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In the framework of nonlocal SU(2) chiral quark models with Polyakov loop, we analyze the

dependence of the deconfinement and chiral restoration critical temperatures on the explicit chiral

symmetry breaking driven by the current quark mass. Our results are compared with those obtained

within the standard local Polyakov-Nambu-Jona-Lasinio model and with lattice QCD calculations. For a

wide range of pion masses, it is found that both deconfinement and chiral restoration critical temperatures

turn out to be strongly entangled, in contrast with the corresponding results within the Polyakov-Nambu-

Jona-Lasinio model. In addition, it is seen that the growth of the critical temperatures with the pion mass

above the physical point is basically linear, with a slope parameter that is close to the existing lattice QCD

estimates. On the other hand, we find a tendency to favor an early onset of the first order transition

expected in the large quark mass limit.
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I. INTRODUCTION

It is widely believed that as the temperature and/or
density increase, strongly interacting matter undergoes
some kind of transition from a hadronic phase, in which
chiral symmetry is broken and quarks are confined, to a
partonic phase, in which chiral symmetry is restored and/or
quarks are deconfined. The detailed understanding of this
phenomenon is relevant not only in particle physics but
also e.g., in the study of the early universe, the interior of
neutron stars; therefore it has become an issue of great
interest in recent years, both theoretically and experimen-
tally [1]. From the theoretical point of view, one way to
address this problem is through lattice QCD calculations
[2–4]. However, even if significant improvements have
been made in this field in the past few years, this
ab initio approach is not yet able to provide a full under-
standing of the QCD phase diagram. One serious difficulty
in this sense is given by the so-called sign problem, which
prevents straightforward simulations at finite baryon den-
sity. In this situation it is worthwhile to develop alternative
approaches, such as the study of effective models that show
consistency with lattice QCD results and can be extrapo-
lated into regions not accessible by lattice techniques.
Here we will concentrate on one particular class of effec-
tive theories, namely the so-called nonlocal Polyakov-
Nambu-Jona-Lasinio (nlPNJL) models [5–8], in which
quarks move in a background color field and interact
through covariant nonlocal chirally symmetric four point
couplings. Related Polyakov-Dyson-Schwinger equation
models have also been recently analyzed [9]. These
approaches, which can be considered as an improvement
over the (local) PNJL model [10–16], offer a common

framework to study both the chiral restoration and decon-
finement transitions. In fact, the nonlocal character of the
interactions arises naturally in the context of several suc-
cessful approaches to low-energy quark dynamics [17,18]
and leads to a momentum dependence in the quark propa-
gator that can be made consistent [19] with lattice results
[20,21]. Moreover, it has been found that, under certain
conditions, it is possible to derive the main features of
nlPNJL models starting directly from QCD [22]. From
the phenomenological side, it has been shown [23–26]
that nonlocal models provide a satisfactory description of
hadron properties at zero temperature and density.
As mentioned above, it is important to consider situ-

ations in which the results obtained within effective models
can be compared with available lattice QCD calculations.
For example, it is clear that vacuum properties such as the
pion mass and decay constant, as well as other features
related to the chiral/deconfinement transitions (like e.g.,
the nature of the transitions, or the critical temperatures)
will depend on basic parameters of QCD, such as the
number of quark flavors and the values of current quark
masses mq. In particular, for the simplified case of two

degenerate flavors with mu ¼ md ¼ m, the dependence of
several relevant quantities on m has been studied with
some detail in lattice QCD. Thus, the corresponding analy-
sis within nlPNJL models can provide an interesting test of
the reliability of this effective approach. Actually, it has
already been shown that several chiral effective models
[27–29] are not able to reproduce the behavior of the
critical temperatures observed in lattice QCD when one
varies the parameters that explicitly break chiral symmetry
(i.e., the current quark masses, or the pion mass in the case
of meson models) at vanishing chemical potential.
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This fact has been taken as an indication that the transition
may be dominated not just by pure chiral dynamics [30]. It
is worthwhile to notice that in the framework of the stan-
dard (local) NJL model the enhancement of the critical
temperature withm is too strong in comparison with lattice
QCD estimates. Although the inclusion of confinement
effects through the coupling to the Polyakov loop weakens
this enhancement, one finds a too large splitting between
the chiral restoration and deconfinement transition tem-
peratures [31]. The presence of confinement effects
together with a strong entanglement between the chiral
restoration and deconfinement transitions is indeed one
of the features of nlPNJL models [32].

In view of the above mentioned points, the aim of the
present work is to study the effect of explicit chiral sym-
metry breaking on the deconfinement and chiral restoration
critical temperatures within nlPNJL models. This article is
organized as follows. In Sec. II we provide a description of
the model, proposing two alternative parametrizations.
In Sec. III we analyze the m dependence of some pion
properties and compare the results with existing lattice
calculations. In Sec. IV we analyze the current quark
mass dependence of the critical temperatures at vanishing
chemical potential, comparing our results with those
obtained in alternative models and lattice QCD. Finally
in Sec. V we summarize our main results and conclusions.

II. FORMALISM

We consider a nonlocal SU(2) chiral quark model that
includes quark couplings to the color gauge fields. The
corresponding Euclidean effective action is given by [33]

SE ¼
Z

d4x

�
�c ðxÞð�i��D� þ m̂Þc ðxÞ �GS

2
½jaðxÞjaðxÞ

� jPðxÞjPðxÞ� þUð�½AðxÞ�Þ
�
; (1)

where c is the Nf ¼ 2 fermion doublet c � ðu; dÞT , and
m̂ ¼ diagðmu;mdÞ is the current quark mass matrix. In
what follows we consider isospin symmetry, mu ¼ md ¼
m. The fermion kinetic term in Eq. (1) includes a covariant
derivative D� � @� � iA�, where A� are color gauge

fields, and the operator ��@� in Euclidean space is defined

as ~� � ~rþ �4@=@�, with �4 ¼ i�0. The nonlocal currents
jaðxÞ, jPðxÞ are given by

jaðxÞ ¼
Z

d4zGðzÞ �c
�
xþ z

2

�
�ac

�
x� z

2

�
;

jPðxÞ ¼
Z

d4zF ðzÞ �c
�
xþ z

2

�
i 6@$
2�p

c

�
x� z

2

�
;

(2)

where �a ¼ ð1; i�5 ~�Þ and uðx0Þ@$vðxÞ ¼ uðx0Þ@xvðxÞ �
@x0uðx0ÞvðxÞ. The functions GðzÞ and F ðzÞ in Eq. (2) are
nonlocal covariant form factors characterizing the corre-
sponding interactions. Notice that the four currents jaðxÞ

require a common form factor GðzÞ to guarantee chiral
invariance, while the coupling jPðxÞjPðxÞ is self-invariant
under chiral transformations. The scalar-isoscalar compo-
nent of the jaðxÞ current will generate a momentum
dependent quark mass in the quark propagator, while the
‘‘momentum’’ current jPðxÞ will be responsible for a mo-
mentum dependent quark wave function renormalization.
Now we perform a bosonization of the theory, introducing
bosonic fields �1;2ðxÞ and �aðxÞ, and integrating out the

quark fields. Details of this procedure as well as of the
determination of vacuum and meson properties at vanish-
ing temperature in this framework can be found e.g., in
Ref. [19].
Since we are interested in the deconfinement and chiral

restoration critical temperatures, we extend the bosonized
effective action to finite temperature T. This can be
done by using the standard Matsubara formalism.
Concerning the gauge fields A�, we assume that quarks

move on a constant background field � ¼ A4 ¼ iA0 ¼
ig��0G

�
a 	a=2, where G

�
a are SU(3) color gauge fields.

Then the traced Polyakov loop, which in the infinite quark
mass limit can be taken as an order parameter of confine-
ment, is given by� ¼ 1

3 Tr expði�=TÞ. We work in the so-

called Polyakov gauge, in which the matrix � is given a
diagonal representation � ¼ �3	3 þ�8	8. This leaves
only two independent variables, �3 and �8. In the case
of vanishing chemical potential, owing to the charge con-
jugation properties of the QCD Lagrangian, the mean field
traced Polyakov loop is expected to be a real quantity.
Since �3 and �8 have to be real valued, this condition
implies �8 ¼ 0. The mean field traced Polyakov loop
reads then � ¼ �� ¼ ½1þ 2 cosð�3=TÞ�=3. Thus in the
mean field approximation, which will be used throughout
this work, the thermodynamical potential �MFA at finite
temperature and zero chemical potential is given by

�MFA¼�4T
X

c¼r;g;b

X1
n¼�1

Z d3 ~p

ð2�Þ3 log
�ð
c

n; ~pÞ2þM2ð
c
n; ~pÞ

Z2ð
c
n; ~pÞ

�

þ ��2
1þ�2

p ��2
2

2GS

þUð�;��;TÞ; (3)

where MðpÞ and ZðpÞ are given by

MðpÞ ¼ ZðpÞ½mq þ ��1gðpÞ�;
ZðpÞ ¼ ½1� ��2fðpÞ��1:

(4)

Here ��1;2 are the mean field values of the scalar fields (note

that ��a ¼ 0), while fðpÞ and gðpÞ are Fourier transforms
of F ðzÞ and GðzÞ, respectively. We have also defined

ð
c
n; ~pÞ2 ¼ ½ð2nþ 1Þ�T þ�c�2 þ ~p2; (5)

where the quantities �c are given by the relation
� ¼ diagð�r;�g;�bÞ ¼ diagð�3;��3; 0Þ.
To proceed we need to specify the explicit form of

the Polyakov loop effective potential Uð�;��; TÞ.
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We consider two alternative functional forms commonly
used in the literature. The first one, based on a Ginzburg-
Landau ansatz, reads [13]

Upolyð�;��;TÞ¼T4

�
�b2ðTÞ

4
ðj�j2þj��j2Þ

�b3
6
ð�3þð��Þ3Þþb4

16
ðj�j2þj��j2Þ2

�
;

(6)

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
: (7)

The potential parameters can be fitted to pure gauge lattice
QCD data so as to properly reproduce the corresponding
equation of state and Polyakov loop behavior. This
yields [13]

a0 ¼ 6:75; a1 ¼ �1:95; a2 ¼ 2:625;

a3 ¼ �7:44; b3 ¼ 0:75; b4 ¼ 7:5:
(8)

A second usual form is based on the logarithmic expression
of the Haar measure associated with the SU(3) color group
integration. The potential reads in this case [14]

Ulogð�;��; TÞ ¼
�
� 1

2
aðTÞ��� þ bðTÞ log½1� 6���

þ 4�3 þ 4ð��Þ3 � 3ð���Þ2�
�
T4; (9)

where the coefficients are parametrized as

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
:

(10)

Once again the values of the constants can be fitted to pure
gauge lattice QCD results. This leads to [14]

a0 ¼ 3:51; a1 ¼ �2:47;

a2 ¼ 15:2; b3 ¼ �1:75:
(11)

The dimensionful parameter T0 in Eqs. (7) and (10) corre-
sponds in principle to the deconfinement transition tem-
perature in the pure Yang-Mills theory, T0 ¼ 270 MeV.
However, it has been argued that in the presence of light
dynamical quarks this temperature scale should be ade-
quately reduced [34,35]. Recent work on Polyakov loop
potentials can be found in Refs. [36,37].

Finally, one has to take into account that�MFA turns out
to be divergent; thus it has to be regularized. Here we use
the prescription described e.g., in Ref. [38], namely

�MFA
reg ¼ �MFA ��free þ�free

reg þ�0; (12)

where�free is obtained from Eq. (3) by setting ��1 ¼ ��2 ¼
0, and �free

reg is the regularized expression for the quark

thermodynamical potential in the absence of the four point
fermion interaction,

�free
reg ¼ �4T

Z d3 ~p

ð2�Þ3
X

c¼r;g;b

X
s¼�1

� Re ln

�
1þ exp

�
� �p þ is�c

T

��
; (13)

with �p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
. The last term in Eq. (12) is just a

constant fixed by the condition that �MFA
reg vanishes at

T ¼ 0.
Given the full form of the thermodynamical potential,

the mean field values ��1;2 and �3 can be obtained as

solutions of the coupled set of ‘‘gap equations’’

@�MFA
reg

ð@�1; @�2; @�3Þ ¼ 0: (14)

Once these mean field values are obtained, the behavior of
other relevant quantities as functions of the temperature
and chemical potential can be determined. We concentrate
in particular on the chiral quark condensate h �qqi ¼
@�MFA

reg =@m and the traced Polyakov loop �, which will

be taken as order parameters of the chiral restoration and
deconfinement transitions, respectively. The associated
susceptibilities will be defined as �ch ¼ @h �qqi=@m and
�PL ¼ d�=dT.
To fully specify the model under consideration we pro-

ceed to fix the model parameters as well as the nonlocal

form factors gðqÞ and fðqÞ at the physical point m� ¼
m

phys
� ¼ 139 MeV. We consider two different functional

dependences for the form factors. The first one corresponds
to the often used exponential functions

gðqÞ ¼ expð�q2=�2
0Þ; fðqÞ ¼ expð�q2=�2

1Þ; (15)

which guarantee a fast ultraviolet convergence of the loop
integrals. Note that the range (in momentum space) of the
nonlocality in each channel is determined by the parame-
ters�0 and�1, respectively. Fixing the current quark mass
and chiral quark condensate at T ¼ � ¼ 0 to the phenom-

enologically adequate values m ¼ 5:7 MeV and h �qqi1=3 ¼
240 MeV, the rest of the parameters can be determined so
as to reproduce the physical values of f� and m�, and by
requiring Zð0Þ ¼ 0:7, which is within the range of values
suggested by recent lattice calculations [20,21]. In what
follows this choice of model parameters and form factors
will be referred to as S1. The second type of form factor
functional forms considered here is given by

gðqÞ ¼ 1þ z

1þ zfzðqÞ
mfmðqÞ �mzfzðqÞ

m �mz

;

fðqÞ ¼ 1þ z

1þ zfzðqÞ fzðqÞ;
(16)

where
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fmðqÞ ¼ ½1þ ðq2=�2
0Þ3=2��1;

fzðqÞ ¼ ½1þ ðq2=�2
1Þ��5=2:

(17)

As shown in Ref. [19], taking m ¼ 2:37 MeV, m ¼
309 MeV, z ¼ �0:3, �0 ¼ 850 MeV and �1 ¼
1400 MeV one can very well reproduce the momentum
dependence of mass and wave function renormalization
obtained in lattice calculations, as well as the physical
values of m� and f�. In what follows this choice of model
parameters and form factors will be referred to as S2.
Details on the model parameters and the predictions for
several meson properties in vacuum can be found in
Ref. [19]. In principle, both the model parameters and
the functional form of the form factors could get modified
at nonzero temperatures. Here these effects will be
neglected, as it is usually done in the framework of both
nonlocal models [5–8,39,40] and Dyson-Schwinger calcu-
lations [9].

III. ZERO TEMPERATURE PSEUDOSCALAR
MASS AND DECAY CONSTANTAWAY

FROM THE PHYSICAL POINT

As stated, we want to study the dependence of nlPNJL
model predictions on the amount of explicit chiral symme-
try breaking. This can be addressed by varying the current
quark massm, while keeping the rest of the model parame-
ters fixed at their values at the physical point. As a first step
we analyze in this section the corresponding behavior of
the pion mass and decay constant at vanishing temperature,
in comparison with that obtained in the (local) NJL model
and in lattice QCD. Our results are shown in Fig. 1. As it is
usual in lattice QCD literature, we choose to take m�

instead of m as the independent variable in the plots. The
main reason for this is thatm� is an observable, i.e., a scale
independent quantity, whereasm is scale dependent; hence
its value is subject to possible ambiguities related to the
choice of the renormalization point. Dashed and solid lines
correspond to parameter sets S1 and S2, respectively, while
dotted lines correspond to the curves obtained within the
NJL model using the parameter set in Refs. [14,31]. Solid
dots stand for lattice QCD results from Ref. [41]. The
upper panel shows the behavior of the ratio m2

�=m as a
function of m�. To account for the above mentioned re-
normalization point ambiguities, the corresponding quark
masses have been normalized so as to yield the lattice value

mMS
u;d ’ 4:452 MeV at the physical point [41]. From the

figure one observes that both NJL and nlPNJL models
reproduce qualitatively the results from lattice QCD, show-
ing a particularly good agreement in the case of the nlPNJL
model for parameter set S2. However, the situation is
different in the case of f� (lower panel in Fig. 1): while
the predictions from nonlocal models follow a steady
increase with m�, in agreement with lattice results, the
local NJL model in general fails to reproduce this behavior.

Moreover, it can be seen that the discrepancy cannot be
cured even if one allows the coupling GS to depend on the
current quark mass [31]. Here we have taken GS as a
constant in both local and nonlocal PNJL models.
We have further analyzed this discrepancy by consider-

ing different NJL model parametrizations and both 3D and
4D momentum cutoff regularizations. In all cases the
parameters have been determined so as to obtain at the
physical point the empirical values of the pion mass and
decay constant, as well as an effective quark mass M
within the phenomenologically adequate range of 300–
600 MeV (see e.g., Ref. [42]). We have checked that
(i) for a given value of M, the behavior of f� as a function
of m� is similar for both 3D and 4D cutoff regularizations,
and (ii) for lower values ofM (and thus higher cutoffs [42])
the discrepancy between lattice and NJL results gets
reduced. However, it is already found that for M ¼
300 MeV the departure from lattice results is basically as
large as that shown in Fig. 1 (the corresponding NJL
parametrization leads to M ¼ 325 MeV [14,31]). We
find that M has to be lowered up to values of about
250 MeV—i.e., too small from the phenomenological
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FIG. 1 (color online). Pion properties at T ¼ 0 as functions of
the pion mass in local and nonlocal chiral quark models.
Upper and lower panels correspond to the ratio m2

�=mc and
the pion decay constant f�, respectively. Lattice results are taken
from Ref. [41], and the NJL model parametrization is that in
Refs. [14,31].
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point of view—to get an acceptable agreement with lattice
data. In this way, our results can be considered as a further
indication in favor of the inclusion of nonlocal interactions
as a step toward a more realistic description of low mo-
menta QCD dynamics. Our agreement with lattice results
also indicates that the model parameters should not change
significantly with m. Concerning the explicit dependence
appearing in Eq. (16) (corresponding to S2), although in
our calculations we have considered for consistency thatm
varies as the current quark mass, the effect of this change is
found to be completely negligible.

IV. DEPENDENCEOF CRITICALTEMPERATURES
ON EXPLICIT CHIRAL SYMMETRY BREAKING

In this section we analyze within our nonlocal
models the mass dependence of the critical temperatures
for the deconfinement and chiral restoration transitions at

vanishing chemical potential. We start by considering the
temperature dependence of the chiral and deconfinement
order parameters, as well as the corresponding susceptibil-
ities, for some representative values of the pion mass. The
corresponding results for the lattice motivated parametri-
zation S2 are shown in Fig. 2, including both the case of the
polynomic (left panels) and logarithmic (right panels)
Polyakov potentials. Qualitatively similar results are found
for the exponential parametrization S1. Let us take the case
of the polynomic potential. From the figure it is seen that
both transitions proceed as smooth crossovers, as expected
from lattice QCD results. Moreover, we observe that asm�

increases, the position of the peaks of the susceptibilities
�ch and �PL (left lower panel) move simultaneously toward
higher values of T, the difference between the correspond-
ing critical temperatures being in all cases at the level of a
few MeV. It is also seen that as m� increases the chiral
restoration transition tends to be less pronounced, while the
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FIG. 2 (color online). Order parameters (upper panels) and the corresponding susceptibilities (lower panels) as functions of the
temperature for some representative values of the pion mass. Left (right) panels correspond to the polynomic (logarithmic) Polyakov
potential.
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confinement one becomes steeper. In the case of the loga-
rithmic potential, we also observe that the transition tem-
peratures increase with m�, as expected. However, for a
given value of m� both the chiral restoration and decon-
finement transitions are steeper than in the case of the
polynomic potential, and the correlation between them is
stronger (e.g., the difference between the transition tem-

peratures for m� ¼ mphys
� is now about 0.02 MeV). In fact,

it turns out that already for a critical mass mcrit
� ¼

500 MeV one finds a first order phase transition. In the
case of the polynomic potential, the onset of this kind of
phase transition occurs at a larger critical mass, mcrit

� *
700 MeV. According to lattice QCD results, the onset of a
first order phase transition is indeed expected above a
certain critical amount of explicit symmetry breaking
[43]. However, present estimations [44–46] indicate that
the corresponding critical pseudoscalar mass should be in
the range of a few GeV (e.g., Ref. [45] quotes mcrit

� �
40Tc); therefore the early change in the character of the
transition appears as an unrealistic feature of the effective
models. In this sense, we point out that our predictions are
reliable within a limited range of values of m�, with an
upper bound that we estimate to be of about 600 MeV.
Thus, for different forms of the effective Polyakov poten-
tial the onset of the first order phase transition can occur or
not within the range of validity of the model. As stated, the
ansatz for the potential can be taken from theoretical inputs
and lattice QCD calculations in the limit of a pure glue
theory. A discussion on the related ambiguities can be
found e.g., in Ref. [47]. Here we stress that, given these
ambiguities, the model is compatible with values of the
critical mass beyond the region where the predictions are
expected to be reliable. In addition, one can consider the
effect of corrections that go beyond the mean field approxi-
mation. Although the role of these corrections is expected
to be less important as the quark mass increases [5], in the
mass range considered here they can be significant enough
to soften the transitions and lower the critical temperatures
[9]. Even if we do not expect this effect to enhance the
values of mcrit

� up to the GeV range, it should contribute in
the right direction to push the critical mass up to values
above the upper bound of validity of our approach. Some
important steps have been taken to study beyond-mean-
field corrections [5,7,39], but a fully nonperturbative
scheme to account for meson fluctuations in nonlocal
models is still lacking. As it is pointed out in Ref. [40],
these fluctuations could also help to avoid thermodynam-
ical instabilities that could arise in these models.

In Fig. 3 we show the results for the mass dependence
of the critical transition temperatures within our nonlocal
models. For comparison we also quote typical curves
obtained in the framework of the local PNJLmodel (here we
have considered the parametrization in Ref. [14]). Upper
and lower panels correspond to polynomic and logarithmic
Polyakov potentials, respectively, with T0 ¼ 270 MeV.

Before discussing in detail the results obtained for the
nlPNJL models, let us comment on those corresponding to
the PNJL model: from Fig. 3 we observe that already at the

physical value m� ¼ m
phys
� the model predicts a noticeable

splitting between the chiral restoration temperature Tch

(dashed line) and the deconfinement temperature TPL (dot-
ted line). In addition, it is seen that the growth of Tch with
m� is stronger than that of TPL, which implies that the
splitting between both critical temperatures becomes larger
if m� is increased. This is not supported by existing lattice
results [48,49], which indicate that both transitions take
place at approximately the same temperature, up to values
of m� even larger than those considered here. Comparing
both panels it is seen that the splitting is more pronounced
for the PNJL model that includes a logarithmic Polyakov
potential.
We turn now to the curves obtained within nonlocal

models. First of all, from the figure it is seen that both
parametrizations S1 and S2 lead to qualitatively similar
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FIG. 3 (color online). Critical temperatures as functions of the
pion mass for PNJL and nlPNJL models, considering polynomic
(upper panel) and logarithmic (lower panel) Polyakov loop
potentials. Dashed and dotted lines correspond to chiral resto-
ration and deconfinement transition temperatures, respectively.
For the nlPNJL models with a logarithmic potential (lower
panel), both transitions occur at the same temperature, and
they can be of first order (solid lines) or proceed as a smooth
crossover (dash-dotted lines).
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results. Contrary to the situation in the PNJL model, in
nlPNJL models both the chiral restoration and deconfine-
ment transitions occur at basically the same temperature
for all considered values of m�. Moreover, comparing the
results for the two alternative Polyakov loop potentials we
see that the main qualitative difference between them is the
already mentioned fact that in the case of the logarithmic
potential there is a critical pion mass of about 400 MeV
where the character of the transition changes from cross-
over to first order (dash-dotted and solid lines in the lower
panel of Fig. 3, respectively). By analyzing in more detail
the pion mass dependence of the critical temperatures, it is
seen that for m� above the physical mass the nlPNJL
model results can be accurately adjusted through a linear
function

Tcðm�Þ ¼ Am� þ B: (18)

This is in agreement with the findings of the lattice calcu-
lations of Refs. [48,49]. Our results for the slope parameter
A for both parametrizations and Polyakov loop potentials
are in the range of 0.06–0.07. For comparison, most lattice
calculations find A & 0:05 [48,50–52], while according to
some recent analyses [49,53] the value could be somewhat
above this bound. Thus the slope parameter predicted by
the nonlocal PNJL models appears to be compatible with
lattice estimates. This can be contrasted with the results
obtained within pure chiral models, where one finds a
strong increase of the chiral restoration temperature with
m� [27–29]. For example, within the chiral quark model of
Ref. [29] one gets a value A ¼ 0:243.

It is also worthwhile to discuss the effect of considering
a value of T0 that depends on the presence of quark matter,
as suggested in Refs. [34,35] (see also Ref. [54]). The
lowering of T0 leads to an overall decrease of the transition
temperatures, which keep the rising linear dependence on
m� but with a slope parameter that gets reduced by about
15–20%. The main noticeable difference is that in all cases
the transition becomes steeper, which leads to an earlier
onset of the first order transition. For example, for the
parameter set S2 we find that the transition becomes of
first order already at m� ’ 500 MeV in the case of the
polynomic Polyakov potential, and about one-half of this

value for the logarithmic one. As discussed, these critical
masses appear to be too small in comparison with present
lattice QCD estimations. These results correspond to a
value of T0 of about 210 MeV, which follows from the
approach of Ref. [34] for the case of nonvanishing current
quark masses.

V. SUMMARYAND CONCLUSIONS

In this work we have analyzed the dependence of the
deconfinement and chiral restoration critical temperatures
on the explicit chiral symmetry breaking driven by the
current quark mass. We work in the framework of SU(2)
nonlocal chiral quark models with Polyakov loop (nlPNJL
models), considering two different functional forms of the
Polyakov loop effective potential commonly used in the
literature, namely a polynomic function and a logarithmic
function. As a first step we have considered the mass
dependence of the pion mass and decay constant at vanish-
ing temperature, in comparison with that obtained in the
local NJL model and in lattice QCD. We have found that,
while lattice results for the ratio m2

�=m are in agreement
with both local and nonlocal models, those for f� show a
significant increase with m� that can be reproduced only
by the predictions of nonlocal models. Concerning the
deconfinement and chiral restoration critical temperatures,
we have found that, contrary to the case of the local PNJL
model, in nlPNJL models both critical temperatures turn
out to be strongly entangled for the considered range of
pion masses. In addition, it is seen that the growth of
critical temperatures with the pion mass above the physical
point is basically linear, with a slope parameter that is close
to existing lattice QCD estimates. On the other hand, it is
found that in general the present mean field calculation
leads to a too early onset of the first order transition known
to exist in the large quark mass limit. However, depending
on the ansatz for the Polyakov potential, the corresponding
critical mass may lie beyond the upper limit of reliability of
our low energy effective models. One also expects this
critical mass to be enhanced if the analysis is improved
by including a fully nonperturbative treatment of meson
fluctuations.
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