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Abstract. The problem of pattern formation by adsorbates undergoing
attractive lateral interactions, is described by a parabolic integrodiffer-
ential equation having the scaled inverse temperature ε and the scaled
pressure α of the vapor phase as parameters. A coexistence region of
high- and low-coverage stable homogeneous states has been reported
in the (ε, α) plane. In the small interaction-range limit an effectve dif-
fusion coefficient can be defined, which becomes however negative for
a coverage range in between the stable homogeneous ones.
A novel free-energy-like Lyapunov functional is found here for this prob-
lem. When evaluated on the homogeneous states, it leads to a Maxwell-
like construction which selects essentially the same value α(ε) as the
originally posited zero front-velocity condition. Moreover, its value on
static fronts at this particular α(ε) coincides with those of the homo-
geneous states. This article is dedicated to Prof. Helmut Brand with
occasion of his 60th birthday.

1 Introduction

Reaction–diffusion (RD) modeling of patterns on adsorbed monolayers was rightful up
to the mid nineties [1,2], since with the resolution achieved by photoelectron emission
microscopy (PEEM), only structures with characteristic length scales larger than the
reactants’ diffusion lengths could be seen. The development of novel experimental
techniques allowing atomic resolution in real time, such as field ion microscopy and
fast scanning tunneling microscopy (STM) [3–5], has revealed fast kinetic processes
that typically lead to nanoscale patterns (such as spots and micro-reactors [6–8])
which cannot anymore be described by RD models.
It was by the mid nineties that Mikhailov, Ertl and collaborators realized that

the abovementioned fast kinetic processes on the adsorbed monolayers were driven
by attractive lateral interactions between adatoms, and wrote up a mesoscopic, field-
theoretic model (although not a RD one) for the coverage c(r, t), first on phenom-
enological grounds [9,10] an then backed up by a microscopic description [6]. The
first application of this new theory—generalized afterward to more layers [11]—was
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stationary traveling fronts. In the small interaction-range limit and outside the front’s
core, these patterns admit an effective RD description which (as argued in Ref. [10]
and shown below) is however not describable by means of a Ginzburg–Landau func-
tional (model A according to [12])1 and whose “reaction” term describes the struggle
between adsorption and desorption chemical potentials (an equilibrium process whose
fluctuations would be of additive thermal character). On the other hand, it is easy to
see that fluctuations in parameter α (the scaled pressure of the vapor phase) lead to
a multiplicative process calling for a more sophisticated framework, namely a non-
equilibrium potential (NEP).
A restricted NEP (applicable only to homogeneous states in this limit) was found

in Ref. [13] and applied to stochastic resonance (SR) between high- and low-coverage
situations, under adiabatic harmonic variation of the vapor pressure. As a first step
towards the analysis of truly localized patterns as spots and microreactors, it was our
aim in this work to further that finding and seek a full NEP able to describe SR
between moving fronts under adiabatic “rocking” of α. Whereas that goal proved to
be too ambitious, we have found a novel free-energy-like Lyapunov functional which
yields meaningful results when applied to fronts and sheds some light on theoretical
aspects. Although its practical applicability is somewhat reduced (it would apply
e.g. to a case in which the coverage itself is perturbed, a situation which is not
experimentally practiseable as it is to perturb the vapor phase pressure), it does
allow to characterize noise-assisted phenomena from a NEP framework.
In Sect. 2 we introduce the model and its small interaction-range limit. Section 3

is devoted to the homogeneous states: we revisit the NEP found in Ref. [13] and
state an alternative free-energy-like Lyapunov functional which we evaluate on them.
Section 4 is in turn devoted to fronts: we regard them under the light of this new
functional, and compare the obtained results with the V = 0 criterion of Ref. [9].
Conclusions are outlined in Sect. 5, together with an outlook of work in course.

2 Single monolayer with adatom attraction

2.1 The general setup

In Ref. [9] it was recognized that the time scale of the problem is set by the adatom’s
residence time td in the monolayer, namely the inverse of the desorption rate kd.
Because of adatom attraction—described by a field U(r, t) which is a functional of
c(r, t)—the single-adatom rate kd, 0 is strongly depressed by a factor exp(U/kBT ). So
we shall work with a scaled time variable τ = t/td, t being the physical time variable.
Regarding space scales, two of them are relevant:

– One is of course the diffusion length Ldiff = D/kd,0 (with D the diffusion
coefficient), by which the physical time variable will be scaled: ξ = |r|/Ldiff .

– The other one is the range of the inter-adatom attractive potential u(r). This
is relevant for the calculation of the field entering the depressing factor of kd, 0,
which in the mean-field approximation reads

U(r, t) = −
∫
dr′u(r− r′)c(r′, t).

We shall work in the scaled space (ξ) and time (τ) variables, which leads in turn to
define scaled coefficients α = kap/kd, 0 (with ka the adsorption rate and p the physical

1 A Cahn–Hilliard (model B) description does not apply, since whereas the on-surface
process conserves the order parameter c, the adsorption–desorption one does not.
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vapor pressure) and ε = u0/kBT , with u0 =
∫
dru(r) the attractive interaction

strength. Following [9,10], in this work we restrict ourselves to flat fronts, and so we
omit the transversal dimension whilst assuming an infinite ξ domain in order to avoid
contributions to the NEP from the boundary conditions. Moreover, assuming as in
Ref. [9] the ubiquitous Gaussian form for u(r) with variance l20/2, namely u(r) =
u0 f(r) with f(r) = (πl

2
0)
−1 exp(−r2/l20), the evolution equation for the coverage

c(ξ, τ) reads [9]

∂τ c = α(1− c)− c exp
[
−ε
∫ ∞
−∞
dξ′f(ξ − ξ′)c(ξ′, t)

]

+∂ξ

[
−εc(1− c)∂ξ

∫ ∞
−∞
dξ′f(ξ − ξ′)c(ξ′, t) + ∂ξc

]
. (1)

The factor (1−c) accounts for the obvious fact that microscopicaly, adatoms in mono-
layers can only occupy void sites. The terms in the first line account for adsorption
and desorption, the second term in the second line for normal diffusion, and the first
one for new ingredient of the theory—the aggregating current (induced by adatom
attraction) which counteracts it.

2.2 The small interaction-range limit

The small interaction-range limit of Eq. (1) was found in Ref. [9] by assuming for u(r)
the ubiquitous Gaussian form, with variance l20/2. This expression is known to tend
to δ(r) as l0 → 0. An alternative derivation, making for u(r) no assumption other
than analyticity, has been worked out in Ref. [13]. In that limit, Eq. (1) reduces to

∂τ c = α(1− c)− c e−εc − ∂ξ[εc(1− c)∂ξc] + ∂ξξc. (2)

This can be formally written as a (field-dependent) diffusion–reaction equation

∂τ c = g(c) + ∂ξ[Deff(c)∂ξc], (3)

with
g(c) := α(1− c)− c e−εc , Deff(c) := 1− ε c(1− c), (4)

if we allow Deff(c) to become negative. This occurs for ε > 4 in a coverage range lying
between

c±(ε) =
1

2

(
1±
√
1− 4/ε

)
. (5)

Hereafter we shall deal only with stationary solutions of Eq. (3), a class which includes
not only static (∂τ c = 0) ones but also those depending only on ζ = ξ − V τ (V =
const), for which Eq. (3) reads

∂ζ [Deff(c)∂ζc+ V c] + g(c) = 0. (6)

3 Homogeneous states and nonequilibrium potentials

3.1 Homogeneous states

– For ε > 4 and αmin(ε) < α < αmax(ε), g(c) exhibits two stable roots c1(ε, α)
and c3(ε, α), which lie outside [c−(ε), c+(ε)].
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Fig. 1. Stable homogeneous coverages c1 and c3 (dashed lines), locus of binodals c̃1 and c̃3
(dotted lines) and boundaries of Deff(c) < 0 region (solid lines) as functions of α, for ε = 5.0.

– At αmin(ε) it is c1(ε, α) = c−(ε) and at αmax(ε), c3(ε, α) = c+(ε).
– For α < αmin(ε) [α > αmax(ε)] only c1(ε, α) [c3(ε, α)] survives and the process is
effectively a diffusion–reaction one (in the small interaction-range limit, recall).

In order to clarify the relation (if any) between the V = 0 condition in Ref. [9] and
a Maxwell construction, it is useful to represent (in addition to c1, c3, c− and c+) the
position of the binodals c̃1 and c̃3 [the roots of g

′(c), with ′ ≡ d/dc] as functions of
α ∈ [αmin, αmax] for fixed ε. That is done for ε = 5 in Fig. 1, where c̃1 and c̃3 (dotted
lines) are seen to keep no relation with c− and c+ (solid lines) however near them
they lie. The positions of c1 and c3 are indicated with dashed lines.

3.2 A restricted NEP for homogeneous states

The true dimension of the NEP concept Φ(q), defined through [14]

lim
ν→0Pstat(q; ν) = Z(q) exp

[
−Φ(q)
ν

]
,

becomes fully appreciated only for multiplicative noise. We note first that whereas
c has the meaning of an order parameter, the true (experimentally accessible) ther-
modynamic variables are ε and α. If α is assumed to undergo Gaussian fluctuations
around a fixed value,

α = α0 +
√
ν η(τ), with 〈η(τ)〉 = 0 and 〈η(τ)η(τ ′)〉 = 2δ(τ − τ ′),

one ends up with the Langevin-like stochastic differential equation (SDE)

ċ = g(c) +
√
ν (1− c) η(τ)

(the dot stands obviously for d/dτ). The equation defining the NEP Φ(c) is thus [14]

g(c)Φ′(c) + [(1− c)Φ′(c)]2 = 0,
with the nontrivial solution

Φ(c) = α0 ln(1− c) +
∫ c
0

z e−εzdz
(1− z)2 . (7)
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The second term yields

[
e−εc

(1− c) − 1
]
+ (1− ε) e−ε {Ei[ε(1− c)]− Ei(ε)} , (8)

with Ei(x) = − ∫∞−x e−zz−1dz, which agrees with Eq. (12) in Ref. [13] (where the lower
integration limits build up the normalization factor N ). Regarding the first one, one
might lump it into Z(q) without further ado. However, it is important to realize that
since the diffusion term in the SDE tends to

√
ν η(τ) for c→ 0, one must recover the

additive-noise NEP (see below) through a Taylor expansion of Eq. (7),

Φ(c) ≈ −
∫ c
0

[α0(1− z)− z e−εz] dz = −
∫ c
0

g(z) dz := µ(c),

namely the process’ chemical potential (denoted as Ueff(c) in Ref. [13]). A quantitative
evaluation shows however that already for c ≈ c1(ε = 5, α = 0.088), the deviation
between both expressions is important.

3.3 In search of a NEP applicable to fronts

As a first step, we switch to the simpler task of finding such a NEP under additive
noise. We thus seek a functional F [c] from which the (pseudo) reaction–diffusion
problem with field-dependent diffusion coefficient

∂τ c = g(c) + ∂ξ[Deff(c) ∂ξc] = g(c) +Deff(c) ∂ξξc+D
′
eff(c) (∂ξc)

2 (9)

could be variationally derived. As argued in Ref. [10], the usual approach

∂τ c = − 1

Deff(c)

δF1[c]
δc(ξ)

(10)

with

F1[c] :=
∫ ∞
−∞

{
1

2
[Deff(c) ∂ξc]

2 −G(c)
}
dξ (11)

playing the role of a Ginzburg–Landau functional for field-dependent diffusion and

G(c) :=

∫ c
0

Deff(z) g(z) dz

does not work here, in the sense that F1[c] will not be a Lyapunov functional where
Deff(c) < 0 [in other words, Ḟ1[c] ≤ 0 is not guaranteed for c−(ε) < c < c+(ε)]. Since
the NEP is meant to describe fluctuations, there is no way the interval [c−(ε), c+(ε)]
could be avoided.
We try out finding a functional F2[c] such that

∂τ c = −δF2[c]
δc(ξ)

. (12)

Clearly, the “reaction” term in F2[c] will be µ(c). For the “kinetic” term we propose

K(ξ)2 [c] := −
∫ ∞
−∞
c ∂ξ[Deff(c) ∂ξc] dξ, (13)
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Fig. 2. The NEP from Eq. (14) evaluated at c1 (dashed line), c3 (dot-dashed line), c2 (dotted
line) and the front (solid line) as functions of α, for ε = 5.0.

whose variation with respect to c yields

δK(ξ)2 [c] = −
∫ ∞
−∞
{[∂ξ(Deff∂ξc)]δc+ c δ[∂ξ(Deff∂ξc)]}dξ.

Now, the second term can be shown to vanish. Hence

F2[c] :=
∫ ∞
−∞
{c ∂ξ[Deff(c) ∂ξc] + µ(c)} dξ (14)

fulfills Eq. (12) and is moreover a Lyapunov functional,

Ḟ2 =
∫ ∞
−∞

(
δF
δc

)
(∂τ c) dξ = −

∫ ∞
−∞

(
δF
δc

)2
dξ ≤ 0, (15)

even for non-positive diffusion coefficient. In Fig. 2, F2[c] is evaluated on the homo-
geneous states: the stable ones c1 (dashed line) and c3 (dot-dashed line), and the
unstable one c2 (dotted line), for α values in the coexistence region for ε = 5. A
stability exchange is observed at α ≈ 0.086.

4 Fronts

Front solutions to Eq. (6) were analyzed in Ref. [9], whose authors arrived at

V =
[G(c3)−G(c1)]− [G(c+)−G(c−)]

K(ζ)[c] . (16)

The denominator

K(ζ)[c] =
∫ ∞
−∞
Deff(∂ζc)

2dζ,



Localized Structures in Physics and Chemistry 173

Fig. 3. Front velocity from Eq. (16) as a function of α, for ε = 5.0.

Fig. 4. Static coverage profile in the monolayer case, for ε = 5.0 and α ≈ 0.088.

evaluated on the profile c(ζ) moving at constant speed V , must in general be evaluated
numerically2. That has been done in Fig. 3, where V calculated from Eq. (16) is
plotted vs α in the coexistence region, for ε = 5. As seen, V = 0 occurs at α ≈ 0.088,
not very far from the stability-exchange point of homogeneous states, according to
F2[c].
For V = 0, Eq. (6) tells us that it admits a solution by quadrature (we may think

of F1[c] as an “action” and 12 [Deff(c) ∂ξc]2 +G(c) as an “energy”)

ξ(c) =

∫ c−
c

Deff(z) dz√
2[G(c1)−G(z)]

for c1 < c < c−, (17)

ξ(c) = −
∫ c
c+

Deff(z) dz√
2[G(c3)−G(z)]

for c+ < c < c3, (18)

whose profile is depicted in Fig. 4. Now, the curve of F2[c] evaluated at this solution
(solid line in the upper frame of Fig. 2) passes near the stability-exchange point of
homogeneous states, as shown in the lower frame of Fig. 2.
Following the steps that led to Eq. (16), but multiplying Eq. (6) this time only

by ∂ζc, we get

V =
[µ(c3)− µ(c1)]− [µ(c+)− µ(c−)]− 12

∫∞
−∞D

′
eff(∂ζc)

3dζ∫∞
−∞(∂ζc)

2dζ
, (19)

which has the further advantage of isolating the front core contribution from those of
the c1 and c3 domains.

2 K(ζ)2 [c]—the one from Eq. (13), evaluated on c(ζ) moving at speed V—and K(ζ)[c] can
be shown to be numerically equivalent after integration by parts. Note that Deff < 0 does
not occur in K(ζ)[c], because of the abrupt jump from c+(ε) to c−(ε).
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Fig. 5. A typical static coverage profile arising in the multilayer case (adapted from Ref.
[11] and indicated by θ). Parameters: ε = 5.6, α1 = 0.08 and α2 = 0.096.

5 Conclusions and outlook

In order to study noise-induced effects, we have obtained a novel free-energy-like Lya-
punov functional, a nonequilibrium potential, for an adsorption–desorption system. It
yields meaningful results when applied to fronts and also helps shed light on the-
oretical aspects. Although its practical applicability is somewhat restricted, it does
allow characterizing noise-assisted phenomena within a NEP framework, whose 2D
generalization is straightforward, although curvature effects are expected. It considers
the adsorption–desorption process as a spatiotemporal white noise (as in KPZ) which
can create opposite-phase domains and also change the front location.
Here we have focused on the adsorbate monolayer case. In [11], a generalization

to the multilayer situation has been undertaken. We are presently looking at the
double-layer system, which in unnormalized variables reads

∂tc1(x, t) = {ka p (1− c1)− kd,0 c1 exp[U1(x)/T ] + kT c1}(1− c2)
+∂x

(
D

T
U ′1(x) c1(1− c1) +D∂xc1

)
, (20)

∂tc2(x, t) = k
′
a p c1(1− c2)− k′d,0 c2 exp[U2(x)/T ] + k′T c2(1− c1)

+∂x

(
D

T
U ′2(x) c2(1− c2) +D∂xc2

)
,

from the NEP perspective. Subscript 1 indicates the innermost layer (the one directly
attached to the metallic surface) and 2 the outer one. Adsorption and bare desorption
rates for the outer layer are indicated with a prime. A new mechanism working here
is transfer between layers, involving free sites in the target layer and occupied sites in
the initial one and characterized by the coupling parameters kT for outward transfer
[kT c1(1 − c2)] and k′T for inward transfer [k′T c2(1 − c1)]. Typically, stepped profiles
result within this model [11], as the one shown in Fig. 5.
If a NEP is obtained for this generalization (even with restricted validity as in the

present case) it will open the possibility of analyzing noise effects in wetting-related
problems. Our advances on the subject will be reported elsewhere.
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