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The insecticidal activity of a series of 62plant derivedmolecules against the chikungunya, dengue and zika vector,
the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure–Activity Relationships
(QSAR) analysis. The Replacement Method (RM) variable subset selection technique based onMultivariable Lin-
ear Regression (MLR) proves to be successful for exploring 4885molecular descriptors calculated with Dragon 6.
The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave-
One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computa-
tional step for designing less toxic insecticides.
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1. Introduction

The transmission of endemic diseases is mainly allocated tomosqui-
toes. There are reported alarming values of morbidity and mortality in
tropical and subtropical regions,(Katritzky et al., 2008) where it is esti-
mated that approximately 2.5 billion people live under the threat of
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various arbovirus types such as yellow fever, dengue and chikungunya
fever.(Ocampoa et al., 2011) This last one has an important impact on
public health in Brazil, Mexico, Colombia and Argentina, with 40,000
case reports of viral infection from 2013 to 2015.(World Health
Organization (WHO), n.d.-a)

During the last years, mosquitoes have been responsible for the
transmission of the zika virus (ZIKV) in Brazil and Colombia with
146,675 recognized cases.(World Health Organization (WHO), n.d.-b)
The main infection reason is the proliferation of vectors such as Aedes
aegypti, Aedes leucocaelenus, Aedes albopictus and Aedes sabethes.
Owing to continuous climatic changes, these insects have increased
their population, thus spreading to new territories where they have
not been previously found.(Gillij et al., n.d.) Moreover, the effectiveness
of pesticides used for diseases vector control has been increasingly af-
fected by environmental conditions.(WHO, 2006; WHO, 2009)

The vectors propagation control method, proposed by the Pan
American Health Organization (PAHO) during the fifties, has applied
the organochlorine insecticide dichloro-diphenyl-trichloroethane
(DDT) in twenty-one countries. Unfortunately, some years later, the
vector population has become highly resistant to this pesticide, thus
leading to its use ban. According to the National Pesticide Information
Center (NPIC), DDT currently persists in the environment resulting in
high toxicity to humans and animals as birds, fish and rats.(National
Pesticide Information Center- NPIC; Oregon State University, 1999) In
the eighties, Colombia has proposed the implementation of organo-
phosphorus compounds (OPs) such as temephos, with a high insecticid-
al activity against A. aegypti in larval stage and also in others non-
targeted animals.

Synthetic repellents have been developed for use as personal protec-
tion from bloodsucking insects. These substances have local action
modes acting on the central nervous system (CNS) of the insect, causing
deterrent effects that result in host avoidance. The widely used N,N-
diethyl-toluamide (DEET) repellent,(Environment Protection Agency-
EPA.; U. E. P. A., 1980) a compound of topical application, has some
problems with his efficacy, limited protection time, irritation cases are
reported, allergies and systemic intoxication in humans, and also resis-
tance in arthropods, such as Drosophila melanogaster house fly are
reported.(Bhattacharjee et al., 2005)

The need to find new environmentally friendly compounds having
insecticidal properties leads to the use of natural products, particularly
the essential oils (EOs) and plant extracts, which are complex mixtures
of bioactive compounds possessing various biological properties.(Song
et al., 2013; Ceferina et al., 2006) Secondary metabolites, such as ter-
penes, alkaloids and phenylpropanoids are abundant compounds in na-
ture, present in fruits, leaves and flowers. They are involved in a wide
range of applications and are found in cosmetics, therapeutic drugs
and food additives. Furthermore, they have outstanding biological and
organoleptic properties, such as d-limonenewith inhibitory and insecti-
cidal effects, pulgone with larvicidal property, menthol or linalool like
effective insect repellents, and eugenol with antifungal activity.(Rice &
Coats, 1994; Zhou et al., 2012; Carrasco et al., 2012)

The search for natural compounds with insecticidal activity against
A. aegypti requires time, large budget and reagents for biological and
clinical assays. In this sense, the possibility of employing a simple theo-
retical methodology for predicting biological, organoleptic or physico-
chemical properties of the compounds from knowing of its molecular
structure represents a plausible tool in the rational design of novel bio-
active molecules.

The Quantitative Structure–Activity Relationships (QSAR) theory is
pioneer in the prediction of physicochemical properties or biological
activities.(Hansch & Leo, 1995) Linear or non-linear mathematical
models are established that include molecular descriptors characteriz-
ing relevant structural aspects of the compounds.(Katritzky et al.,
1995) In fact, it has been reported that the assignation of the physico-
chemical meaning of the molecular descriptors could be assessed by
considering the chemical orthogonal space of chemical reactivity
descriptors,(Putz et al., 2017; Putz & Dudas, 2013) while the interaction
mechanism,whichmay not be clear from the combined influence of nu-
merical descriptors in the linear correlation, may be also pursued
through a computational-conceptual algorithm for better understand-
ing the chemical-biological interaction.(Putz & Dudas, 2013) QSAR
studies are able to reduce time and costs in experimental
measurements.(Ibezim et al., 2012)

In the present QSAR study, we predict the insecticidal activity
against A. aegypti fromplant derivedmoleculeswith known experimen-
tal data (62 molecules). The larvicidal activity is expressed as the medi-
an lethal concentration (LC50), a standard measure of the toxicity of
compounds, which measures the concentration at which 50% of third-
instar larvae show lethal effect after in a specified period of the testing
solutions. We apply the Replacement Method (RM) variable subset se-
lection approach applied in the linear regression analysis of 4885 Drag-
on descriptors.(Duchowicz et al., 2006) In the last years, the RM
technique has been successful for selecting relevant structural informa-
tion and for establishing linear QSAR models with high predictive
capability.(Duchowicz et al., 2008)

2. Materials and methods

2.1. Experimental data

The experimental LC50 insecticidal activities of 62 natural or semi-
synthetic compounds are collected from the literature.(Santos et al.,
2010; Santos et al., 2011; Scotti et al., 2014; Barbosa et al., 2012) For
modelling purposes, such values is converted into logarithmic scale
(LC50=logLC50). Fig. 1 displays the heterogeneousmolecular structures
analyzed, involving terpenes, phenylpropanoids, ketones and oxygenat-
ed compounds. The complete list of LC50 values of the molecular set
studied here is included in Table 1S of the Supplementary material.

2.2. Calculation of molecular descriptors

The initial conformations of the compounds are drawn in
HyperChem for Windows.(HyperChem 7, n.d.) The structures are pre-
optimized with the Molecular Mechanics Force Field (MM+), followed
by the PM3 (ParametricMethod-3) semi-empiricalmethod to refine the
structures using the Polak-Ribiere algorithm and a gradient norm limit
of 0.01 kcal mol‐1 A‐1.

Afterward, themolecular descriptors are calculated with the Dragon
6 software.(Talete srl, n.d.) The descriptors set contains 4885 variables
and includes several types characterizing the multidimensional aspects
of the chemical structure: constitutional, topological, geometrical,
charge, GETAWAY (geometry, topology and atoms-weighted assem-
bly), WHIM (weighted holistic invariant molecular descriptors), 3D-
MoRSE (3Dmolecular representation of structure based on electron dif-
fraction), walk and path counts, 2D and 3D autocorrelations, connectiv-
ity indices, burden eigenvalues, ETA indices, edge adjacency indices,
radial distribution function, Randicmolecular profiles, functional groups
counts and atom-centred fragments. For the descriptor set, we exclude
descriptors with constant or near-constant values, and those with at
least one missing value. With this process a set containing 1738
linearly-independent descriptors is achieved.

2.3. Molecular descriptor selection in MLR

The Multivariable Linear Regression (MLR) technique has proven to
be of multidisciplinary use and valuable applicability for establishing
predictive QSAR models.(Duchowicz et al., 2008) Linear models are
general and clearly show the effect of including/excluding descriptors
in the equation, therefore, it is possible to suggest cause/effect relation-
ships through such simple parallelisms. Themain advantage of develop-
ing linear regression models is that they pose fewer over-fitting (over-
training) problems, because the MLR method does not require too



14-R1=H 19-R2=H 23-R3=COCH3 27-R3=COPh

15-R1=COCH3 20-R2=COCH3 24-R3=H 28-R3=CH2CH3

16-R1=COCH(Cl)2 21-R2=COC(Cl)3 25-R3=CH3 30-R3=Si(CH3)2C(CH3)3

17-R1=COC(Cl)3 22-R2=COCH2CH3 26-R3=COCH2CH3 54-R3=CH2COOH

18-R1=COCH2CH3 50-R2=COCH2Cl

46-R1=COPh 51-R2=COPh

47-R1=CH2COOH 52-R2=CH2CH3

53-R2=CH2COOH

48-R4=OH, R5=CHO 55-R6=OCOPh

49-R4=CHO, R5=OH 56-R6=OH

Fig. 1. Molecular structures of terpenes, phenylpropanoids, ketones and oxygenated compounds with insecticidal activity data against Aedes aegypti.
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Table 1
The best QSAR models of different size established on 62 insecticidal compounds. The se-
lected model appears in bold.

d R2train Strain R2test Stest Rijmax
2 Molecular descriptors

1 0.30 0.41 0.39 0.43 0.00 CATS2D_05_LL
2 0.52 0.34 0.80 0.33 0.04 X5v, BLTF96
3 0.60 0.31 0.74 0.40 0.08 X4v, MATS5e, BLTF96
4 0.64 0.30 0.74 0.39 0.13 X4sol, SpMAD_B(m), GASTS7i, BLTF96
5 0.69 0.28 0.78 0.39 0.26 J .Dz(i), ATSC5s,JGI7, SpMax2.Bh(m),

H .052
6 0.74 0.26 0.76 0.55 0.40 JGI3, Chi1_EA(bo), Eig08_EA(dm),

CATS2D_08_DA, F10[C−C], BLTF96
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many optimized parameters during themodel design (only a regression
coefficient per descriptor). In this sense, we consider that theMLR tech-
nique is the best choice for developing predictive QSAR models, espe-
cially from molecules with few experimental data available, such as
the present study.

An active research field in the QSAR theory focuses on finding new
andmore efficient tools for the selection of the best descriptors that ex-
plain a specific experimental activity. In this work, we choose to the Re-
placement Method (RM) procedure. The RM technique is an efficient
optimization tool that generates MLR models on the training set by
searching in a set having D descriptors for an optimal subset having
db bD ones with smallest standard deviation (Strain) or smallest root
mean square error (RMSEtrain).(Duchowicz et al., 2005) The quality of
the results achievedwith this technique is quite similar to that obtained
byperforming an exact (combinatorial) full search (FS) ofmolecular de-
scriptors, although, of course, it requiresmuch less computationalwork.
The RM providesmodels with better statistical parameters than the one
obtained with the forward stepwise regression procedure, and quite
similar to the results found by the Genetic Algorithms approach.
Table 2S includes a list of mathematical equations involved in the pres-
ent study. The MATLAB-programmed algorithms used in our calcula-
tions are available on request.(Matlab 7.0, n.d.)

2.4. Internal and external validation in QSAR

We validate our QSARmodels in order to determine their predictive
power by predicting LC50 on compounds not considered during the cal-
ibration, and then comparing such predicted data with the real values.
Therefore, the whole set of 62 compounds is partitioned into training
(train) and test (test) sets. The training set is implemented for calibrat-
ing themodel and obtaining optimized parameters; the test set includes
“unknown” compounds not contemplated in the development proce-
dure of the model and demonstrates the predictive capability.

It is known that randomly splitting the compounds into training and
test sets does not lead to a rational selection, as both sets should have
similar structure-activity relationships. For this purpose, the split of
the dataset is carried out by means of the Balanced Subsets Method
(BSM),(Rojas et al., 2015) based on k-means cluster analysis (k-
MCA).(Xiao & Yu, 2012) The procedure involved in BSM ensures that
the training set is representative of the test set.

We apply the popular theoretical validation criteria based on cross
validation using the Leave-One-Out (LOO) method. The R2LOO (LOO ex-
plained variance) and SLOO (LOO standard deviation) statistical parame-
ters measure the stability of the QSAR model upon inclusion/exclusion
of molecules. According to the specialized literature, R2LOO should be
N0.5 for a valid model, although this is a necessary but not enough con-
dition for determining its predictive capability.

Another validation parameter for determining the model's robust-
ness is based on the Y-Randomization procedure.(Rücker et al., 2007)
This technique consists on scrambling the logLC50 values in such a
way that they do not correspond to the respective compounds. After cal-
culating 30,000 cases of Y-Randomization, the obtained standard devia-
tion (Srand) has to be a poorer value than the one found by considering
the true calibration (S). Therefore, when SrandNS it is expected that the
QSAR is not fortuitous and does not result from happenstance, assuring
a real structure-activity relationship.(Duchowicz et al., 2012)

Finally, another important validation criteria used here is the one
proposed by Golbraikh et al.(Golbraikh et al., 2003) where some
model's parameters should accomplish specific conditions for assuring
predictive capability: Rtest

2 N0.6, 0.85≤k≤1.15 or 0.85≤k'≤1.15, also
1−R0

2/Rtest2 b0.1 or 1−R0
'2/Rtest2 b0.1, and Rm

2 N0.5.

3. Results and discussion

Over the last years, there has been an increased number of research
studies with the aim to find novel insecticidal agents obtained from
vegetable materials; the natural products as extracts and the EOs have
secondary metabolites (terpenes, phenylpropanoids, alkaloids, flavo-
noids) that exhibit important toxic effects against adult female mosqui-
toes A. aegypti (Diptera: Culicidae).(Santos et al., 2010; Scotti et al.,
2014)

By means of the BSM, we split the dataset into a training set
(Ntrain=52) and a test set (Ntest=10, including compounds 3, 8, 13,
17, 19, 20, 22, 39, 46 and 62). The cluster centroid locations in terms
of descriptor values are provided as a 50×56 matrix in the c1.txt file
(Supplementary material).

Afterwards, the best linear regressions are established with the RM
approach, thus providing a way to explore 1738 different linearly-
independent descriptors calculated with the Dragon 6 program. The
RMminimizes the Strain parameter and selects the best “representative”
d=1−6 descriptors. Themodel selection is also evaluated based on the
coefficient of determination (R2) and the maximum R2 value between
descriptor pairs in the model (R2ijmax).

It is appreciated from Table 1 that Strain improves when d increases,
and that for the case when d = 6 the Stest parameter is significantly
higher in relation to such value for the rest of themodels. The descriptor
meanings are provided in Table 3S. Therefore, we conclude that a five-
variables QSAR equation has acceptable statistical parameters for both
the training and test sets:

log LC50 ¼ 8:45−0:45 �0:1ð Þ J:DZ ið Þ þ 0:02 �0:003ð ÞATSC5sþ 19:89 �6ð ÞJGI7−
−1:65 �0:2ð ÞSpMax2:Bh mð Þ þ 0:07 �0:01ð ÞH:052

ð1Þ

Ntrain ¼ 52; d ¼ 5; R2
train ¼ 0:69; Strain ¼ 0:28; Ntrain=d ¼ 10; F

¼ 20; R2
ij max ¼ 0:26; o 2:5Sð Þ ¼ 1

R2
LOO ¼ 0:60; SLOO ¼ 0:32; Srand ¼ 0:36

Ntest ¼ 10; R2
test ¼ 0:78; Stest ¼ 0:39

where F is the Fisher parameter, o(2.5S) indicates the number of outlier
compounds having a residual (difference between experimental and
calculated insecticidal activity) greater than 2.5-times Strain, and the
Ntrain/d ratio indicates that the model satisfies with the rule of thumb.

The QSAR model's predictive capability is defined with the external
validation test set, for which the percentage of explained variance is
78% and Stest=0.39. Moreover, R2LOO=0.60 and SLOO=0.32, indicating
that the equation does not deteriorate so much with the removal of
compounds (R2LOO should be higher than 0.50 for a validated model).
The Y-Randomization procedure leads to a valid structure-activity rela-
tionship withStrainbSrand(0.36). We also check that Eq. 1 accomplishes
the validation criteria suggested by Golbraikh et al.(Golbraikh et al.,
2003) in order to assure predictive capability: k=0.95, k'=1.04,
R0
2=0.76, 1−R0

2/Rtest2 =0.014, R0
'2=0.61, 1−R0

'2/Rtest2 =0.21 and
Rm
2 =0.69.
Now it is possible to examine the role of the molecular descriptors

involved in the QSAR model, by giving a brief description for them.
Five descriptors do not depend on molecular conformation: a 2D
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matrix-based descriptors, J .DZ(i): the Balaban-like index from Barysz
matrix weighted by ionization potential; two 2D autocorrelations,
ATSC5s: the Centred Broto-Moreau autocorrelation of lag 5 weighted
by I-state, and JGI7: themean topological charge index of order 7; a Bur-
den eigenvalues, SpMax2.Bh(m): the largest eigenvalue n. 2 of Burden
matrix weighted by the atomicmass; and finally, an Atom-centred frag-
ment, H .052: H attached to C0(sp3) with 1× attached to next C. The
model's correlationmatrix is provided in Table 4S, revealing the absence
of high inter-correlations between the 5 variables. Furthermore, the
values of the model's molecular descriptors are included in Table 5S.

Fig. 2A plot the 62 predicted log LC50 insecticidal activities as a func-
tion of the experimental values for the compounds of the training and
test sets. The dispersion plot of residuals in Fig. 2B tends to obey a ran-
dompattern around the zero line, suggesting that the assumption of the
MLR technique is fulfilled. It is found an outlier for Eq. 1, the compound
55 has an irregular behavior with respect to the other compounds. After
checking its structure,molecular descriptor values and experimental ac-
tivity, we conclude that Eq. 1 fails to predict this molecule.

The predictions of the insecticidal property by Eq. 1 demonstrate
that somemolecules have high values for the acute toxicity against Dip-
tera order insects (Table 6S). The compounds 7 and 8 have unsaturated
cyclic hydrocarbons with endo and exo double bonds, exhibiting toxic
effects against the Aedes aegypti mosquito in concentrations lower
Fig. 2. A. Predicted and experimental log LC50 values according to Eq. 1. B. Dispersion plot
of residuals.
than 50 μg/mL (logb1.7). Molecules 55 and 19 and its derivatives 21
and 50 also exhibit a relevant insecticidal activity; these compounds
have similar structures with an aromatic ring bonded to an activator
ester group with hydroxyl, chlorine or benzene substituent. Finally,
we observe that molecule 59 with the aliphatic structure (CO(CH2)6)
has an important acute toxicity value, quite similar to 55, but does not
have the same structure.

As a next step of the present study andwith themain purpose of im-
proving the LC50 predictions provided by Eq. 1, we investigate the per-
formance of QSAR when such models are established on plant derived
molecules from specific chemical classes. We search for the best linear
regressions on two differentmolecular sets. The first is ‘set A’, which in-
cludes 34 aromatic compounds (14–30, 32, 33, 36–38, 46–56, 58) and
the partition selected by means of BSM technique is Ntrain=27(14,16,
19–24, 26–30, 32, 33, 36, 38, 46, 48–50, 52–56, 58) and Ntest=7(15,
17, 18, 25, 37, 47, 51). The second molecular set is ‘set B’, including 28
aliphatic, cyclic and bicyclic compounds (1–13, 31, 34, 35, 39, 40–45,
57, 59–62) and the partition used is Ntrain=22 (1, 2, 4–8, 10, 11, 13,
31, 34, 35, 41–45, 57, 59–61) and Ntest=6 (3, 9, 12, 39, 40, 62).

Table 7S includes the best 1–5 variables MLR models found in such
pool of 1738 numerical descriptors through the RM technique. It is
noted that the best QSAR for set A involves 4 descriptors marked in
bold (Table 8S), while the best QSAR for set B has 2 descriptors
(Table 9S). According to the results shown in the table, they do not ame-
liorate the predictive power of our first model in terms of the Stest pa-
rameter (the training set statistics is better but not the one for the test
set). Therefore the LC50 predictions are not improved when the plant
derived compounds are considered as belonging to specific chemical
classes. Thus, the best quantitative structure–activity relationship
established on this dataset of 62 insecticidal activities is given by Eq. 1.

The statistical quality of Eq. 1 is quite similar to other previous re-
ported models by Scotti et al.,(Scotti et al., 2014) where 55 heteroge-
neous natural compounds are employed for calculating 128 molecular
descriptors from 3D Molecular Interaction Fields (MIFs) and GRID
Force Field via the VolSurf + commercial program. These authors
apply Principal Component Analysis (PCA), Consensus PCA (CPCA)
and Partial Least Squares Regression (PLS) methods. The results found
reveal that the first two PCs account for over 60% of the data variance
and the best model obtained in PLS includes d=6 descriptors with ac-
ceptable values for Rtrain

2 =0.71, Rtest2 =0.68 (14 compounds) and
R2LOO=0.67.

Finally, we consider the proposal of a simpler model having simpler
descriptors (simpler for interpretation - to be useful for designers or or-
ganic chemists). In this effort, we analyze the simpler descriptors out of
4885Dragon variables, resulting in a set of 233 descriptors. The best cal-
culated linear models are provided in Table 10S, while the following
four-variables QSAR model is thus selected for predicting and better
interpreting the acute toxicity:

log LC50 ¼ 3:38þ 0:07 �0:02ð ÞTRS
þ 0:02 �0:006ð ÞTIE−0:3 �0:06ð ÞUi
þ 0:38 �0:07ð ÞBLTF96 ð2Þ

Ntrain ¼ 52; d ¼ 4; R2
train ¼ 0:60; Strain ¼ 0:32; Ntrain=d ¼ 13; F

¼ 17; R2
ij max ¼ 0:21; o 2:5Sð Þ ¼ 2

R2
LOO ¼ 0:50; SLOO ¼ 0:36; Srand ¼ 0:40

Ntest ¼ 10; R2
test ¼ 0:87; Stest ¼ 0:33

The simpler molecular descriptors appearing in Eq. 2 belong to three
different classes: (i) two molecular property descriptors, Ui:
unsaturation index, and BLTF96: Verhaar Fish base-line toxicity from
MLOGP (mmol/l); one ring descriptor, TRS: total ring size, and a topo-
logical indices descriptor, TIE: E-state topological parameter. The



942 L.M. Saavedra et al. / Science of the Total Environment 610–611 (2018) 937–943
model's correlation matrix is provided in Table 11S, indicating the lack
of high intercorrelations. The numerical values of such four descriptors
is provided in Table 12S from the Supplementary material.

It is observed that the training quality of Eq. 2 does not improve the
result obtained for our first model of Eq. 1 (Rtrain2 =0.60, Strain=0.32
compared to Rtrain

2 =0.69 , Strain=0.28), and it involves two outliers
(instead of one) with a residual greater than 2.5-times Strain. Eq. 2 has
a better predictive capability for the test set (Rtest2 =0.87, Stest=0.33
compared to Rtest

2 =0.78 , Stest=0.39), but this may result by chance
as the training set quality behaves poorer in Eq. 2. The cross validation
parameter R2LOO=0.50 is also a poorer value than for Eq. 1 (R2LOO should
be greater than 0.5 for a valid model). However, the Y-Randomization
proof with StrainbS

rand(0.40) and the external validation criteria sug-
gested by Golbraikh et al., 2003, (k=0.93, k'=1.07, R02=0.86, 1−R0

2/
Rtest
2 =0.005, R0'2=0.82, 1−R0

'2/Rtest2 =0.05 and Rm
2 =0.81) are checked

in order to assure that a valid structure-activity relationship is achieved.
Fig. 3A & B plot the predictions and residuals for this model,
respectively.

In conclusion, the various reasons commented above allow us to se-
lect the five conformation-independent descriptors linear model (pro-
posed in Eq. 1) as the best model found in the present QSAR study for
predicting the insecticidal activities of plant-derived molecules against
A. aegypti vector.
Fig. 3. A. Predicted and experimental logLC50 values for the model with d = 4 simpler
descriptors. B. Dispersion plot of residuals.
4. Conclusion

In this work, we develop linear QSAR models from bioactive mole-
cules that result appropriate for predicting the insecticidal activity
against the Aedes aegypti mosquito, an important arbovirus vector that
affects the public health in Latin America. The 62 plant-derived com-
pounds are studied in three different molecular sets, which are selected
according to their chemical classes and partitioned through the Bal-
anced SubsetsMethod. The linear regressionmodels explore 4885Drag-
on 6 descriptors. The results obtained by means of the Multivariable
Linear Regression technique coupled with the Replacement Method
are successful, showing statistical parameters with suitable values that
corroborate quality, veracity and robustness of the equations. Therefore,
the best QSAR model found includes 5 non-conformational descriptors
and achieves acceptable predictive capability, thus can be used for cal-
culating the insecticidal activity in non-evaluated or non-synthetized
compounds. In this way, it is possible to obtain bioactive compounds
using renewable feedstocks, which have a rapid environmental degra-
dation, less toxic on non-target species and the ecosystems, and also
are effective against mosquitoes.
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