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a b s t r a c t

We investigate the capability of electrical synapses to transmit the noise-sustained net-
work activity from one network to another. The particular setup we consider is two identi-
cal rings with excitable FitzHugh–Nagumo cell dynamics and nearest-neighbor antiphase
intra-ring coupling, electrically coupled between corresponding nodes. The whole system
is submitted to independent local additive Gaussian white noises with common intensity
η, but only one ring is externally forced by a global adiabatic subthreshold harmonic sig-
nal. We then seek conditions for a particular noise level to promote synchronized stable
firing patterns. By running numerical integrations with increasing η, we observe the exci-
tation activity to become spatiotemporally self-organized, until η is so strong that spoils
sync between networks for a given value of the electric coupling strength. By means of a
four-cell model and calculating the stationary probability distribution, we obtain a (signal-
dependent) non-equilibriumpotential landscapewhich explains qualitatively the observed
regimes, and whose barrier heights give a good estimate of the optimal noise intensity for
the sync between networks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As it is well known, the core component of the brain is the neuron: an electrically excitable cell that processes and
transmits information by electro-chemical signaling. Functionally related neurons connect to each other, to form neural
networks allowing the functional integration of spatially segregated information in the nervous system [1,2]. Among the ac-
tivities that neural networks perform as a whole, the process of neural synchronization is crucial, because it is involved in a
variety of cognitive functions such as perceptual grouping, attention-dependent stimulus selection, routing of signals across
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distributed cortical networks, sensory-motor integration, working memory, and perceptual awareness [3]. In this process,
brain regions fulfilling specific functions communicate for the purpose of establishing transient networks that accomplish
perception, cognition, and action. In turn, it has been demonstrated in neuron models that neural synchronization is facili-
tated by the addition of optimal amounts of noise [4–7]. It is also important to emphasize that the synchronization process
is relevant whatever the number of neurons involved, from minimal neural networks (neural pair) [8] to large ensembles
of neurons as a whole (such as the cortex) [9]. Thus, it is not surprising that the phenomenon of synchronization is a major
research focus in modern neuroscience [10–15].

There exist two ways in which neurons communicate, these are chemical and electrical synapses. While chemical
synapses constitute the main mode of signal transmission between neurons, electrical synapses promote synchronous be-
havior in neural networks [16–18]. In fact, gap junctions allow for direct electric communication between cells [8]. They are
typically formed from the juxtaposition of two hemi-channels (connection proteins), and allow the free movement of ions
or molecules across the intercellular space separating the plasma membrane of one cell from that of another. Gap junction
coupling is known to occur between many cell types, including pancreatic cells [19], heart cells [20], and astrocytes [21] to
cite some examples. A remarkable characteristic of electrical synapses is its bidirectionality, which reflects the fact that the
information is transmitted directly by current from one cell to the other.

In previous studies [22–25] we have been investigating the noise-sustained synchronization of regular networks of au-
tonomous units with excitable FitzHugh–Nagumo (FHN) dynamics, coupled in electrical or phase-repulsive way. We have
shown that synchronization involves the formation of antiphase states (APS)—nonequilibrium structures in which the neu-
rons on the ring alternate regularly (except for noise-induced defects) their excitation states in space. In particular, we have
made theoretical estimations of noise thresholds for activation and synchronization of the APS. This analysis was facilitated
by the knowledge for these systems [26,27] of the nonequilibrium potential (NEP) [28]. The NEP is the non-equilibrium
analog of a free energy, and provides deep insight on the dynamical mechanisms leading to pattern formation and other
phenomena where fluctuations play a constructive role [29–31].

We focus now on the capability of the electrical synapses to transmit the noise-sustained network activity from one net-
work to another.With this aim, we consider amodel consisting of two identical networks – connected by electrical coupling
between corresponding nodes – and find conditions under which a particular level of noise promotes synchronized stable
firing patterns when only one network is externally forced by a subthreshold harmonic adiabatic signal. In particular, we
prove that the synchronized stochastic-resonant dynamics of both networks can be explained in terms of eventual noise-
sustained transitions between attractors, being the adiabatic change in the relative stability of attractors – ruled by the NEP
– the fundamental ingredient that determines the dynamics and the relevant noise scales.

The paper is organized as follows. In Section 2 we briefly review the dynamic equations of the model; in Section 3 we
provide numerical evidence of noise-sustained synchronization between networks, and characterize the constructive role
of noise in the process. Then we elucidate the observed dynamics in terms of the NEP of a reduced description in Section 4,
and collect our conclusions in Section 5.

2. The model

The FHNmodel is surely one of the most paradigmatic mathematical models in theoretical research on neural networks.
It emerges as a two-dimensional simplification of the four-dimensional Hodgkin–Huxley one, in which only the membrane
potential and a recovery variable are represented. In turn, the FHN model is an archetypal model of activator–inhibitor
systems and the simplest representation of excitable firing dynamics; it is capable of displaying periodic oscillations, stable
fixed points, and excitability [32]. The constructive effects of noise on the FHNmodel have beenwidely reported in literature
in a variety of phenomena [29,33,34]. Examples include coherence resonance [35], stochastic resonance [31,36–39], and
noise-sustained synchronization [40,41].

To analyze the synchronizability between networks of noise-sustained activity, we consider a minimal block of a struc-
tured FHN neuronal network, composed of two identical phase-repulsive coupled rings, one of them (network I) externally
forced by a subthreshold periodic signal while the other (network II) is only electrically coupled with the first ring. Inside
each network we suppose a first-neighbor antiphase-coupling among activator variables, which exhibits the capability to
sustain noise-induced activity by awell establishedmechanism [23]. For the coupling between arrayswe consider a situation
wherein the coupling is proportional to the difference of presynaptic and postsynaptic membrane potentials. This electrical
coupling corresponds to so-called gap-junctions. Coupling parameters are assumed to be independent of the presynaptic
and postsynaptic membrane potentials, and can therefore bemodeled by constantsD and E. The equations for themodel are

u̇i = bui(1 − u2
i ) − vi + S(t) − D(ui+1 + ui−1) + E(pi − ui) + r1 ξ

(u)
i (t) + r2 ξ

(v)
i (t) (1)

v̇i = ϵ(βui − vi + C) + r3 ξ
(u)
i (t) + r4 ξ

(v)
i (t) (2)

ṗi = bpi(1 − p2i ) − qi − D(pi+1 + pi−1) + E(ui − pi) + r1 ξ
(p)
i (t) + r2 ξ

(q)
i (t) (3)

q̇i = ϵ(βpi − qi + C) + r3 ξ
(p)
i (t) + r4 ξ

(q)
i (t). (4)

The activator (ui in network I, pi in network II) is the fast variable, which mimics the action potential off cell i; the inhibitor
(vi in network I, qi in network II) is the slow – or recovery – variable, which is related to the time dependent conductance
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Fig. 1. Activity record of a subset of 100 neurons (until t = 1.5 × 105) of network I (up) and II (down), for E = 2 × 10−2 and noise intensities: (a) 10−8 ,
(b) 3.5 × 10−7 , (c) 7 × 10−7 , and (d) 8.7 × 10−7 .

of the potassium channels in the membrane [42]. Here i = 1, . . . ,N; uN+1 ≡ u1, u0 ≡ uN , pN+1 ≡ p1, p0 ≡ pN . The sub-
threshold external signal S = A0 sinωt is injected on all the nodes of network I only. ϵ is the activator–inhibitor timescales
ratio, D > 0 is the antiphase-coupling strength within each network, while E > 0 is the electric coupling strength between
networks. Finally, ξ (k)

i are Gaussian white noises with ⟨ξ
(k)
i (t)⟩ = 0 and ⟨ξ

(k)
i (t) ξ

(m)
j (t ′)⟩ = η δi,j δk,m δ(t − t ′), where η is

the common noise intensity and k,m ∈ {u, v, p, q}.
Throughout the work, the following values have been adopted: N = 256, ϵ = β = 10−2, b = 3.5 × 10−2, C = 2 ×

10−2,D = 10−2, A0 = 1.1 × 10−2, ω = 2 × 10−3, ϵ r1 = r3 = cos 0.05 and ϵ r2 = r4 = sin 0.05. The values of the
parameters are not totally arbitrary: the value of D is selected in order to have a well-developed regime of noise-sustained
synchronization in an externally forced isolated network [24], while the period T = 2π/ω remains above the typical
deterministic time (i.e. the turnaround time of a single spike), so that the signal can be regarded as an adiabatic perturbation.
Besides, single-cell parameters have been selected in such a way that they satisfy an integrability condition, required by the
theoretical characterization of the dynamics (see Eq. (11) in Section 4).

3. Noise sustained synchronization

We call activated or excited those cells for which the activator field exceeds some threshold value uth. To quantify the
level of activity of each network, we introduce the normalized global activity

A(t) =
1
N

N
i=1

Θ[xi(t) − uth]. (5)

Here xi represents either ui or pi (depending on the network we refer to), and Θ is the Heaviside step function. As expected,
A(t) is not sensitive to uth for reasonable values of threshold. Hereafter we fix uth = 0.4. Due to the fact that an excited
neuron inhibits its network’s neighbors through the antiphase-coupling, we often observe spatially alternating states of
excited and inhibited cells, i.e. APS. Note that a perfect APS would correspond to A = 1/2. However, A does not reach, in
general, this value because alternance fails due to the local noises.

To have a global view of the dynamics, in Fig. 1 we present the activity record of an equivalent subset of neurons of each
ring, for E = 2× 10−2 and different noise intensities. Numerical simulations of Eqs. (1)–(4) show that for small noise inten-
sities, there are only small-amplitude homogeneous subthreshold oscillations around the rest state in each ring, as we show
in Fig. 1(a). These coherent oscillations are induced by the adiabatic signal, and correspond to the homogeneous rest state.

As noise intensity increases, so does the number of cells that becomes active, and the networks are simultaneously driven
to the APS (as shown in Fig. 1(b)). For higher levels of noise, the activity in both networks becomes simultaneously synchro-
nized with the external signal, as shown in Fig. 1(c) and (d). Note that the APS is reached only when the signal is positive;
when it is negative, all neurons remain in the rest state. A typical time series in the synchronized state can be seen in Fig. 2.

An indicator of the synchrony of each network with the external signal S(t) is the Q -factor, defined by

Q =


Q 2
sin + Q 2

cos, with (6)

Qsin =
1
nT

 nT

0
2A(t) sin(ωt)dt
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Fig. 2. Time evolution of activator fields of two electrically coupled neurons ui (network I) and pi (network II). Parameters are the same as in Fig. 1(c). The
field pi was shifted up four units for clarity.

Fig. 3. Q -factor for network I (solid line) and network II (dashed line) as a function of noise intensity, averaged over 20 realizations and 44 signal periods,
for E = 2 × 10−2 .

Qcos =
1
nT

 nT

0
2A(t) cos(ωt)dt,

where n is the number of periods T covered by the integration time. In Fig. 3 we show the Q -factor of each network as a
function of noise intensity. Note that both curves reach amaximum for approximately the samenoise intensityη ≈ 7×10−7.
The same scenario is observed for larger values of E.

Another useful estimator, in this case for the synchronization between networks’ activities, is the correlation between
the fields {ui} and {pi}, given by

C({ui}, {pi}, t) =
⟨(u − ⟨u⟩)(p − ⟨p⟩)⟩

⟨(u − ⟨u⟩)2⟩


⟨(p − ⟨p⟩)2⟩
, (7)

where the brackets mean average over {ui} and {pi}. In Fig. 4 we show the time evolution of the correlation for a typical
realization of the system’s equations. The high degree of synchronization between the network activities is apparent.

It is clear that the coupling term and the local noise drive the dynamics of network II. In particular, electrical synapses
provide a fluctuating termwith the same period of the external forcing. This point is illustrated in Fig. 5, where the averaged
coupling term for network II is plotted vs. time for a typical realization of Eqs. (1)–(4).

Other dynamical regimes where only partial activation takes place are numerically observed for small electrical coupling
values. Again, aminimum level of noise is required to drive the dynamics.We illustrate this point in Fig. 6, where the activity
record of a subset of neurons of each network is shown for E = 2 × 10−3 and selected values of noise. While only small
subthreshold oscillations develop in both rings for small η (panels a and b), network I can reach a synchronized regime for
appropriate values of noise (panels c and d). In this process, network II remains at rest and no activity develops there.

Activating network II requires larger levels of noise. We illustrate this point in Fig. 7, where we show (for the same
coupling intensity E) an APS in network II, while network I remains synchronized (panels a and b). Note that the APS is
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Fig. 4. Correlation (solid line) as a function of time, in a synchronized state, averaged over all the activator fields in both networks. The parameters are the
same as in Fig. 1(c). As reference we include the signal (amplified by a factor 10 and shifted by 0.5 for clarity).

Fig. 5. Averaged coupling terms of network II (bold solid line). The signal (dashed-dotted line) was included as a reference. The additional solid lines
correspond to the coupling term plus and minus its standard deviation. Parameters are the same as those of Fig. 1(c).

Fig. 6. Activity record of a subset of 100 neurons (t = 3.3× 104) of network I (up) and II (down), for E = 2× 10−3 and noise intensities: (a) 2× 10−8 , (b)
3 × 10−8 , (c) 4.7 × 10−8 , and (d) 7.7 × 10−8 .
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Fig. 7. Activity record of a subset of 100 neurons (t = 3.3 × 104) of network I (up) and II (down), for E = 2 × 10−3 and noise intensities: (a) 2.5 × 10−7 ,
(b) 2.9 × 10−7 , (c) 4.5 × 10−7 , and (d) 7.3 × 10−7 .

Fig. 8. Q -factor for network I (solid line) and network II (dashed line) as a function of noise intensity, averaged over 20 realizations and 42 signal periods,
for E = 2 × 10−3 .

stable and the resulting structure is shown as a stripe pattern for the activity record, which eventually degrades for larger
levels of noise.

Even in this case noise does play a constructive role, and there is a particular level of noise where network I reaches
the highest synchronization. We illustrate this point in Fig. 8, where the corresponding Q -factor presents a maximum at
η ≈ 2.5 × 10−7. At variance with the previous case, here the Q -factors of both networks do not exhibit their maxima at
the same noise level. In fact, there is a decrease of Q in network II due to noise degradation, and there is also a shift in the
position of its maximum towards higher noise intensity (η ≈ 4.5 × 10−7).

4. Theoretical description of the dynamics through the NEP

The nonequilibrium potential (NEP) Φ for Langevin-type equations has been defined [28] through the zero-noise limit
of the logarithm of the stationary probability density function

lim
η→0

Pstat(W, η) = Z(W) exp

−

Φ(W)

η
+ O(η)


, (8)

where W are the variables of the problem. Another way to introduce the NEP which remains valid even outside the small
noise limit was proposed by Ao [43,44]. The NEP is a Lyapunov functional of the deterministic dynamics and provides
information on the properties of attractors. In particular, it determines the height of the barriers separating attraction basins,
which in turn define the transition rates among the different attractors.
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The NEP for a general network of linearly coupled FitzHugh–Nagumo cells has been derived in Ref. [24]. Since the two
networks defined in our model determine in turn a single network with a particular coupling structure, we can apply the
results of Ref. [24] to the present case, obtaining

Φ =

N
i=1


Φs(ui, vi) + Φs(pi, qi) −

2
λ1

S(t)ui +
2D
λ1

(uiui+1 + pipi+1) +
E
λ1

(ui − pi)2


, (9)

Z = constant, (10)

with Φs being the NEP for a single cell without signal, given by

Φs(u, v) =
ϵ

λ2
(v2

− 2β uv − 2Cv) +
2λϵ

λ1λ2
(β u2

+ 2Cu) −
2
λ1


b
2
u2

−
b
4
u4


,

where λ1 = r21 +r22 , λ2 = r23 +r24 and λ = r1r3+r2r4. Integrability conditions – arising from the NEP’s derivation – constrain
the parameters to obey

βλ1 + λ2/ϵ = 2λ. (11)

The third term in Eq. (9) is the explicit contribution of the signal (applied only to network I), the fourth one takes into account
the antiphase-coupling inside each network and the last one, the electrical coupling between both rings.

A theoretical study of the dynamics can be done by exploiting the properties of the NEP during time-evolution. To this
end we consider a simplified model, where each network is represented by a two-neuron system: a minimal description
of an idealized case where all the even nodes on one hand, and all the odd nodes on the other, have the same stochastic
phase–space trajectory. For this four-neuron model, the NEP in Eq. (9) takes the form:

Φ(u1, v1, . . . , p2, q2) = Φs(u1, v1) + Φs(u2, v2) + Φs(p1, q1) + Φs(p2, q2) −
2
λ1

S(u1 + u2)

+
4D
λ1

(u1u2 + p1p2) +
E
λ1

[(u1 − p1)2 + (u2 − p2)2]. (12)

The critical points (minima and saddles) of the NEP are the fixed points of the dynamics, and can be alternatively determined
by the intersection of the nullclines. Although Eqs. (1)–(4) are not gradient, the non variational contribution to the dynamics
also vanishes at the fixed points due to the particular structure of the probability current [24].

As far aswe are interested only in barrier heights1Φ – given by the difference in NEP between saddle points andminima
– we project out the NEP along the slow manifolds, that capture all the system’s fixed points. Thus we concentrate on
Φ(u1, u2, p1, p2) = Φ(u1, βu1 + C, u2, βu2 + C, p1, βp1 + C, p2, βp2 + C) and proceed to characterize their minima and
saddles.

By U, E and S we represent the uniform, excited and ‘‘saddle’’ states in each network of the reduced model, respectively.
In U both neurons remain inhibited (typically u1 ≈ u2 ≈ −1 for network I), which corresponds to the rest state in the real
network. E represents one neuron excited and the other one inhibited (for example u1 ≈ −u2 ≈ 1 in network I), which
corresponds to an APS in the real network. Finally S is an intermediate state (for example u1 ≈ −1 and u2 ≈ 0 in network
I), that corresponds to a transition between rest state and APS in the network.

We introduce a two-letter code to label the fixed points of the reduced model, where the first letter corresponds to
network I while the second one corresponds to network II. Accordingly, UU represents both networks in the uniform state,
while EE denotes both networks in excited states. A subindex two in the code means that the inhibited neurons in each
network are not electrically connected between them. Accordingly, for example, the state where u1 ≈ −p1 ≈ p2 ≈ −1 and
u2 ≈ 0 is labeled SE2. It is worth noting that if at least one letter in the code is S, the whole state corresponds to a saddle
point in the NEP. This is why we label with S such single-network intermediate state. All states and saddles of the reduced
model except UU are degenerate – same stability and NEP value – under simultaneous permutations of u1 by u2 and p1 by
p2. Note that interchanging simultaneously u1 by p1 and u2 by p2 generally results in a different NEP value, because ui and
pi are not equivalent except for S = 0 (the signal breaks the symmetry between networks).

Aswewill see, the dynamics can bemainly interpreted as a succession of noise-activated transitions betweenmetastable
attractors, whose relative stability is ruled by the NEP. The process to escape from a given minimum through a barrier
is an activation process, where the energy for the jump comes from the noise. To estimate the noise intensity to escape,
we compare the NEP fluctuations σ 2

Φ = ⟨Φ2
⟩ − ⟨Φ⟩

2 with the barrier height 1Φ that confines the metastable attractor,
resulting4

η ≈
1Φ
√
2

. (13)

4 Expanding Φ up to second order around its minimum, the probability density function given by Eq. (8) is a Gaussian, yielding the approximate
expression σ 2

Φ = nη2/2, where n is the number of neurons (four in the reduced model).
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Fig. 9. NEP values in the minima (solid lines) and saddles (dashed line) of the four-neuron model, for E = 2 × 10−2 .

Fig. 10. NEP values in the minima (solid lines) and saddles (dashed lines) of the four-neuron model, for E = 8 × 10−3 .

To elucidate the dynamics, we proceed to consider the behavior of the NEP in terms of the signal for the attractors and
repellers involved in each route to synchronization. In all cases, it is assumed that the system starts from the UU state (as in
the simulations).

For high enough electric coupling (E > 10−2), the reduced model has a UU state, two EE states and two saddles SS
whose NEP defines the barrier in the transition UU → SS → EE. In Fig. 9 we represent the NEP in minima and saddles
as a function of the value of the adiabatic signal for E = 2 × 10−2. For small η, the barrier to escape from the UU state
cannot be reached, and the system (both networks) can only perform small oscillations around the rest state. According to
Eq. (13), for a noise intensity η ≈ 3.5 × 10−7 the barrier can be overcome at S = A0, and consequently the EE state – with
a lower potential – is reached. But once in the EE state, the new barrier to escape is higher and then both networks remain
simultaneously activated, as we show in Fig. 1(b). The noise level must be raised to η ≈ 8.7 × 10−7 to overcome the new
barrier at S = −A0 and return to the UU state. This noise level is the NEP’s prediction for the complete synchronization, that
is in good agreement with the maximum of the Q -factor (see Fig. 3).

Forweaker coupling (E < 10−2) a newmetastable stateUE appears for samevalues of the external signal. Simultaneously,
a more intricate structure of saddles SE, SS, SU and US appear to complete the potential landscape, as can be seen in Fig. 10
for E = 8 × 10−3. As usual, only subthreshold oscillations (in UU state) are present in both rings for small η. Increasing the
noise level to η ≈ 1.5 × 10−7, the EE state is reached through the SU state at S = A0. The noise level must be raised to
η ≈ 4 × 10−7 in order to return to UU and close the cycle of synchronization. Thus, the dynamics with this NEP structure
turns out to be basically similar to the cases with higher E discussed before. Nevertheless, in the escape from EE through SE
(at S = −A0) the metastable state UE is achieved but their confining barrier – represented by US (approximately 6 × 10−8)
– is immediately overcome to reach UU. Paradoxically in the UE, the externally forced network remains at rest while the
second one is driven to the APS. UE states, although not macroscopically occupied, can be generated by appropriate initial
conditions: numerical simulations (not shown) confirm their existence and the noise level for decay.
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Fig. 11. NEP values in theminima (solid lines) and saddles (dashed lines) of the four-neuronmodel, for E = 2×10−3 . In the upper panel, all the 9 (UU plus
four two-folded) minima and 16 (8 two-folded) saddles are identified. The lower panel is a simplified graph with the most relevant curves, for a clearer
view. Curves corresponding to UE (close to UU, but different) collapse with SE at S/A0 = 0.64, where both disappear. Similarly, EU collapses with SU and
both disappear at S/A0 = −0.96.

By decreasing the electrical coupling below 6 × 10−3 we find a richer dynamics, where the networks are not restricted
to stay in the same state (see Figs. 6 and 7). This behavior is also captured by the reduced model, which in this case exhibits
a complex structure of fixed points, as we illustrate in Fig. 11 for E = 2 × 10−3. To elucidate the observed dynamics in
this regime, we show the NEP vs. signal behavior of the relevant states in the lower panel of Fig. 11. Again, subthreshold
oscillations take place in the UU state, and the system remains in this regime for small noise. A noise level η ≈ 4.7 × 10−8

allows the system to climb the barrier given by SU (at S = A0) to reach the EU state. This state disappears by collapsing with
the SU saddle before S reaches −A0, and the system returns deterministically to the UU state, completing the cycle. This is
the dynamics shown in Fig. 6(c) and (d), where network I is synchronized with the signal while network II remains in the U
state. In this case, the noise level for synchronization of network I is determined by the activation barrier in the transition
UU → SU → EU, that keeps network II at rest.

In order to activate network II, we must increase the noise level to η ≈ 2.9 × 10−7; then, the system can escape from
EU (before it collapses) through the ES barrier, to reach the EE state (which has a lower NEP). The barrier to escape from
EE – determined by the SE saddle – is overcome at S = −A0 (where it is smaller than the EU–ES barrier) to reach the UE
state. This state eventually disappears before S reaches A0, and the system returns deterministically to EE. Summarizing, the
system passes adiabatically with the signal from UE to EE; in other words, while network I is synchronized with the signal,
network II remains in the APS, as we numerically observe in Fig. 7(a) and (b).

For a synchronization of both networkswith the external signal it is necessary to alternate between EE and UU states. The
barrier to escape from EE – determined by the US saddle – is the higher barrier in the chain of transitions EE → SE → UE →

US → UU and requires η ≈ 7.3 × 10−7 (at S = −A0). This is in consequence the theoretical prediction for the maximum
Q -factor in network II (which results higher than that obtained from simulations, shown in Fig. 8). However, aswe have seen
before, this noise level is sufficient to overcome the lower barrier to UE and let the system pass randomly to UU or UE (but
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Fig. 12. Four-neuron model prediction of the noise level for best synchronization: the solid line corresponds to the attractor-barrier structure in Fig. 9,
the dashed line to the one in Fig. 10, and the points to maxima of the Q -factor computed from simulations (averaged over 20 realizations).

more often to UE, due to its lower barrier height). Besides, the high noise level degrades the synchrony of network I with
the signal (see the height difference of both maxima in Fig. 8). As a consequence (at variance with the previous cases, where
the coupling strength between networks E is higher) a clear synchronic regime of both networks with the signal cannot be
reached for these parameters.

We summarize the results for full synchronization of both networks with the external signal in Fig. 12, where we have
plotted themaximumQ -factor obtained fromsimulations for somevalues of electrical coupling, togetherwith theprediction
of the four-neuron model. From the graph we can see that the theoretical curve saturates for E → ∞. By noting that in this
limit ui = pi, Eq. (12) simplifies to

Φ = 2[Φs(u1, v1) + Φs(u2, v2)] −
2
λ1

S(u1 + u2) +
8D
λ1

u1u2, (14)

that has a similar attractor structure to that represented in Fig. 9, resulting η = 1.05 × 10−6 for the saturation value. Even
when the four-neuron model estimation of η for best synchronization is crude, such a reduced model captures the trend
and the order of magnitude of optimal noise synchronization.

5. Conclusions

We have presented analytical and numerical results for the stochastic dynamics of two electrically coupled networks of
excitable FitzHugh–Nagumo neurons, each of them phase-repulsively linked to form a ring.

With the aim of characterizing the capability of electrical couplings to ‘‘transfer’’ a noise-sustained synchronized state
fromone network to the other, only one of the rings has been externally and adiabatically forced by a subthreshold harmonic
signal. On the other hand, thewhole systemwas submitted to additive and independentGaussianwhite noiseswith the same
intensity η.

Numerical integration for appropriate parameter values shows that local additive noise sustains extended antiphase-
state (APS) – where the cells alternate their activation state – in both rings, which moreover synchronize with the external
subthreshold signal. Coherent behavior is then observed, where both networks exhibit essentially the same synchronized
activity. Moreover, the Q -factors exhibit maxima as functions of η. The role of the noise is thus twofold: on one hand, it is an
essential ingredient for the phenomenon to occur; on the other, there is an optimal noise intensity for maximal coherence.

The route to synchronization was also considered. For small electrical coupling, we have shown the existence of regimes
where only partial activation takes place: one network activates (and even synchronizes in a noise-sustained fashion), while
the other ring remains at rest.

The numerical results can be better interpreted and quantitatively accounted forwith reasonable accuracy by considering
the nonequilibrium potential (NEP) of a four-cell reducedmodel. Basically, it is the (adiabatic) stationary probability density
– in the limit of small noise – whose structure of minima (attractors) was completely analyzed and the potential barriers
(saddle points) of the allowed transition were all identified.

The four-cell approach does not take into account the formation of defects in the networks, which break the background
activation alternance of extended APS. Nevertheless, the theoretical results help elucidate the route to synchronization
between networks, identify the relative stability of the relevant states and estimate the order of magnitude of the optimal
noise intensity for activation and synchronization.

By analyzing the dependence of the potential barriers on the external signal, we have shown that the observed dynamics
can be explained in terms of noise-sustained transitions between attractors and (eventually) deterministic collapse. The
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theoretical analysis also allowed to identify a curious regimewhere the externally forced network remains at rest, while the
second one results activated. Although in the context of the present work this state does not play any central role, it could be
relevant in the context of processing and transmission of information by electro-chemical signaling. As it occurs for related
phenomena (e.g. coherence resonance in coupled FitzHugh–Nagumo systems [35]), our results are expected to depend on
both temporal and spatial noise correlations. The NEP approach would be useful even in those cases, since dynamics driven
by space-correlated or colored (OrnsteinUhlenbeck) noises can in principle be described in terms of a suitable NEP [45].
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