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Abstract

Dynamical evolution of thin shells composed by different kinds of degrees of freedom

collapsing within asymptotically AdS spaces is explored with the aim of investigating models

of holographic thermalization of strongly coupled systems. From the quantum field theory

point of view this corresponds to considering different thermal quenches. We carry out a

general study of the thermalization time scale using different parameters and space-time

dimensions, by calculating renormalized space-like geodesic lengths and rectangular minimal

area surfaces as extended probes of thermalization, which are dual to two-point functions

and rectangular Wilson loops. Different kinds of degrees of freedom in the shell are described

by their corresponding equations of state. We consider a scalar field, as well as relativistic

matter, a pressureless massive fluid and conformal matter, which can be compared with

the collapse of an AdS-Vaidya thin shell. Remarkably, in the case of AdS5, for conformal

matter, the thermalization time scale becomes much larger than the others. Furthermore, in

each case we also investigate models where the cosmological constants of the inner and outer

regions separated by the shell are different. We found that in this case only a scalar field shell

collapses, and that the thermalization time scale is also much larger than the AdS-Vaidya

case.

1wbaron@fisica.unlp.edu.ar
2dgalante@perimeterinstitute.ca
3martin@fisica.unlp.edu.ar



Contents

1 Introduction and motivation 2

2 Thermal quenches and equations of state 5

2.1 Shell velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mass function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Dynamical evolution of shells of matter . . . . . . . . . . . . . . . . . . . . . 9

3 Holographic thermalization 10

3.1 Renormalized geodesics lengths . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Renormalized rectangular minimal area surfaces . . . . . . . . . . . . . . . . 13

4 Results of dynamical holographic thermalization 14

5 Discussion and conclusions 18

1



1 Introduction and motivation

The idea of the present work is to investigate different kinds of consistent holographic thermal

quenches modeling thermalization processes in strongly coupled systems. As we shall explain

in detail, by construction, they satisfy the general relativity equations of motion and the

positive energy conditions. Our particular interest is focused on the strongly coupled quark-

gluon plasma (QGP) produced by the collision of heavy ions at the Relativistic Heavy Ion

Collider (RHIC) and the Large Hadron Collider (LHC). As it is well-known the formation and

evolution of a quark-gluon plasma can be viewed as a sequence four distinct steps. First, two

heavy ions, typically gold nuclei, move towards each other at relativistic velocities, having

kinetic energies of order 100 GeV/nucleon. Next, an almond-shape region where the two

nuclei collide is developed, and a part of their kinetic energy transforms into intense heat,

leading to the beginning of formation of the plasma of quarks and gluons. This is what has

been called thermalization of the plasma. When the thermalization is completed the resulting

system is a strongly coupled QGP. After a very short while the system expands, cools down

and, finally, a multitude of hadrons emerges from the plasma. Given the fact that the QGP in

thermal equilibrium behaves as an strongly coupled system, a reasonable working hypothesis

is that the thermalization described above may also occur within a strongly coupled regime

of QCD. In a number of interesting articles thermalization has been addressed using the

gauge/gravity duality [1, 2, 3]. In these papers the dual process is modeled as the collapse of

a thin shell moving at the speed of light, using an AdS-Vaidya type metric, which represents

a thermal quench [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Interestingly, there

have also been studies on holographic thermalization described as a dual process of black

hole formation [20, 21, 22, 23, 24, 25, 26, 27]. In addition, to our knowledge, reference [28]

has been the first one to consider a gravity dual picture of the entire process of strongly

coupled supersymmetric Yang-Mills (SYM) plasma formation and cooling using a model

where the scattering process initially creates a holographic shower in the AdS bulk. It has

been argued [28] that the subsequent gravitational fall leads to a moving black hole, which

is the gravity dual model corresponding to an expanding and cooling heavy-ion fireball.

Moreover, very recently, it has been investigated the high and low temperature behavior of

non-local observables in strongly coupled gauge theories that are dual to AdS space-time

[29].

In the present case we shall consider a holographic dual description of the thermalization

process. From the point of view of the boundary quantum field theory (QFT), the initial

state that one considers is a system at zero temperature. Then, there is a sudden injection of

energy which induces an abrupt change in the state of the system. The system evolves leading

to a final thermal state which will be a strongly coupled SYM plasma. A very important

question is how to model the thermal evolution of the system from the zero temperature state

towards the thermally equilibrated SYM plasma, keeping in mind that the initial condition
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is a thermal quench instead of an adiabatic change. Indeed, this is a very hard problem if one

tries to study its dynamics in terms of QFT methods. On the other hand, the holographic

evolution of a thermal quench can be easily followed by numerical calculations in its gravity

dual model. So far, the studies [4]-[19] have considered the evolution of an AdS-Vaidya

thin shell, even though at the moment it is not known how to get the initial Vaidya shell

condition from a QFT evolution. On the gravity side, we know that it is also possible to

solve the equations of motion (EOM) of shells composed by different degrees of freedom,

i.e. whose dynamics is described by different equations of state (EOS). Depending on the

particular EOS the shells will move and collapse at different velocities in the bulk. This is

very interesting since it allows us to investigate the thermalization time scale of different

kind of shells. On the boundary theory side, after the collision occurs, the system evolves in

a certain way until it reaches thermal equilibrium. On the other hand, on the holographic

gravitational dual model, this should be reflected on the evolution of a collapsing shell, which

depends on the EOS governing the degrees of freedom which compose it. Thus, we shall be

focused at investigating the variation of the thermalization time scale of two-point functions

of gauge invariant local operators and rectangular Wilson loops, by calculating their dual

renormalized space-like geodesic lengths and rectangular minimal area surfaces. These are

extended probes within the dual geometry for thermal equilibrium in the dual QFT. The

interesting new feature of this work is that we change the nature of the shell composition. We

study different kinds of degrees of freedom in the shell which are described by distinct EOS.

These include a scalar field, conformal matter, relativistic matter and a pressureless massive

fluid, which can be compared with the collapse of an AdS-Vaidya thin shell. Furthermore,

we also investigate models where the cosmological constants of the inner and outer regions

are different. On the field theory side this corresponds to changes in the coupling of a SYM

theory at zero temperature compared with the SYM plasma coupling at thermal equilibrium.

It is worth noting that for a SYM plasma in thermal equilibrium the system is probed at

momentum scales below the equilibrium temperature T . This is the so-called hydrodynamical

regime, at which the gauge/string duality has been proved to be particularly useful. An

important number of investigations have been done in this framework. A very important

work in this context is the one of reference [30], where it has been calculated the shear

viscosity of the finite-temperature N = 4 SU(N) SYM theory plasma, in the large N limit,

at the strong-coupling regime. The first leading order string theory corrections to the shear

viscosity over entropy density ratio of strongly coupled SYM plasmas has been obtained

in [31]. Besides, electrical charge transport coefficients of strongly coupled SYM plasmas

have also been investigated within the gauge/string duality. These include the electrical

conductivity, which in the large coupling limit was firstly calculated in [32], while finite ’t

Hooft coupling corrections were obtained from type IIB string theory corrections at order

α′3 in [33, 34]. Additionally, the photoemission rates of this plasma have been computed

in [35] using the gauge/string duality, while the corresponding leading order string theory
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corrections have been reported more recently in [36, 37]. Besides, holographic photon and

dilepton production in a thermalizing plasma have been investigated within the quasi-static

approximation [38, 39, 40].

We would like to emphasize some interesting conclusions which follow from our numerical

results. We observe that from the curves of thermalization discussed in this paper, by fixing

to one both the inner and outer radii, the shells composed by a pressureless massive fluid

and by a scalar field are very close to each other, and almost overlap completely the curve

corresponding to the AdS-Vaidya shell moving at the speed of light. On the other hand,

relativistic matter thermalizes later, depending on its EOS the difference becomes more

important, and finally the shell composed by conformal matter thermalizes much later than

the time the AdS-Vaidya shell takes to collapse. We would like to emphasize that this

large thermalization time delay is a very remarkable effect, since we think that it opens the

possibility of developing new type of models showing slower thermalization in comparison

with the AdS-Vaidya models. This is for both space-like renormalized geodesic lengths for

space-time dimensions d = 2, 3 and 4, and for renormalized rectangular minimal area surfaces

for d = 3 and 4. We also have numerically investigated what happens when both radii are

equal to each other but we change both simultaneously. Then, we study the effect on the

thermalization curves when the inner and outer radii are different. We have obtained an

interesting analytical result, namely: the positive energy condition implies that the inner

radius must be equal or smaller than the outer one, i.e. the absolute value of the vacuum

energy density of the inner region must be equal or larger than the one of the outer region. In

addition, only in the case of a shell composed by a scalar field the positive energy condition

allows for the collapse of the shell separating regions with different inner and outer vacuum

energy density to be produced.

This paper is organized as follows. In section 2 we introduce the formalism, including the

description of the thermal quenches corresponding to different kinds of degrees of freedom

living in the collapsing shells. We derive the expressions for the velocity of the shell and its

mass function. Then, we describe the strongly coupled SYM plasma thermalization process in

terms of the evolution of a massive shell. We introduce the extensive gravitational probes we

use to measure the thermalization time scale, which includes renormalized space-like geodesic

lengths and rectangular minimal area surfaces. The latter correspond to Wilson loops in a

4-dimensional QFT on the boundary, and are proportional to entanglement entropy for a

3-dimensional boundary QFT. These are introduced in section 3. In section 4 we present our

results on holographic thermalization for different dimensions of space-time and by exploring

different sets of parameters. In the last section we discuss the results.
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2 Thermal quenches and equations of state

The dynamics of a massive thin shell is determined by the Israel junction conditions [41]. The

shell separates two different geometries, each one being a solution of the Einstein equations,

and the Israel’s conditions tell us how to match them.

Since the shell is massive, the inner solution will typically be a vacuum one, while the

outer geometry will be described by an AdS-Schwarzschild-type solution. The shell can be

made of ordinary particles, like null dust as described by the AdS-Vaidya solution, which

gives for instance the geometry generated by a spherically symmetric beam of photons in the

Eikonal approximation [42, 43]; by conformal matter as described in [44]; moreover, it can

also be interpreted as the domain wall of a solitonic solution connecting the inner and outer

geometries with different cosmological constants associated with the vacuum expectation

value of certain scalar field.

In the next section we will obtain the expression for the velocity of the shell collapsing in

a AdSd+1 space-time. The inner geometry will be a pure AdS space, while the outer space

will be an asymptotically AdS-Schwarzschild black hole. Notice though that we allow for the

radii of both anti-de Sitter spaces to be in principle arbitrary. Moreover, in general terms its

evolution can be followed for any EOS governing the degrees of freedom of the shell. Thus,

by setting a particular EOS one can determine the velocity of the shell.

2.1 Shell velocity

We find useful to describe the AdS spaces by using Eddington-Finkelstein-like coordinates4.

In terms of these the metrics inside and outside the shell are given respectively by

ds2in = g
(in)
MN dXM

0 dXN
0 =

1

z2
(

−dv2 − 2R0 dvdz + d~x2
)

,

ds2out = g
(out)
MN dXM

f dXN
f =

1

z2
(

−fout(z) dv
2 − 2Rf dvdz + d~x2

)

, (1)

where indices M and N = 1, · · · , d+ 1, while ~x = {xi} with i = 1, · · · , d− 1 and R0 and Rf

are the AdS radii corresponding to the inner and outer regions, respectively, and

fout(z) = 1− 2M(Rfz)
d . (2)

Given the above metrics inside and outside the shell, it is natural to use the following shell

embedding metric

ds2shell = h(shell)
µν dxµdxν =

1

z2
(

−dτ 2 + d~x2
)

, (3)

4The time coordinate is defined as usual through dt = dv +Rff
−1

out(z)dz.
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where we have defined x0 ≡ τ , so that hµν is conformally flat. The proper area of the shell

allows us to identify the z variable inside, over and outside the shell.

The energy-momentum tensor necessarily has the form,

TMN = δ(η)SMN − ρ0 g
(in)
MN Θ(−η)− ρf g

(out)
MN Θ(η) , (4)

where η is the coordinate orthogonal to the shell in the Gaussian normal coordinate system.

SMN represents the energy-momentum tensor of the shell. ρ0 and ρf denote the vacuum

energy density of the anti-de Sitter spaces, ρ0,f = −d(d−1)

2κ R2

0,f

, with κ = 8πG, G being the

(d+ 1)-dimensional Newton constant.

By computing the divergence of the energy-momentum tensor, TMN
;N , and demanding

the coefficients of δ(η) and δ′(η) to vanish separately, it can be shown that the surface

energy-momentum tensor must vanish in the normal directions, SMη = 0, and the non-

trivial components are conserved in the lower-dimensional sense, i.e.

Sµν
|ν = 0 , (5)

where “ | ” denotes the covariant derivative constructed with h
(shell)
µν . Another consequence

of TMN
;N = 0 is the junction condition

{Kµν}Sµν = ρ0 − ρf , (6)

where {Kµν} = 1
2
[Kµν(in) +Kµν(out)], while Kµν = nµ;ν denotes the extrinsic curvature, n

being the normal vector to the shell.

We will consider a shell composed by a perfect fluid, so that

Sµν = z(τ)2(ǫ+ p) uµuν + p hµν , (7)

where the velocities uµ are defined as dxµ

dτ
, with τ being the conformal time, not to be confused

with the proper time. Then, equation (5) implies

ǫ̇ = (d− 1)
ż

z
(ǫ+ p) , (8)

where dot stands for derivative with respect to τ . In the above expression ǫ is the energy

density and p is the pressure within the shell.

Einstein equations of the (d+1)−dimensional space-time lead to the so-called Israel junc-

tion conditions, namely:

[Kµν − h(shell)
µν trK] = κSµν , (9)

the square bracket [ · ] denotes the difference of the quantity inside and outside the shell.
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The velocity of the fluid is set to be in the radial direction, so that uµ → (v̇, ż,~0), and the

normal vector nµ defined as the unit vector orthogonal to uµ is easily found and leads to the

following extrinsic curvature

Kxixj (out) =

√

fout +R2
f ż2

Rf z2
δij , i, j = 1, 2, · · · , d− 1 ,

Kττ (out) =
d

dz

√

fout +R2
f ż2

Rf z
, (10)

in the outer region. In the inner region there are similar expressions by just replacing fout ⇒ 1

and Rf ⇒ R0. Then, the Israel junction conditions become

√

R−2
0 + ż2 −

√

fout R
−2
f + ż2 =

κ

d− 1
ǫ . (11)

After some algebra equation (11) leads to

√

R−2
0 + ż2 +

√

fout R
−2
f + ż2 =

d− 1

κ ǫ

(

R−2
0 − fout R

−2
f

)

, (12)

which represents the junction condition (6). In fact, it implies

ǫ
d (z{Kx1x1})

dz
+ (d− 1) p {Kx1x1} = −d(d− 1)

2κ

(

1

R2
0

− 1

R2
f

)

. (13)

Then, using equation (8) this differential equation can be integrated to obtain equation (12).

Equations (11) and (12) can be used to derive the following expression

ż2 =
h2 − 2

(

R−2
0 + fout R

−2
f

)

h +
(

R−2
0 − fout R

−2
f

)2

4h
, (14)

where in order to make the notation simpler we have introduced h = ( κ ǫ
d−1

)2.

Since we are assuming that the shell is composed by a perfect fluid the entropy must be

a constant, which can be negligibly small such that its EOS can be reduced to p = p(ǫ). In

many physical situations the EOS can exactly or at least approximately be recast in the form

p = a ǫ, with a being a constant. For instance, when a = 1
d−1

it represents a fluid composed

by conformal matter (i.e. its degrees of freedom have a traceless energy-momentum tensor).

On the other hand, the case with a = 0 corresponds to dust, while a = −1 (see [45]) can be

modeled by a scalar field 5. In cosmological applications these are commonly employed in

5To see this, notice that the energy-momentum tensor for a scalar field is

Tµν = ∂µφ∂νφ− gµν

[

1

2
∂αφ∂αφ+ V (φ)

]

,
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order to describe the radiation, matter and dark energy dominated eras. We will consider

all these situations along this paper and, in addition, we will include the case of relativistic

matter. With the purpose of illustrating this situation we will take a particular example

where a = 9
10

1
d−1

for relativistic matter.

Using this equation of state, equation (8) leads to the energy density

ǫ = ǫ0 z(τ)
A , (15)

where A = (d− 1)(a + 1) and ǫ0 is set by the initial conditions. For instance, we will fix it

by demanding that the shell is at rest at a given position z = z0.
6 Therefore, one may write

h(z) =
(

R−1
0 −

√

fout(z0) R
−1
f

)2
(

z

z0

)2A

. (16)

Notice that since the cut-off z0 can be arbitrarily small, the weak energy condition requires

Rf ≥ R0 . (17)

Next, we derive the mass function of shells.

2.2 Mass function

Strictly speaking the analysis above corresponds to a shell of zero thickness. Nevertheless,

for computational purposes we will consider the limiting case of small but non-vanishing

width, and we will model the situation with the following metric

ds2 =
1

z2
(

−fdv2 − 2R dvdz + d~x2
)

, (18)

where

f = 1− 2m(v, z) (Rz)d ,

R = R0 − (R0 −Rf )
m(v, z)

M
, (19)

m =
M

2

[

1 + tanh
w(v, z)

w0

]

,

so, using that a the embedding metric of a hypersurface with normal vector nµ is given by hshell
µν = gµν−nµnν

and the fact that in the thin-shell approximation ∂µφ ∝ nµ at leading order, Tµν decompose in the sum of
two terms, one proportional to hµν and the other one to nµnν . On the other hand if we require the shell to
be composed by a perfect fluid, the energy momentum tensor must decomposes in a factor proportional to
hµν and a factor proportional to UµUν , with Uµ⊥nµ being the four-velocity of the fluid. Then the energy
momentum tensor is forced to be proportional to the metric, which means p = −ǫ.

6Of course, the situation is different for a massless dust fluid. In this case the shell moves at the speed of
light, and obviously it cannot be set at rest at any position. Nevertheless, it can be considered as a limiting
case with ż → ∞.
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being w0 the parameter representing the thickness of the shell, while w(v, z) = 0 is the

equation defining the position of the shell in the (v, z)-plane. It is useful to define the

quantities

f̄ = f(z, w = 0) = 1−M(R̄z)d,

R̄ = R(z, w = 0) =
R0 +Rf

2
. (20)

By comparing the induced metric (3) with equation (18) one finds dτ 2 = f̄dv2+2R̄ dv dz.

Then, the position {v(τ), z(τ)} of the shell satisfies the equation

f̄dv =

(

√

f̄ + R̄2ż2

ż
− R̄

)

dz , (21)

from which we find the equation describing the dynamics of the shell to be w = 0, with

w = v − R̄

∫ z

z0

dz f̄−1

(
√

f̄ R̄−2 + ż2

ż2
− 1

)

, (22)

where we set the following initial conditions z(τ0) = z0 and v(τ0) = 0.

2.3 Dynamical evolution of shells of matter

Once the shell is at rest at z = z0, in principle it is not guaranteed that it will always collapse.

For instance, we may think of the shell as composed not by ordinary matter like baryons

or photons, but instead by the energy of a domain wall of a bubble which encloses an AdS

space in the interior with a given cosmological constant, and an another AdS space in the

outer region, with a different one. Thus, it may occur that depending on the values of the

cosmological constants of the inner and outer regions the bubble may collapse or expand.

Therefore, the dynamics of the shell depends of the sign of dż2

dz
at z0. It can be computed

from equation (14) and the result is

d ż2

dz

∣

∣

∣

∣

z0

= λ(z0) ξ(z0) , (23)

where

λ(z0) =
h(z0) +R−2

0 − fout(z0)R
−2
f

4h(z0)
> 0 . (24)

The positivity follows from the positive energy condition. On the other hand, ξ(z0) is defined

as

ξ(z0) = −(R−2
0 − R−2

f )
A

z0
+ A

[

R−1
0 −

√

fout(z0)R
−1
f

]2

zA−1
0 + (d− A)Rfz

d−1
0 . (25)
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Notice that in the cases of interest 0 ≤ A ≤ d. Hence, the first term in the equation above

is negative while the second and third ones are positive. The conclusion is that in the case

of equal radii ξ(z0) > 0 and, therefore, the shell always collapses.

On the other hand, when A = 0 (corresponding to a = −1) ξ(z0) is again positive and so

the shell collapses independently of the values R0 and Rf .

The situation changes dramatically when we consider A 6= 0 because in the z0 → 0 limit

the leading term is the first one which is negative, implying that the shell generically expands.

For a given cut-off z0 it can always be possible to find certain radii Rf > R0 such that

ξ(z0) > 0. In order to observe collapse the first term must be smaller than the others,

therefore R0 and Rf must be as close as possible. So, let us define r = Rf − R0 << 1 and

for simplicity consider R0 = 1. Therefore we find r << z0 10−2(2d−1) for conformal matter,

r << z0 10
−(2d−1) for massive dust, and r << z0 10

−2d for relativistic matter. In order to give

an idea of the orders of magnitude involved, for instance in the case of conformal matter in

AdS5, by setting the initial position of the shell at z0 = 10−2, we need that Rf−R0 << 10−16

for the shell to collapse and, the limiting case z0 → 0 only allows the fluid with a = −1, i.e.

a scalar field case, to collapse.

The same conclusion holds even if we relax the initial condition ż|z0 = 0. Indeed let us

suppose that ż|z0 > 0, and then extrapolate the shell position backward in time. If we

assume ż 6= 0 for all z < z0, then as z → 0 the l.h.s. of (11) vanishes if and only if R0 = Rf ,

but the r.h.s. vanishes for A > 0 (a > −1).

Then for a collapsing fluid with a > −1 and R0 6= Rf the shell can not be extrapolated to

z → 0. Its velocity must vanish at a certain position z̃0 < z0 and so, in order for the shell to

collapse, r must be smaller than in the case with the shell at rest at z0.

3 Holographic thermalization

In this section we describe the idea of holographic thermalization. We will follow references

[9] and [17] and first consider two-point functions of local gauge invariant QFT operators.

For this purpose we look at Wightman functions [9, 8] of local gauge invariant QFT operators

O of conformal dimension ∆. We are interested in the equal time correlation functions. The

point is to study how these correlators change at different times.

On the other hand, using the gauge/string duality it is possible to compute these correla-

tors when the operators are heavy by using geodesics in AdS spaces. We will compute the

two-point functions from a path integral as in references [46, 9]

< O(t,x)O(t,x′) >=

∫

DPei∆L(P) ≈
∑

geodesics

e−∆L , (26)

where the path integral includes all possible paths connecting the points at the AdS boundary,
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i.e. (t,x) and (t,x′). In the above expression L(P) is the proper length corresponding to

this path. For space-like trajectories L(P) is imaginary. The idea is to make a saddle-

point approximation for ∆ ≫ 1. Therefore, only geodesics, i.e. trajectories with extreme

lengths will contribute. Notice that in the last term L indicates actual length of the geodesic

between the points at the AdS boundary. In this way, there is a direct relation between

the logarithm of the equal-time two-point function and the geodesic length between these

two points. It is important to be careful while considering these approximations because

the geodesic length diverges due to the AdS boundary contributions. Then, one can define

a renormalized distance δL ≡ L − 2 ln(2/z0), in terms of the cut-off z0 near the boundary,

that suppresses the divergent part coming from pure AdS.

The other type of non-local operators that we will be using are spatial Wilson loops, which

are non-local gauge invariant operators in the field theory defined as the integral in a closed

path C of the gauge field A. Wilson loops provide information about the non-perturbative

behavior of gauge theories, however, in general it is difficult to compute them. Using the

AdS/CFT correspondence its computation can be done straightforwardly. The expectation

value of a Wilson loop is related to the string theory partition function with a world-sheet

Σ extended on the bulk interior, and ending on the closed contour C on the boundary,

< W (C) >=<
1

N
Tr
(

Pe
∮
C
A
)

>=

∫

DΣe−Λ(Σ) ≃ e−
1

α′
A(Σ0) , (27)

where, in the path integral one has to integrate over all the non-equivalent surfaces whose

boundary is ∂Σ = C, at the AdS boundary. Λ(Σ) is the string action. The last approxima-

tion in equation (27) is obtained in the strong coupling regime by carrying out a saddle-point

approximation of the string theory partition function. In this way we can reduce the com-

putation of the expectation value of a Wilson loop to determine the surface of minimal area

of the classical world-sheet whose boundary is C. This will be a solution to the equations of

motion of the bosonic part of the string action [47, 48].

These shell-collapsing models based on the AdS/CFT correspondence allow to understand

intuitively how the thermalization process takes place. The outer region is described by a

AdS-Schwarzschild black hole, while the inner region is still an AdS space. Now, let us use

the geodesic approximation to compute the equal-time two-point functions. If the separation

of the boundary points is small enough, then the geodesic cannot reach the shell at w = 0

and, therefore, the geodesic is seen as a purely AdS-Schwarzschild black hole geodesic, i.e.

for short distances in the field theory the system seems to be in thermal equilibrium. If

we increase the separation between the insertion of the boundary operators, at some point,

the geodesic will cross the shell, and there will be a geodesic refraction which will deviate

it in comparison with the thermal one. Thus, we can understand why the thermalization

proceeds from short to long distances, i.e. QFT ultraviolet degrees of freedom thermalize

first [9].

In the next two subsections we discuss in more detail the construction of the renormalized
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geodesic lengths and the renormalized rectangular minimal area surfaces, which we will

used to probe thermalization of strongly coupled systems. These two subsections are a

generalization of our previous paper [17] from where we follow the notation.

3.1 Renormalized geodesics lengths

In this subsection we focus on the evaluation of space-like geodesic lengths as function of both

time and boundary separation length. Thus, we will consider space-like geodesics between

points (t, x1) = (t0,−ℓ/2) and (t′, x′
1) = (t0, ℓ/2), where ℓ is the separation of the AdS

boundary points. The orthogonal coordinates are fixed. For instance, for d = 4 we have

(x2, x3) = (x′
2, x

′
3). Therefore, we use as the geodesic parameter the first coordinate x1, that

we simply call x. The solutions to the geodesic equations are given by the functions v(x)

and z(x). Inserting a cut-off z0 close to the AdS boundary, the boundary conditions become

z(−ℓ/2) = z0 , z(ℓ/2) = z0 , v(−ℓ/2) = t0 , v(ℓ/2) = t0 . (28)

Also, v(x) and z(x) are symmetric under reflection x → −x. The geodesic length is defined

as

L =

∫ √
−ds2 =

∫ ℓ/2

−ℓ/2

dx

√

1− 2R(v, z)z′(x)v′(x)− f(v, z)v′(x)2

z(x)
, (29)

where the prime indicates derivative with respect to x. Functions v(x) and z(x) minimize the

geodesic length of equation (29). Since there is an x-independent Lagrangian, it implies the

existence of one conserved quantity, which is equivalent to the Hamiltonian of the system.

In terms of f(v, z), the conservation equation becomes

1− 2R(v, z)z′v′ − f(z, v)v′2 =
(z∗
z

)2

, (30)

where the following initial conditions at the tip of the geodesic have been used

z(0) = z∗ , v(0) = v∗ , v′(0) = z′(0) = 0 . (31)

We can then solve the EOM for v(x) and z(x), obtaining

0 = 1− v′(x)2f(v, z)− 2R(v, z)v′(x)z′(x)− R(v, z)z(x)v′′(x)

+
1

2
z(x)v′(x)2∂zf(v, z)−

1

2
∂vR(v, z)z(x)v′(x)2 , (32)

0 = v′′(x)f(v, z) +R(v, z)z′′(x) + z′(x)v′(x)∂zf(v, z)

+
1

2
v′(x)2∂vf(v, z) + ∂zRz′(x)2 , (33)
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so we can just use these equations (and the conservation relation) and replace f(v, z) by the

ones of interest to this work. Note that for the different radii case, not only mass derivatives

will appear but also radius derivatives.

In order to evaluate the geodesic length as a function of t0 and the boundary separation

ℓ we use the boundary conditions

z(ℓ/2) = z0 , v(ℓ/2) = t0 . (34)

Now, the conservation equation and reflection symmetry lead to the on-shell geodesic length

given by the following expression

L(ℓ, t0) = 2

∫ ℓ/2

0

dx
z∗

z(x)2
, (35)

Then, we must cancel the divergent part: δL(ℓ, t0) = L(ℓ, t0)− 2 ln(2/z0).

Thus, we can calculate how the thermalization process occurs by considering a collapsing

thin shell composed by different kind of degrees of freedom. At this point we can start

studying numerically the thermalization process, by solving the EOM for different starting

(v∗, z∗) values. We set the event horizon of the thermalized geometry to be located at a

position such that we have always the same temperature at the final state. The results are

discussed in the next section, but before we introduce the formulas of rectangular Wilson

loops.

3.2 Renormalized rectangular minimal area surfaces

Now we carry out the computation of the minimal area surfaces. Using the AdS metric with

a shell, the Nambu-Goto action becomes,

ANG(t0, ℓ, RWL) =
RWL

2π

∫ ℓ/2

−ℓ/2

dx

√

1− f(v, z)v′2 − 2R(v, z)z′v′

z2
, (36)

for boundary rectangles parametrized by the coordinates (x1, x2). The rest of the coordinates

at the AdS boundary are kept fixed. One assumes the translational invariance along x2.

Then, we will use x1 to parametrize the functions v(x1) and z(x1) in the AdSd+1, and we

call it x. Along the x2 direction the rectangular path on the boundary has length RWL.

As in the previous case, there is no explicit dependence on x and therefore, there is a

conserved quantity corresponding to the Hamiltonian. The tip of the surface is z∗, with

z′(0) = v′(0) = 0. Then, the conservation equation becomes

1− 2R(v, z)z′v′ − f(v, z)v′2 =
(z∗
z

)4

. (37)
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The boundary conditions continue to be the same as in the geodesics case,

z(−ℓ/2) = z0 , z(ℓ/2) = z0 , v(−ℓ/2) = t0 , v(ℓ/2) = t0 . (38)

Next, we have to minimize the Nambu-Goto action for this geometry. For our set up,

these equations become

0 = 2− 2fv′2 − 4Rz′v′ −Rzv′′ +
1

2
zv′2∂zf − (zv′2∂vR +

1

2
zz′v′∂zR) (39)

0 = 2f 2v′2 − f(2− 4Rv′z′ +
1

2
zv′2∂zf)− z(R2z′′ +R∂zfv

′z′ +

+
1

2
Rv′2∂vf) + z(fv′2∂vR−Rz′2∂zR) (40)

We can again extract the physical information of time and boundary separation length

from the boundary conditions (38) and rewrite the on-shell Nambu-Goto action by making

use of the conservation equation, obtaining

A(t0, ℓ, RWL) =
RWL

π

∫ ℓ/2

0

dx
z2∗
z4

. (41)

Finally, we subtract the divergent part from pure AdS space by defining

δA(t0, ℓ) =
π

RWL

(

A(t0, ℓ, RWL)−
1

z0

RWL

π

)

. (42)

Now, we focus on the results obtained by solving the differential equations for both renor-

malized space-like geodesic lengths and rectangular minimal area surfaces.

4 Results of dynamical holographic thermalization

In this section we introduce our results obtained from numerical calculations, by solving

the system of differential equations described in the previous section for the evolution of

thin shells, using renormalized geodesic lengths and rectangular minimal area surfaces as

extended probes of thermalization of QFT strongly coupled systems.

First, in figure 1 we show the results for thermalization of the renormalized space-like

geodesic lengths for the boundary separation ℓ = 2.6, by considering R0 = Rf = 1 and

2M = 1, for the boundary QFT theory dimensions d = 4, 3 and 2, indicated as AdS5, AdS4

and AdS3, respectively. The cases with a shell composed of a scalar field (green curve) and

dust (orange curve), both almost coincide with the Vaidya shell (red curve) as it is shown

in figures 1.a, 1.c and 1.e. It turns out that the Vaidya shell thermalizes first. Slightly later

it does the shell composed by a scalar field and then, almost at the same time the shell of
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dust. In fact, these three cases depicted in figures 1.a, 1.c and 1.e, almost completely overlap.

In the same figure the dark-red curve indicates relativistic matter, which thermalizes later.

Notice that for relativistic matter, whose EOS has a = c/(d−1), we have the freedom to set

0 < c < 1, being the pressureless and conformal matter the limiting cases. As c increases,

so does the thermalization time for relativistic matter, approaching the conformal matter

time scale. Figures 1.b, 1.d and 1.f show thermalization when considering conformal matter

(blue curve), which occurs at t0 much larger than the other cases. The fact that AdS-Vaidya,

scalar field and dust shells coincide is a general result which does not depend on boundary

separation. This is so because the integrand on the r.h.s. of equation (22) is much smaller

than one for any value of z. Thus, the equation describing the position of the shell is v ≃ 0,

as in the AdS-Vaidya case. The larger thermalization time found for the conformal matter

case is closely related to the fact that the r.h.s. of equation (22) takes a non-zero asymptotic

value for large z. This value increases with space-time dimension, making conformal matter

in higher dimensions to thermalize later.

Another interesting possibility is to consider R0 = Rf with different values. In fact, we

have considered R0 = Rf = 0.5 in figures 2.a and 2.b and R0 = Rf = 2 in figures 2.c and 2.d.

These cases are for systems going from AdS5 to an AdS5-Schwarzschild black hole. In both

cases we can see that AdS-Vaidya (red curve), a massive dust (orange curve) and a scalar

field (green curve) thermalize almost simultaneously, relativistic matter does it a bit later

(dark-red curve), and much later conformal matter (blue curve). This difference can be better

appreciated from the insets of both figures. In all these curves we keep the dimensionless

product of the boundary separation length by the plasma equilibrium temperature ℓ T fixed,

thus by changing Rf the horizon changes as zh = 1/Rf .

We can also make a comparison between figures 1 and 2. For the AdS-Vaidya, massive

dust, and a scalar field cases the thermalization time scale is not sensitive to the changes of

the radii, in the range considered, i.e. R0 = Rf = 0.5, 1 and 2. The more remarkable effect

is that for conformal matter where for R0 = Rf = 0.5, 1 and 2, the thermalization time

decreases notoriously, as can be seen from the figures. In the particular case of relativistic

matter considered we observe a small enhancement of the thermalization time as the radii

increase, but of course the thermalization of this kind of matter strongly depends on the

value a.

Another situation that we have investigated is the case when the inner and outer radii

are different. As it has been explained before, only a shell composed by a scalar field can

thermalize in this case. In order to illustrate the behavior we have considered: R0 = 0.5,

while Rf = 1 (red curve), Rf = 2 (blue curve). For these cases the thermalization time is

t0 ≈ 90 and 60, respectively, while δL − δLBH = −2, −5. This is shown in figure 3. By

incrementing the difference between R0 and Rf it is possible to recover short thermalization

times, for instance the case with R0 = 0.5, Rf = 10 gives t0 ≈ 10 (not displayed here).

Notice that the thermalization scales are not monotonous with respect to the difference
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Figure 1: Thermalization of the renormalized space-like geodesic lengths for the boundary sepa-
ration ℓ = 2.6, considering R0 = Rf = 1, for boundary theory dimensions d = 4, 3 and 2, indicated
as AdS5, AdS4 and AdS3, respectively. In each figure curves for different matter are indicated
with different colors: for AdS-Vaidya (red curve), scalar field (green curve), massive dust (orange
curve), relativistic matter (dark red curve), conformal matter (blue curve). Following the literature
we plot the difference between the geodesic length and the thermal geodesic length divided by the
boundary separation ℓ. The same applies for the rest of the figures.
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Figure 2: Renormalized space-like geodesic length as a function of time for Vaidya-type (red
curve), scalar field (green curve), massive dust (orange curve), relativistic matter (dark red
curve), conformal matter (blue curve) shells, respectively. Insets zoom in the first curve in
both figures.
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Figure 3: Renormalized geodesic length differences when R0 = 0.5; Rf = 1 (red curve) and
Rf = 2 (blue curve).

between both radii. This is so because by changing the radii one varies the velocity of the

shell as well as the position z∗ of the thermalized geodesic tip.

Figure 4, on the other hand, shows a similar behavior as figure 1 for renormalized rect-

angular minimal area surfaces for d = 3 and 4. In this case we also set R0 = Rf = 1 and

2M = 1. We observe the same trend as in figure 1. The thermalization shown in figure 4

corresponding to rectangular Wilson loops in the dual QFT shows the appearance of swallow

tails when thermal equilibrium is reached. Something similar was observed before in the case

of an AdS-Vaidya shell [9], and even in the cases with an AdS-Vaidya shell composed by

charged dust [17].

5 Discussion and conclusions

In this paper we have studied dynamical evolution of thin shells composed by different

degrees of freedom in AdS spaces, obtaining different thermalization time scales. We have

used the thin-shell formalism, applying the Israel junction conditions, and also imposed the

positive energy conditions. Thus, we obtain a general framework where the distinction in

the composition of the shells is made explicit through the equation of state in each case. We

have also explored different space-time dimensions.

We have considered an AdS-Vaidya shell, which can be understood as composed by mass-

less dust, moving at the speed of light, and then we also investigated shells made of a scalar

field, a pressureless massive fluid, the so-called relativistic matter, and matter whose energy-

momentum tensor is traceless. The parameters to play with are the space-time dimension d,

and the radii of the inner and outer regions, R0 and Rf .

The first observation is that when the R0 = Rf , the thermalization time scales of the

AdS-Vaidya, the scalar field and a pressureless massive fluid shells, are the same. The

conformal case thermalizes much later, strongly depending on space-time dimensions and
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Figure 4: Thermalization of the renormalized minimal area surfaces, with ℓ = 2, considering
R0 = Rf = 1, for the boundary theory dimensions d = 4 and 3, labeled by AdS5 and AdS4,
respectively. Different kinds of matter in the shell are indicated by colored curves as follows:
Vaidya-type (red curve), scalar field (green curve), massive dust (orange curve), relativistic matter
(dark red curve), conformal matter (blue curve) shells.
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radii. Relativistic matter case continuously interpolates between both cases, depending on

its EOS.

In addition, we have studied the effect on the thermalization curves when the inner and

outer radii are different. Also, we have found that the positive energy condition implies that

the inner radius must be equal or smaller than the outer one, which means that the absolute

value of the vacuum energy density of the inner region must be equal or larger than the one

of the outer region. Finally, we have found that only in the case of a shell composed by a

scalar field the positive energy condition allows for the shell to collapse.

When the energy densities of the inner and outer spaces differ, the thermalization time

scales considerably increases. For instance, for the scalar field case, which for equal radii

coincides with the AdS-Vaidya shell, for different radii the thermalization time can be set

arbitrarily large. Some particular examples where displayed in figure 3.

The main conclusion from this work is that holographic models do not necessarily yield

a rapid thermalization. Moreover, the thermalization time scale strongly depends on the

equation of state governing the shell. This will determine the shell velocity and conse-

quently, thermalization times. We show that it is possible to have EOS that lead to delayed

thermalization times (such as the case of conformal matter).

There are other possible directions where the ideas and formalism presented here can

be extended. For instance, while changing the composition of the shell we will be impos-

ing different shell velocities. This allows one to model different possible scenarios for the

evolution of thermalization processes in strongly coupled systems. One is to consider lower-

dimensional systems in the context of AdS/CMT. Another aspect concerns the study of a

quantum quench across critical points [49, 50]. For example a quantum quench across a zero

temperature holographic superfluid transition has recently been reported in [51]. Another

very interesting extension could be along the lines of the recent work by Buchel, Lehner and

Myers, where it has been studied thermal quenches in a particular mass deformation of the

N = 4 SYM theory. There is a transition between an initial thermal state of N = 4 SYM, to

a final state with the mentioned mass deformation which yields the so-called N = 2∗ SYM

theory. This transition has been described in terms of a thermal quench [52].

Acknowledgments

We thank Alex Buchel, Johanna Erdmenger, Nicolás Grandi, Luis Lehner, Shu Lin, Juan
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