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Abstract

The polymorphism of equine lymphocyte antigen (ELA) class II DRA gene had

been detected by polymerase chain reaction–single-strand conformational poly-

morphism (PCR-SSCP) and reference strand-mediated conformation analysis.

These methodologies allowed to identify 11 ELA-DRA exon 2 sequences, three of

which are widely distributed among domestic horse breeds. Herein, we describe the

development of a pyrosequencing-based method applicable to ELA-DRA typing,

by screening samples from eight different horse breeds previously typed by PCR-

SSCP. This sequence-basedmethodwould be useful in high-throughput genotyping

of major histocompatibility complex genes in horses and other animal species,

making this system interesting as a rapid screeningmethod for animal genotyping of

immune-related genes.

Single nucleotide polymorphisms (SNPs) had been widely

used to characterize allelic sequences to perform haplotype

identification and to analyse the level of expression of major

histocompatibility complex (MHC) genes. Sequence-specific

primers (SSP), sequence-specific oligonucleotide probes

(SSOP), sequencing-based typing (SBT), polymerase

chain reaction–restriction fragment length polymorphism

(PCR-RFLP), polymerase chain reaction–single-strand con-

formational polymorphism (PCR-SSCP) and reference

strand-mediated conformation analysis (RSCA) were molec-

ularmethods traditionally and currently used forMHCtyping

(1–12). Improvement of high-throughput methods based on

sequencing, pyrosequencing, real-time PCR, TaqMan assay

and microarrays have been developed in recent years (13–17).

In view of the fact that several polymorphisms at MHC

genes have been associated to resistance/susceptibility to

infectious diseases in domestic animals (18–24), the avail-

ability of high-throughput genotypingmethods is a valuable

tool to perform a rapid polymorphism screening in animal

genotyping of immune-related genes in horses and other

animal species.

Pyrosequencing� technology (25, 26) is a real-time DNA

sequencing technique that is based on the detection of

released pyrophosphate (PPi) duringDNA synthesis and has

been successful for both confirmatory sequencing anddenovo

sequencing (27–32). After an oligonucleotide is hybridized to

a single-stranded DNA template, a cascade of enzymatic

reactions starts with the nucleic acid polymerization reaction
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primed by an internal primer. Each of the four dNTPs is then

individually added to the reactionmixture, and inorganic PPi

is released as a result of nucleotide incorporation by

polymerase. Visible light is generated proportionally to the

number of incorporated nucleotides (33), detected by a CCD

camera and seen as peaks in a pyrogram�.

In domestic horses, equine lymphocyte antigen (ELA)-

DRA class II MHC gene have been examined for poly-

morphismbyPCR-SSCP andRSCAmethodologies (10, 11,

34). ElevenDRAexon 2 sequences were reported among the

existing equid species, three of them have been found widely

distributed among horse breeds and a fourth one had been

detected in some horse breeds (11) by using the RSCA

method. This study describes the development of an SBT

method applicable to high- or medium-throughput of ELA-

DRA typing, based on pyrosequencing technology.We have

applied this methodology to screen ELA-DRA polymor-

phism in a sample that includes animals from eight horse

breeds previously genotyped by PCR-SSCP methodology.

A total of 97 horses were analysed in this study. Genomic

DNA was isolated by the DNAzol� method (Invitrogen,

Carlsbad, CA) from blood lymphocytes from 78 horses be-

longing to the following breeds: Criollo Argentino (n ¼ 8),

Thoroughbred (n ¼ 8), Argentine Peruvian Paso (n ¼ 10),

Arabian (n ¼ 10), Silla Argentino (n ¼ 39), and Quarter

Horse (n ¼ 3). DNA samples from Spanish Pure Breed

horses (n ¼ 8) as well as Asturcón, Losino, Mallorquı́n and

Menorquı́n breeds (n ¼ 11) were provided by the Applied

Research Laboratory, Service of Horse Breed and Remonta,

fromCórdoba, Spain. Because of their low number, the later

were pooled as Spanish native breeds for this study.

Horse DNA samples were typed for ELA-DRA second

exon polymorphism by the PCR-SSCP methodology

described by Albright-Fraser et al. (34) by using DRABe1

(forward) and DRABe2 (reverse) primers. Amplification

products from different SSCP band patterns were cloned

into pCR�2.1-TOPO� (TOPO TA Cloning�; Invitrogen).

Recombinant plasmid DNA isolation was performed by

using S.N.A.P. Miniprep Kit (Invitrogen) and three clones

of each variant were sequenced using DYEnamic ET

Terminator Kit and universal primers with a MegaBACE

1000 automated sequencer (GEHealthcare, Sunnyvale, CA).

Sequence was accepted if all reactions produced identical

results at a given base. The obtained sequences showed 100%

identity to one of the three ELA-DRA horse reported alleles

ELA-DRA*0101, ELA-DRA*0201 and ELA-DRA*0301

(accession numbers L47174, M60100 and L47172, respec-

tively). ELA-DRA*JBH11 allele (accession number

AJ575295) described in Brown et al. (11) was not found in

this study. The clones corresponding to the mentioned alleles

were used as reference samples for pyrosequencing typing.

ELA-DRA exon 2 nucleotide sequences were aligned

by using Clustal W1.8 (Baylor College of Medicine;

http://searchlauncher.bmc.tmc.edu). An internal sequenc-

ing primer (DRA-int 5#-GAGCCTCAAAGCTGG-3#)
complementary to positions 147–161 on the forward strand

of exon 2 was designed using Pyrosequencing Primer SNP

Design 1.01 software (http://www.pyrosequencing.com).

This primer is located upstream to the SNPs selected to

differentiate horse DRA alleles.

ForELA-DRA exon 2pyrosequencing, a number of horse

samples that showed different genotypes by SSCP typing

were PCR amplified with the same oligonucleotide primers

(34), except for forward primer that was biotinilated for the

subsequent purification step. PCR was performed with 2 ml
DNA in a 25 ml reaction mixture containing 1� PCR buffer

(Invitrogen), 0.15 mM for each primer, 200 mM each

dNTP, 2 mM MgCl2 and 0.5 units of Taq polymerase

(Invitrogen), in a PTC-100 thermocycler (MJ Research,

Boston, MA; Bio-Rad Laboratories Inc., Hercules, CA).

PCR conditions consisted of an initial denaturalization step

of 2 min at 95�C, followed by 45 cycles of 95�C for 30 s,

58�C for 30 s and 72�C for 1 min, plus a final extension at

72�C for 10 min.

After generation of the template by PCR, the product was

purified by capturing the biotinylated strand with strepta-

vidin-coated Sepharose beads (Streptvidin Sepharose�
High Performance; GE Healthcare). This immobilized

biotinylated strand was used as pyrosequencing template

(26, 33). Pyrosequencing was carried out with internal

sequencing primer diluted to 0.3 mM in the annealing buffer

provided by the supplier, using the Pyro Gold Reagent Kit

(Biotage AB, Uppsala, Sweden). A PyroMark Prep

Workstation (Biotage AB) was used for all steps other than

beadaddition and transfer. Sampleswere runonaPSQTM96

System instrument, and outgoing results were analysed

using pyrosequencing software (Biotage AB).

ELA-DRA exon 2 sequences were well characterized and

conserved in the areas that surround the SNPs of interest, so

it was possible to use a programmed nucleotide delivery for

sequencing. The specific order of nucleotide dispensation

keeps the extension of different alleles synchronized after

the polymorphic region and avoided the constraints of de

novo sequencing of polymorphic regions in heterozygous

DNA material (32). In addition, a specific nucleotide

dispensation order reduces the number of pyrosequencing

cycles required and thereby increase the pyrosequencing

quality. Homozygous and heterozygous genotypes were

unambiguously detected, showing to be more sensitive than

SSCP typing and having advantages in terms of throughput.

In this study, the application of the pyrosequencing

technique allows the validation of the genotypes detected

by SSCP typing in almost all samples. By this approach, we

could determine that some SSCP homozygous genotypes

were in fact heterozygous.

The pyrosequencing genotyping allowed us to detect the

two SNPs at positions 140 and 144 that defined the Equus

caballus-specific alleles ELA-DRA*0101, ELA-DRA*0201
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and ELA-DRA*0301. The pyrograms obtained for six

horses representing homozygous (Figure 1A–C) and het-

erozygous genotypes (Figure 1D–F) of ELA-DRA exon 2

alleles are shown in Figure 1. Nucleotide addition, accord-

ing to the order of nucleotides, is indicated below the

pyrogram and the corresponding DRA genotype is indi-

cated above the pyrogram. As shown in Figure 1, the two

analysed SNPs can be unambiguously identified. The signal

intensity of polymorphic sites in the homozygote doubled

the peak intensity observed in the heterozygote genotypes.

Although in same samples background was observed, noise

intensity was irrelevant because it was twofold or threefold

lower than the signal corresponding to the addition of

a unique nucleotide.

In this study, we did not detect new DRA alleles. As

mentioned above, DRA*JBH11 allele was not observed in

this study, but themethod detected nucleotide positions that

are not variable between *JBH11 and DRA*0101 sequen-

ces. However, a second internal primer would be incorpo-

rated to detect the nucleotide differences present in other

positions of the second exon sequence, even those species-

specific ones.

Previously published allele frequencies for the equine

DRA gene were determined by PCR-SSCP and RSCA

Figure 1 Pyrograms of the raw data obtained from solid-phase pyrosequencing on six horses representing homozygous and heterozygous genotypes of

ELA-DRAexon 2 alleles. Nucleotide addition, according to the order of nucleotides, is indicated below the pyrogram and the correspondingDRAgenotype

is indicated above the pyrogram. (A–C) homozygous; (D–F) heterozygous genotypes.
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typing (10, 11, 34). By the proposed sequence-based

methodology, it was possible to confirm the genetic

variability of DRA gene and preliminarily determine the

allele distribution in different breeds from Argentinean and

Spanish horse populations. The DRA*0101 allele was the

most common among all breeds, while DRA*0301 was not

detected in Arabs, Quarter Horses and Spanish Breeds

(Table 1), but the absence of this allelemaybe because of the

lownumber of individuals tested.However, allele frequencies

were estimated for comparison purposes to the same and

other breeds screened by PCR-SSCP and RSCA (10, 11, 34).

Table 1 showed the comparison of allelic frequencies and

expected heterozygosities (He) in all domestic horse breeds

reported up to date. Frequency differences among the same

breed could be influenced by the origin and number of horses

of the different equine populations examined.

Multiple SNPs have been identified to have a major

impact on susceptibility/resistance to autoimmune and

infectious diseases, consequently it is necessary to have

rapid and efficient SNP evaluation techniques to analyse

candidate genes such as ELA-DRA and genes that influence

immune response. As a first approach to screen poly-

morphism simultaneously in a large number of individuals,

SSCP typing is a very useful tool but is very dependent on

temperature and ion concentration, so electrophoresis

reproducibility is a relevant point if the objective of the

investigation is to associate genotypes to resistance/suscep-

tibility to a particular disease.

The close proximity of two or three variable positions of

interest allowed ELA-DRA base substitutions to be ana-

lysed all in one reaction. Additionally, several approaches

would be used to analysemore SNPs at the same timewithin

the same PCR amplicon. Furthermore, pyrosequencing

technique generates 30 to 40 base sequences with each

primer, and the throughput is 96 samples in approximately

20 min (33, 35). The potentiality of this methodology

increases because haplotype analysis is an area of intense

research for complex genetic phenotypes, so the knowledge

of haplotype for several SNPs in one gene is likely to provide

more information about genotype–phenotype links than the

underlying SNPs (36).

In conclusion, the pyrosequencing technology is an

efficient and faster new technology to SNP evaluation than

RFLP or SSCP analysis. SNP analysis in large population

studies is highly improved because of the reduction in the

amount of reagents used, the automation in outcome

acquisition and result interpretation. This could aid in the

rapid and efficient analysis of SNPs in many genes that

encode or are related to disease susceptibility.
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