. p is locally connected and p! : E → S preserves finite products,
2. p is connected essential and the left-most adjoint p! : E → S sends pullbacks

P

�0

��

�1 �� Y

y

��
X

x
�� p∗B

in E to pullbacks in S (in other words, the adjunction p! � p∗ has stable units),
3. p is connected essential and (p/B)! : E/p∗B → S/B preserves finite products
for every B in S.

4. p is connected and stably pressential.

Proof. The equivalence of the first three items is proved in Proposition 10.2 in
[10]. We have added the fourth item for emphasis which is, almost by definition,
equivalent to the third. �
Geometric morphisms p satisfying the conditions in the first item of Lemma 2.7
are called stably locally connected by Johnstone in [3]. (These are always connected.)
As mentioned in [10], he informed us that the terminology was chosen by analogy
with ‘stably locally compact’. On the other hand, the word “stably” in “stably
pressential” refers to stability under slicing of the property that the leftmost adjoint
preserves finite products. In parallel, notice that the notion of local connectedness
is also a form of stability in the latter sense, namely, stability under slicing of the
property that inverse image is cartesian closed. In the arguments we use, stabil-
ity of finite-product preservation of the leftmost adjoint seems more immediately
applicable; for example, as in Lemma 2.1.
As a corollary of Lemma 2.7 one gets that a precohesive geometric morphism is
stably so if and only if it is locally connected (see Corollary 10.4 in [10]). We still do
not know if every precohesive geometric morphism is stably so.

§3. A remark about the Nullstellensatz. Let p : E → S be a geometric morphism.
If p is connected and essential then there is a canonical natural transforma-
tion � : p∗ → p! and, following [8], we say that p satisfies the Nullstellensatz if
�X : p∗X → p!X is epic for every X in E .
It follows from [3] that, ifp is essential and local (and hence connected), p satisfies
the Nullstellesatz if and only if p is hyperconnected. See also [10]. In this case, it
follows from Lemma 4.1 in [10] that the rightmost adjoint p! : S → E preserves 0.
(We have already used this tacitly via the invocation to Proposition 4.4 loc. cit. in
the proof of Corollary 2.6 above.)
F. Marmolejo once pointed my attention to the fact that Lemma 4.1 in [10]
(saying that the codiscrete inclusion p! : S → E is dense) could be seen as a sufficient
condition for a direct image to reflect 0. This observation leads to the following
variant of that result.
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Lemma 3.1. If p : E → S is connected essential, and the Nullstellensatz holds then
each of the items below implies the next one

1. p∗X is initial,
2. p!X is initial,
3. X is initial,

for every X in E . If, moreover, p∗ preserves 0 then the three items are equivalent.
Proof. The first item implies the second because p∗X → p!X is epic by the Null-
stellensatz. The second item implies the third because we can transpose p!X → 0 to
X → p∗0 = 0. �
Intuitively, a space is empty iff it has no points iff it has no pieces.
It follows that if p : E → S is local, essential and satisfies the Nullstellensatz then
p!0 = 0. Indeed, since p! is fully faithful,p∗(p!0) = 0, so p!0 is initial by Lemma 3.1.
Compare with the proof of Lemma 4.1 in [10]. We give below a strengthening of
this result, but first we need a couple of remarks about hyperconnected geometric
morphisms.

Lemma 3.2. If the geometric morphism p : E → S is hyperconnected then
p∗ : E → S is faithful on morphisms whose domain is discrete.
Proof. Let f, g : p∗A→ X be morphisms in E and assume that
p∗f = p∗g : p∗(p∗A)→ p∗X . Then the following diagram commutes

p∗(p∗(p∗A))

�

��

p∗(p∗f)

p∗(p∗g)
�� p∗(p∗X )

�

��
p∗A

f ��

g
�� X

and, as the left vertical map is epic, f = g. �
For the next remark it is convenient to distinguish notationally the subob-
ject classifiers of E and S. Let � : p∗(ΩE)→ ΩS be the classifying map of
p∗� : p∗1→ p∗(ΩE). Proposition A4.6.6 in [2] implies that p is hyperconnected
if and only if � is an isomorphism. For many arguments we will not need this nota-
tional distinction; we can just use that p∗� : p∗1→ p∗Ω is a subobject classifier
in S.
Proposition 3.3. Let p : E → S be a local geometric morphism. If p is
hyperconnected then p! : S → E preserves 0. If S is Boolean then the converse holds.
Proof. First observe that if p is local then p!0 is subterminal. Indeed, for any X
in E , maps X → p!0 are in bijective correspondence with maps p∗X → 0 so there
can be at most one.
Let � : 1→ Ω be the unique map in E such that the diagram on the left below

p!0

��

�� 1

�
��

0 = p∗(p!0)

��

�� p∗1

p∗�
��

1
�

�� Ω p∗1 p∗�
�� p∗Ω
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is a pullback. As p∗ preserves pullbacks, the diagram on the right above is also a
pullback (in S). Similarly, the square below

0 = p∗0

��

�� p∗1

p∗�
��

p∗1
p∗⊥

�� p∗Ω

is a pullback in S. As p∗Ω is a subobject classifier of S, we can deduce that
p∗� = p∗⊥ : p∗1→ p∗Ω. Lemma 3.2 implies that � = ⊥ : 1→ Ω and so, p!0 is
initial.
Finally, consider the statement that for S Boolean and p : E → S local, p!0 = 0
implies p hyperconnected. This is just Lemma 4.2 in [10] which, although stated
differently, proves exactly this. �
Let us stress that, as witnessed by someGrothendieck toposes of monoid actions,
p hyperconnected does not imply that p∗ reflects initial object. For a concrete
example, consider the topos of actions of the additive monoid of natural numbers.
Altogether, with the Nullstellensatz in mind, one is led to the consideration of
hyperconnected geometric morphisms p : E → S such that p∗ reflects 0.

§4. Hyperconnected morphisms with Boolean codomain. The purpose of this sec-
tion is to show that if Dec(E)→ E has a right adjoint p∗ : E → Dec(E) as in
Lemma 1.4 then, this right adjoint is a UI for the subcategories Dec(E)→ E and
E¬¬ → E if and only if p∗ reflects initial object.
(For convenience we state the following result with the notation for geometric
morphisms that we use in the application, but the reader will immediately notice
that it is a general simple fact about adjunctions.)

Lemma 4.1. Let p∗ : S → E be a coreflective subcategory with right
adjoint p∗ and counit � : p∗p∗ → IdE , and let f∗ � f∗ : F → E be a reflec-
tive subcategory with unit 	 : IdE → f∗f∗. If the natural transformations
f∗�f∗ : f

∗p∗p∗f∗ → f∗f∗ and p∗	p∗ : p∗p∗ → p∗f∗f∗p∗ are isos then the
composite adjunction f∗p∗ � p∗f∗ : F → S is an adjoint equivalence.
Proof. Let ε be the counit of f∗ � f∗ and α be the unit of p∗ � p∗. Both ε and
α are isomorphisms by hypothesis. It is well-known that the composite adjunction
f∗p∗ � p∗f∗ : F → S has the following unit and counit

1S
α �� p∗p∗

p∗	p∗ �� p∗f∗f∗p∗ f∗p∗p∗f∗
f∗�f∗ �� f∗f∗

ε �� 1F

and, clearly, the four maps above are isomorphisms by hypothesis. Therefore,
both the unit and counit of the composite adjunction are isomorphisms. That
is, f∗p∗ � p∗f∗ : F → S is an adjoint equivalence. �
The following is also a simple general fact about adjunctions but let us formulate
it in terms of toposes.

Lemma 4.2. Let p : E → S be a connected geometric morphism with counit � and
let f : F → E be a subtopos with unit 	. If the natural f∗� : f∗p∗p∗ → f∗ and
p∗	p∗ : p∗p∗ → p∗f∗f∗p∗ are isomorphisms then p∗ has a right adjoint p! and the
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DECIDABLE OBJECTS AND DOUBLE-NEGATION SHEAVES 1675

subtopos p∗ � p! : S → E coincides with f. (In other words, p is local and its center
coincides with f.)
Proof. The hypothesis that f∗� : f∗p∗p∗ → f∗ is an iso means that the
following diagram

Ep∗

��

f∗

��
S

p∗
�� E

f∗
�� F

commutes up to (that) canonical isomorphism.The samehypothesis trivially implies
thatf∗�f∗ : f

∗p∗p∗f∗ → f∗f∗ is an iso. Then Lemma 4.1 is applicable and so the
bottom composite in the diagram above is an equivalence. Therefore, the composite

S p∗ �� E f∗
�� F f∗ �� E

is a right adjoint p! to p∗ : E → S . Clearly, p! : S → E and f∗ : F → E are
equivalent over E . �
From nowon let p : E → S be a geometric morphism.Recall that � : p∗ΩE → ΩS
is the unique map such that the following square

p∗�
p∗�

��

! �� 1

�
��

p∗ΩE �
�� ΩS

is a pullback in S. Since both p∗ΩE andΩS are canonically equipped with aHeyting
algebra structure it is natural to ask how much of that structure is preserved by �.
We will not address the full question here, but only the fragment we need which,
incidentally, is probably known, although we have not found it in the literature.

Lemma 4.3. If p∗ : E → S preserves 0 then the diagram on the left below commutes
in S

p∗1

p∗⊥
��

! �� 1

⊥
��

p∗ΩE

p∗¬
��

� �� ΩS

¬
��

p∗ΩE �
�� ΩS p∗ΩE �

�� ΩS

so, if p : E → S is hyperconnected then the diagram on the right above commutes.
Hence, in this case, p∗ : E → S preserves Heyting complements of subobjects.
Proof. In the following diagram

0

!

��

! �� p∗0

p∗!
��

p∗! �� p∗1

p∗�
��

! �� 1

�
��

1
!

�� p∗1
p∗⊥

�� p∗ΩE �
�� ΩS

all squares are pullbacks. Indeed, the right square is a pullback by definition of �,
the middle one is so because p∗ preserves pullbacks, and the left one is a pullback
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because p∗ preserves 0 by hypothesis. It follows that the bottom composite equals
⊥ : 1→ ΩS , which means that the left square in the statement commutes.
If p is hyperconnected then p∗ preserves 0 because it is a coreflection. Moreover,
in this case, by Proposition A4.6.6 in [2], � is an isomorphism; so the square that
we have just proved commutative is actually a pullback. Therefore, all the squares
in the diagrams below are pullbacks

p∗1

p∗⊥
��

! �� 1

⊥
��

! �� 1

�
��

p∗1

p∗⊥
��

! �� p∗1

p∗�
��

! �� 1

�
��

p∗ΩE �
�� ΩS ¬ �� ΩS p∗ΩE p∗¬

�� p∗ΩE �
�� ΩS

so the bottom composites coincide; that is, the right square in the statement com-
mutes. It is now easy to check that p∗ : E → S preserves Heyting complements.
First observe that if the square on the left below is a pullback in E

U

u

��

! �� 1

�
��

p∗U

p∗u

��

! �� p∗1

p∗�
��

! �� 1

�
��

X
�u

�� ΩE p∗X p∗�u
�� p∗ΩE �

�� ΩS

then the rectangle on the right above is also a pullback (in S), so its bottom
composite must be the classifying morphism of the subobject p∗u : p∗U → p∗X .
In other words, �(p∗�u) = �p∗u : p∗X → ΩS .
Finally, the Heyting complement ¬u : ¬U → X of u : U → X is classified by the
composite on the left below

X
�u �� ΩE

¬ �� ΩE p∗(¬U )
p∗(¬u)

��

�� p∗1

p∗�
��

! �� 1

�
��

p∗X p∗�u
�� p∗ΩE p∗¬

�� p∗ΩE �
�� ΩS

so the pullback diagramon the right above shows that its bottomcomposite classifies
p∗(¬u) : p∗(¬U )→ p∗X . Since the diagram below commutes

p∗X

�p∗u ���
��

��
��

�
p∗�u �� p∗ΩE

�

��

p∗¬ �� p∗ΩE

�

��
ΩS ¬ �� ΩS

it follows that p∗(¬u) is the same subobject of p∗X as ¬(p∗u). �
We will need to apply the next observation to two different functors.

Lemma 4.4. Assume thatG : E → S preserves finite limits, and both preserves and
reflects 0, and let u : U → X be a monomorphism. If Gu is an isomorphism then ¬U
is initial and therefore u is ¬¬-dense.
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Proof. Let ¬u : ¬U → X denote the Heyting complement of u. Then the
diagram on the left below is a pullback

0

��

�� ¬U
¬u
��

0

��

�� G(¬U )
G(¬u)
��

U
u

�� X GU
Gu

�� GX

and, asG preserves 0 by hypothesis, the diagramon the right above is also a pullback.
As Gu is an isomorphism, so is 0→ G(¬U ). Since G reflects 0 by hypothesis, ¬U
is initial. �
The following result is a strengthening of that outlined in Section 2 of [13] (see
also [14]). It is also related to Theorem 3.4 in [3] in the vague sense that a geometric
morphism whose domain is a ‘topos of spaces’ is actually local. Indeed, notice the
invocation to Lemma 3.1 loc. cit. in the proof below.

Proposition 4.5. If S is a Boolean topos and p : E → S is a hyperconnected
geometric morphism then, p is local if and only if the following hold :

1. the functor p∗ : E → S reflects 0 and
2. for every A in S, p∗A is ¬¬-separated.
In this case, the subtopos p∗ � p! : S → E coincides with E¬¬ → E .
Proof. Assume first that p is local and hyperconnected. Then p! : S → E pre-
serves 0 by Proposition 3.3. By generalities about reflective subcategories and strict
initial objects, p∗ reflects initial object if and only if p! preserves it. So it remains to
show that p∗A is ¬¬-separated. For this, notice that the subtopos p∗ � p! : S → E
is a Boolean dense subtopos and so it must coincide with the subtopos of sheaves for
the double negation topology. Moreover, if we let 	 be the unit of p∗ � p! then, by
Lemma 3.1 in [3], p is hyperconnected if and only if the canonical natural transfor-
mation p∗ → p! is monic; but this is equivalent to 	p∗ : p∗A→ p!(p∗(p∗A)) being
monic for every A in S. In turn, this is equivalent to p∗A being separated (w.r.t.
p∗ � p!) for every A in S (see Lemma A4.3.6 in [2]).
For the converse we need to assume that the two items in the statement hold and
prove that p∗ has a right adjoint. The strategy of the proof is to apply Lemma 4.2,
so consider the subtopos f : E¬¬ → E of sheaves for the ¬¬-topology. Let � be the
(monic) counit of p∗ � p∗ and 	 be the unit of f∗ � f∗.
By Lemma 4.4, the counit �X : p∗(p∗X )→ X is ¬¬-dense for every X in E and,
hence, f∗� is an isomorphism.
For the same reasons mentioned in the first paragraph of the proof, p∗A
is ¬¬-separated if and only if 	p∗ : p∗A→ f∗(f∗(p∗A)) is monic. Since
f∗ : E → E¬¬ reflects 0 and f∗	 is an isomorphism, Lemma 4.4 implies that
¬	p∗ : ¬(p∗A)→ f∗(f∗(p∗A)) is the initial subobject. Lemma 4.3 then implies
that

¬(p∗	p∗) = p∗(¬	p∗) = p∗0 = 0
as subobjects of p∗(f∗(f∗(p∗A))). Since the topos S is Boolean,
p∗	p∗ : p∗(p∗A)→ p∗(f∗(f∗(p∗A))) is an isomorphism. So we can apply
Lemma 4.2 to complete the proof. �
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To summarize, we state another sufficient condition for the existence of a Unity
and Identity for decidable objects and ¬¬-sheaves. (Again, compare with [13].)
Corollary 4.6. Let E be a topos and assume that the inclusion Dec(E)→ E has
a right adjoint p∗. Then the resulting hyperconnected p : E → Dec(E) is local if and
only if p∗ reflects 0. In this case, the subtopos p∗ � p! : Dec(E)→ E coincides with
E¬¬ → E . Also in this case, p is precohesive if and only if p∗ : Dec(E)→ E is cartesian
closed.

Proof. By Lemma 1.4, the existence of p∗ determines the hyperconnected p.
Proposition 4.5, together with the well-known fact that decidable objects are ¬¬-
separated, implies that p is local if and only if p∗ reflects 0. By Corollary 3.11 in
[17], the local p is precohesive if and only if p∗ is cartesian closed. �
In analogy with [10], one interpretation of the results above involves the conclu-
sion that the real contrast betweenMengen and Kardinalen emerges from the case
of a topos E whose subcategory Dec(E)→ E of decidable objects has additional
remarkable properties. In particular, that it has a 0-reflecting right adjoint.
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