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Abstract – In many real-world complex systems, individuals have many kinds of interactions
among them, suggesting that it is necessary to consider a layered-structure framework to model
systems such as social interactions. This structure can be captured by multilayer networks and
can have major effects on the spreading of process that occurs over them, such as epidemics. In
this letter we study a targeted immunization strategy for epidemic spreading over a multilayer
network. We apply the strategy in one of the layers and study its effect in all layers of the network
disregarding degree-degree correlation among layers. We found that the targeted strategy is not as
efficient as in isolated networks, due to the fact that in order to stop the spreading of the disease
it is necessary to immunize more than 80% of the individuals. However, the size of the epidemic
is drastically reduced in the layer where the immunization strategy is applied compared to the
case with no mitigation strategy. Thus, the immunization strategy has a major effect on the layer
were it is applied, but does not efficiently protect the individuals of other layers.

Copyright c© EPLA, 2015

Introduction. – The new insights in the complex-
networks analysis, are no further considering networks as
isolated entities, but characterizing how networks inter-
act with other networks and how this interaction affects
processes that occur on top of them. A system composed
by many networks is called Network of Networks (NoN),
a terminology introduced a few years ago [1–4]. In NoN,
there are connectivity links within each individual net-
work, and external links that connect each network to
other networks in the system. A particular class of Net-
work of Networks in which the nodes have multiple types
of links across different layers [5–11], are called Multiplex
or Multilayer Networks [12]. The multiplex network ap-
proach has proven to be a successful tool in modeling a
number of very wide real-world systems, such as the In-
dian air and train transportation networks [13] and the
International Trade Network [14,15].

In the last couple of years, the study of the effect of
multiplexity of networks in propagation processes such
as epidemics has been the focus of many recent re-
searches [12,16–20]. In ref. [21] the research concentrated
on the propagation of a disease in partially overlapped

multilayer networks, because the fact that individuals
are not necessarily present in all the layers of a society
impacts the propagation of the epidemic. For the epi-
demic model they used the susceptible-infected-recovered
(SIR) model [22–24] that describes the propagation of non-
recurrent diseases for which ill individuals either die or,
after recovery, become immune to future infections. In
the SIR model each individual of the population can be
in one of three different states: Susceptible, Infected, or
Recovered. Infected individuals transmit the disease to
their susceptible neighbors with a probability β and re-
cover after a fixed time tr. The spreading process stops
when all the infected individuals are recovered. The dy-
namic of the epidemic is controlled by the transmissibil-
ity T , that is the effective probability that the disease
will be transmitted across any given contact. As in the
SIR model an individual cannot be reinfected, the disease
spreads through branches of infection that have a local
tree-like structure, and thus, this model, can be described
using the branching theory approach within a generat-
ing function formalism [25,26] that holds in the thermo-
dynamic limit. In [21], they found, theoretically and via
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simulations, that in the partially overlapped multiplex net-
work, the epidemic threshold decreases as the overlapped
fraction between layers increases, due to the fact that,
when the overlapping between layers increases, the num-
ber of paths the disease can take increases. They also
found that in the limit of small overlapping fraction, the
epidemic threshold is dominated by the most heteroge-
neous layer, this effect could have important implications
in the implementation of mitigation strategies.

In a real context, the immunization strategy in social
networks is not made at random. It is a well-known fact
that the bigger spreaders in social networks are those in-
dividuals with higher degrees. Some of the mitigation
strategies used in society nowadays are based on these
phenomena, for example, it is mandatory for all hospital
staff to get the vaccine against flu every year, since they
are (in average) the most connected and exposed individ-
uals in the population. This suggests that health agen-
cies always try to immunize those individuals that have,
somehow, more chances to get infected and to propagate
the disease. Motivated by this, in this letter we study a
strategy in overlapped multiplex networks where the most
connected individuals in one layer are identified and vac-
cinated, which is called targeted immunization strategy.
Those immunized overlapped individuals will remain im-
munized in all layers of the network.

Model and results. –

Immunization strategy. In our model we use as the
substrate for the epidemic spreading a multiplex network
formed by two layers, called A and B, of the same size N ,
and with degree distribution PA(k) and PB(k) which are
the probability that a random chosen node in layer A and
B, respectively, has degree k. An overlapping fraction q
of shared individuals is active in both layers.

For the targeted immunization strategy, we start by im-
munizing a fraction p of the highest connected individuals
in layer A, and as we assume no degree correlation be-
tween layers, the immunization in layer B will be at ran-
dom. Immunized individuals cannot be infected by the
disease and will remain in the susceptible state during all
the propagation process.

Let ψ(k) be the probability that a node is not immu-
nized given that it has degree k, then PA(k)ψ(k) is the
probability of a node in layer A to have degree k and not
being immunized, and

FA
0 (x) =

kmax∑
k=kmin

PA(k)ψ(k)xk (1)

is the probability generating function for this distribu-
tion [25] and kmin and kmax are the minimum and max-
imum values of the degrees. Note that FA

0 (1) = 1 − p,
where 1 − p is the fraction of the non-immunized individ-
uals in layer A.

If we follow a randomly chosen link in layer A, the node
we reach has degree distribution proportional to kPA(k),

rather than just PA(k), because a randomly chosen link is
more likely to lead to a node with higher degree. Hence
the equivalent of eq. (1) for such a node is [25]

FA
1 (x) =

∑
k kPA(k)ψ(k)xk−1

∑
k kPA(k)

=
FA′

0 (x)
〈kA〉 , (2)

where 〈kA〉 is the average node degree in layer A, and
FA′

0 (x) = dFA
0 (x)/dx.

We need to define the function ψ(k) that will depend on
the immunization strategy used. For the targeted immu-
nization, in layer A we immunize a fraction p of the higher
degree nodes, thus, there will be a degree cutoff ks in that
layer such that all individuals with degree higher than ks,
and a fraction w of individuals with degree ks in layer A
are immunized. Therefore, for this strategy, ψ(k) is

ψ(k) =

⎧⎪⎪⎨
⎪⎪⎩

0, if k > ks,

1, if k < ks,

w, if k = ks.

(3)

The total fraction of immunized individuals p can be
written as

p = wPA(ks) +
kmax∑

k=ks+1

PA(k), (4)

using the normalization property of the degree distribution∑kmax
k=0 PA(k) =

∑ks

k=0 PA(k)+
∑kmax

k=ks+1 PA(k) = 1, we can
write w as

w =
p− 1 +

∑kmax
k=0 PA(k)

PA(ks)
. (5)

In layer B, there is not a direct immunization strategy,
however, the overlapped individuals that were immunized
in layer A, will be also immunized in layer B but at ran-
dom. Thus, there is a fraction pq of random immunized
individuals in layer B.

Propagation process over the immunized multiplex net-
work. After the immunization strategy takes place, we
start the propagation process by infecting one randomly
chosen susceptible (non-immunized) individual in layer A.
The spreading process then follows the SIR dynamics in
both layers, and the disease spreads through branches of
infection. We assume that the transmissibility is the same
in both layers and thus all individuals in the system spread
equally. The overlapped nodes in both layers have the
same state because they represent the same individuals.

One parameter that contains all the information about
the branching process is the probability Qi, that choosing
a random selected link, it does not leads to the infinite
branch of infected individuals in layer i, with i = A,B.
The probabilities QA and QB satisfies the following self-
consistent equations:

QA = 1 − FA
1 (1) + (1 − q) FA

1 (1 − T + TQA)
+ q FA

1 (1 − T + TQA) GB
0 (1 − T + TQB), (6)

QB = pq + (1 − q) GB
1 (1 − T + TQB)

+ q GB
1 (1 − T + TQB) FA

0 (1 − T + TQA), (7)
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Tc =
FA′

1 (1) + (κB − 1)(1 − pq) −
√

(FA′
1 (1) − (κB − 1)(1 − pq))2 + 4q2FA

1 (1)2〈kA〉〈kB〉
2FA′

1 (1)(κB − 1)(1 − pq) − 2q2FA
1 (1)2〈kA〉〈kB〉 , (8)

where GB
0 (x) =

∑kmax
k=kmin

PB(k)xk is the generating func-
tion of the probability to reach a node with degree k in
layer B and GB

1 (x) =
∑kmax

k=kmin

kPB(k)
〈kB〉 xk−1 is the generat-

ing function for the probability to reach a node of degree
k in layer B by following a random chosen link.

Equation (6) has three terms, since the probability QA

to not reach the infected branches following a random cho-
sen link in layer A, can be written as the probability that
an immunized individual is reached (1 − FA

1 (1)), plus the
conditional probability that the reached individual does
not have spread the disease given that it is not immunized.
This last conditional probability is split into two terms, de-
pending on whether the reached individual is one of the q
overlapped fraction or not. If the individual is only present
in one layer with probability 1 − q, the branch will never
reach layer B while if the individual is present in both
layers with probability q, the branch will reach a node in
layer B and can expand through the k connections of the
reached node in that layer. An analogous interpretation
can be made for eq. (7).

The solution of the system (6) and (7) above is given
by the intersection of QA and QB. In the criticality, this
intersection can be derived by solving the equation |J −
I| = 0, where | | denotes the determinant, I is the identity
and J is the Jacobian matrix of the system of equations (6)
and (7), whose elements are Jij = ∂Qi/∂Qj, with i =
A,B and j = A,B. The Jacobian has to be evaluated
in QA = QB = 1, since at criticality the disease does
not spread and there are no branches of infection. There
are two different eigenvalues for each one of the possible
solutions of the system. The stability of each solution can
be analyzed by the behavior of the eigenvalues, i.e. sink,
source or saddle [27]. We find that only one of the possible
solutions is stable and, therefore, the epidemic threshold
is given by Tc(q) ≡ Tc:

see eq. (8) above

where FA′
1 (1) = dFA

1 (x)/dx|x=1 and Tc = 1/(κ−1), where
κ is the total branching factor of the multilayer networks.

In fig. 1 we plot the plane T -q obtained from eq. (8),
for different values of p. We use a power law degree dis-
tribution PA/B ∼ k−γA/B in both layers with exponents
γA = 2.5 and γB = 3.5 in layer A and B, respectively,
where kmin = 2 and kmax = 250 are the minimum and
maximum connectivity. Note that layer A in which the
immunization is applied is the most heterogeneous layer,
however similar results are found using different degree
distributions on each layer. The lines represent Tc for
many values of p, above the lines there is an epidemic
phase and below Tc only outbreaks exists (non-epidemic
phase). Figure 1 shows that Tc has different behaviors
with q depending on the value of p.

0.01 0.2 0.4 0.6 0.8 1
q

0

0.2

0.4

0.6

0.8

1

T

Epidemic phase

Epidemic-free phase

Fig. 1: (Color online) Plane T -q for the SIR model in the
multiplex network, when the targeted immunization strategy is
applied, for different values of the immunized fraction p. Both
layers A and B have power law degree distributions PA/B ∼
k−γA/B with γA = 2.5 and γB = 3.5 with kmin = 2 and kmax =
250. The lines denote the theoretical values of Tc for different
values of q obtained numerically from eqs. (6) and (7). From
top to bottom p = 0.9; 0.7; 0.5; 0.3; 0.1; 0.01. Above the lines
the system is in the epidemic phase for each value of p, and
below it is in the epidemic-free phase where the disease dies out.

For q = 0 (not shown) the critical threshold corre-
sponds to an isolated layer in which the disease starts,
i.e. layer A and where the critical threshold is given by
Tc = 1/FA′

1 (1), where FA′
1 is not the branching factor of

layer A, but gives a measure of the heterogeneity of the
layer. For q → 0 the process is dominated by the most
heterogeneous layer [21], therefore, the epidemic thresh-
old converges to the threshold of that layer. In fig. 1 we
can see that for p = 0.01 and q → 0, Tc = 1/FA′

1 (1), due
to the fact that the most heterogeneous layer is A, while
for p ≥ 0.1, Tc = 1/GB′

1 (1) = 1/κB − 1 were κB is the
branching factor of layer B.

From the phase diagram (see fig. 1) we can see that for
p < 0.2, Tc decreases with q, this behavior agrees with the
expected non-immunized behavior, since as q increases,
the total branching factor of the network increases and
thus Tc decreases [21]. For p > 0.2, Tc increases with
q, due to the fact that layer A gets fragmented and the
disease spreads through layer B, and as q increases, the
fraction pq of the random immunized individuals in layer
B increases hindering the spreading through layer B and
thus, Tc increases with q. When the fraction of immunized
individuals pq > 0.72, layer B also gets fragmented, and
the disease cannot spread at all, thus, the epidemic regime
disappears as shown in fig. 1 for p = 0.9 and q � 0.79. We
can understand this behavior using percolation theory, for
the targeted percolation process. For this process it was
found that [28] the critical value of the percolation frac-
tion p̂c in scale-free networks with exponent γ = 2.5 is
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Fig. 2: (Color online) Fraction of recovered individuals in the final state of the epidemics for layer A, RA (black), and layer B,
RB (red), as a function of T . Both layers have power law degree distributions PA/B ∼ k−γA/B with γA = 2.5 and γB = 3.5 for
layer A and B, respectively. Lines denote the theoretical results obtained from eqs. (9) and (10) while symbols denote numerical
simulation results for layer size N = 105 and over 105 network realization. (a) q = 0.2 the dashed lines correspond to the case
without immunization strategy p = 0, and p = 0.1; 0.3; 0.5; 0.7; 0.9 from top to bottom; (b) q = 0.9, the dashed lines correspond
to the case without immunization strategy p = 0, and the full lines and symbols corresponds to p = 0.1; 0.3; 0.5; 0.7; 0.9 from
top to bottom.

p̂c ≈ 0.2 such that for p > p̂c the networks is fragmented
and for p < p̂c there is a giant connected cluster, that is
also the critical threshold corresponding to the targeted
immunization strategy in layer A. In layer B, there is a
random immunization equivalent to a random percolation
process, for which the critical value of percolation frac-
tion p̂c in scale-free networks with exponent γ = 3.5 is
p̂c ≈ 0.72 [28] and corresponds to the critical threshold
due to the random immunization strategy in layer B. De-
spite that, the targeted immunization strategy is the best
strategy to stop propagation in isolated networks, in over-
lapped multiplex networks it is not as efficient due to the
fact that the threshold is dominated by the most hetero-
geneous network. From the phase diagram we can observe
that in order to suppress the epidemic phase one has to im-
munize more than 80% of the population in layer A. Thus
even if network A is fragmented (p > 0.2) the disease can
still propagate in network B which is more heterogeneous
than the fragmented layer A. Notice that layer B is not
fragmented for pq < 0.72.

However, even if it is hard to stop the epidemic, its size
can be drastically reduced compared to the case where no
strategy is applied. The size of the epidemic can be com-
puted as the total number of recovered individuals in the
final state of the epidemic, and is given by

RA = q
[
1 − p− FA

0 (1 − T + T Q∗
A)GB

0 (1 − T + T Q∗
B)

]

+ (1 − q)
[
1 − p− FA

0 (1 − T + T Q∗
A)

]
, (9)

RB = q
[
1 − p− FA

0 (1 − T + T Q∗
A)GB

0 (1 − T + T Q∗
B)

]

+ (1 − q)
[
1 −GB

0 (1 − T + T Q∗
B)

]
, (10)

where Q∗
A and Q∗

B are the non-trivial solutions of eqs. (6)
and (7) for T � Tc.

In figs. 2(a) and (b) we plot the results of RA and RB as
a function of T , obtained both theoretically from eqs. (9)
and (10) and from the numerical simulation. We found a
good agreement between the theoretical results (lines) and
the numerical simulations (symbols). In fig. 2(a) we show

the results for q = 0.2 and different values of p. If we com-
pare the results with and without strategy (dashed line)
we can see that the immunization strategy not only affects
the epidemic threshold, but also decreases the impact of
the disease in both layers, since at fixed T , both RA and
RB decreases with p. For p ≥ 0.2 layer A gets fragmented
and the disease never reaches more than 30% of the indi-
viduals in that layer, however the impact of the disease in
layer B is significant and even for p = 0.9, more than 60%
of the individuals in layer B can be infected. Therefore,
for an overlapping fraction between layers q = 0.2, the im-
munization strategy has a major effect on the layer were
it is applied, but does not protect the individuals of other
layers.

In fig. 2(b), we show RA and RB for q = 0.9, and we
can see that even though one needs to immunize more than
80% of the individuals to suppress the epidemic phase, the
impact of the disease in both layers decreases significantly
with p. We compare RA and RB with and without strat-
egy (dashed line) and see that, in this regime, due to the
high overlapping between layers, the effect of the immu-
nization strategy on layer B is stronger, making the prop-
agation through that layer difficult. Therefore when the
overlapping between layers is high, the strategy is more
efficient to protect the individuals of the whole network.

Conclusions. – In this letter we study, theoretically
and via simulations, a targeted immunization strategy
for epidemic spreading in a partially overlapped multi-
plex network composed by two layers with an overlapping
fraction q. We immunize a fraction p of individuals in
one layer of the network and study how this process af-
fects the propagation of the disease through all layers. We
found that the branching theory gives a good approach
of the phenomena. For q → 0 the critical threshold of
the epidemic is dominated by the threshold of the most
heterogeneous layer for all p. When p is smaller than the
critical percolation threshold of layer A, Tc decreases with
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q, as in the non-immunized model presented in [21]. When
p is above the criticality of layer A, this layer gets frag-
mented and thus the epidemic can only spread through
layer B. The fraction of immunized individuals in layer
B is pq, thus as q increases Tc increases. This behavior
holds until the fraction pq exceeds the critical percolation
threshold of layer B. Above this threshold layer B also
gets fragmented and thus, the disease cannot spread at
all, suppressing the epidemic phase. This regime can only
be reached if one immunizes more than 80% of the indi-
viduals. However, even if it is hard to stop the epidemic,
its size can be drastically reduced compared to the case
where no strategy is applied. We found that the immu-
nization strategy has a major effect on the layer were it is
applied, but does not efficiently protect the individuals of
other layers.

Real networks of networks such as the worldwide port
network and a worldwide airport network [29] have as-
sortative degree-degree correlation between networks, i.e.
biggest airports are connected with bigger ports. In order
to have a realistic scenario we should consider degree-
degree correlation between layers. If the correlation is as-
sortative, then the immunization strategy in layer B will
be also targeted and thus the strategy would be more ef-
fective since layer B will get fragmented easier. In a future
work, we will study deeply the effects of correlations be-
tween layers in the epidemic spreading and immunization
strategies in multilayer networks.

After this letter was submitted a similar strategy was
published by Zhao et al. in [30].
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[7] Gómez S., Dı́az-Guilera A., Gómez-Gardeñes J.,
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