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Abstract

In applications involving ordinal predictors, common approaches to reduce dimensionality are

either extensions of unsupervised techniques such as principal component analysis, or variable

selection procedures that rely on modeling the regression function. In this paper, a supervised

dimension reduction method tailored to ordered categorical predictors is introduced. It uses a

model-based dimension reduction approach, inspired by extending sufficient dimension reduc-

tions to the context of latent Gaussian variables. The reduction is chosen without modeling the

response as a function of the predictors and does not impose any distributional assumption on the

response or on the response given the predictors. A likelihood-based estimator of the reduction

is derived and an iterative expectation-maximization type algorithm is proposed to alleviate the

computational load and thus make the method more practical. A regularized estimator, which

simultaneously achieves variable selection and dimension reduction, is also presented. Perfor-

mance of the proposed method is evaluated through simulations and a real data example for

socioeconomic index construction, comparing favorably to widespread use techniques.

Keywords:
Expectation-Maximization (EM), Latent variables Reduction Subspace, SES index construction,

Supervised classification, Variable selection.

1. Introduction.

Regression models with ordinal predictors are common in many applications. For instance,

in economics and the social sciences, ordinal variables are used to predict phenomena like in-

come distribution, poverty, consumption patterns, nutrition, fertility, healthcare decisions, and

subjective well-being, among others [e.g. 3, 44, 39, 27, 36, 20]. In marketing research, customer

preferences are used to create automatic recommendation systems, as in the case of Netflix [e.g.

2, 43], where the ratings for unseen movies can be predicted using the user’s previous ratings and

information about the consumer preferences for the whole database.

In this context, when the number of predictors is large, it is of interest to reduce the dimen-

sionality of the space by combining them into a few variables in order to get efficiency in the

estimation as well as an understanding of the model. The commonly used dimension reduction

techniques for ordinal variables are adaptations of standard principal component analysis (PCA)
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[34, 28]. For example, in the case of the Índice de Focalización de Pobreza (a socio-economic

index commonly used in Latin America), the first normalized principal component is used to

predict poverty status, even if this outcome variable was never used to estimate the scaling. It

is clear, however, that ignoring the response when building such an index can lead to a loss of

predictive power compared to the full set of predictors.

A different approach to dimensionality reduction is to perform variable selection on the origi-

nal set of predictors. A method adapted to ordinal predictors is proposed in [21]. Despite the fact

that this method uses information from the response to achieve variable selection, it performs si-

multaneously regression modeling by assuming a parametric model for the response as a function

of predictors.

For regression and classification tasks it is widely accepted that supervised dimension reduc-

tion is a better alternative than PCA-like approaches. Sufficient dimension reduction (SDR), in

particular, has gained interest in recent years as a principled methodology to achieve dimension

reduction on the predictors X ∈ R
p without losing information about the response Y . Formally,

for the regression of Y |X, SDR amounts to finding a transformation R(X) ∈ R
d, with d ≤ p,

such that the conditional distribution of Y |X is identical to that of Y |R(X). Nevertheless, there

is no need to assume a distribution for Y or for Y |X. Thus, the obtained reductions can subse-

quently be used with any prediction rule. Moreover, when the reduced space has low dimension,

it is feasible to plot the response versus the reduced variables. This can play an important role in

facilitating model building and understanding [8, 9].

Most of the methodology in SDR is based on the inverse regression of X on Y , which trans-

lates a p-dimensional problem of regressing Y |X into p (easier to model) one-dimensional regres-

sions corresponding to X|Y . Estimation in SDR was developed originally for continuous pre-

dictors and was based on the moments of the conditional distribution of X|Y (SIR, [33]; SAVE,

[16]; pHd, [32]; PIR [4]; MAVE, [49, 31, 15, 51, 14]; DR, [30], see also [13, 17, 7, 15, 50] and

[9], where much of its terminology was introduced). Later, [10] introduced the so called model-
based inverse regression of X|Y (see also [11, 12]). The main advantage of this approach is

that provides an estimator of the sufficient reduction that contains all the information in X that is

relevant to Y , allowing maximum likelihood estimators which are optimal in terms of efficiency

and
√
n-consistent under mild conditions when the model holds.

Along the lines of the model-based SDR approach, the up to date methodology is for predic-

tors belonging to a general exponential family of distributions (See [5]). Then, when attempting

to apply SDR to ordinal predictors, a first approach could be to treat them as polythomic vari-

ables, ignoring their natural order. Then a multinomial distribution can be postulated over them,

which can be treated as member of the exponential family. However, ordered variables usually

do not follow a multinomial distribution and the order information is lost when treating them as

multinomial. There have been attempts to use dummy variables to deal with ordinal data, but this

procedure has been shown to introduce spurious correlations [28]. Another approach is to treat

the ordered predictors as a discretization of some underlying continuous random variable. This

technique is commonly used in the social sciences and is known as the latent variable model.
In this context, the latent variables are usually modeled as normally or logistically distributed,

obtaining the so-called ordered probit and logit models, respectively [22, 35]. While for each

scientific phenomenon the latent variable can take a particular meaning (e.g., utility in economic

choice problems, liability to diseases in genetics, or tolerance to a drug in toxicology), a general
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interpretation of a latent variable may be the propensity to observe a certain value j of an ordered

categorical variable [45]. Regardless of their philosophical meaning and the criticisms about their

real existence, latent variables are very useful for generating distributions for modeling, hence

their widespread use.

In this paper, we develop a supervised dimension reduction method for ordinal predictors,

based on the SDR for the regression of the response given the underlying normal latent vari-

ables. Under this context, we present a maximum likelihood estimator of the reduction and we

propose an approximate expectation maximization (EM) algorithm for its practical computation,

which is close to recent developments in graphical models for ordinal data [23] and allows for

computationally efficient estimation without losing accuracy.

The rest of this paper is organized as follows. In Section 2 we describe the inverse regres-

sion model for ordinal data and its dimensionality reduction. In Section 3 we derive the Max-

imum likelihood estimates of the reduction and we also present a variable selection method.

Section 4 is dedicated to developing a permutation test for choosing the dimension for the re-

duction. Simulation results are presented in Section 5. Section 6 contains a socio-economic

application using the methodology developed in this paper to create a socio-economic status

(SES) index from ordinal predictors. Finally, a concluding discussion is given in Section 7. All

proofs and other supporting material are given in the appendices. Matlab codes for the algorithm

and simulations are available at http://www.fiq.unl.edu.ar/pages/investigacion/

investigacion-reproducible/grupo-de-estadistica-statistics-group.php.

2. Model

Let us consider the regression of a response Y ∈ R on a predictor X = (X1, X2, . . . , Xp)
T ,

where each Xj , j = 1, . . . , p is an ordered categorical variable, i.e., Xj ∈ {1, . . . , Gj}, j =
1, . . . , p. To state a dimension reduction of X inspired by the model-based SDR approach (see

[10]), we should model the inverse regression of X on Y . However, as we stated in the intro-

duction, the model-based SDR techniques deal with continuous predictors. Therefore, in order

to frame our problem in that context, we will assume the existence of a p-dimensional vector

of unobserved underlying continuous latent variables Z = (Z1, Z2, . . . , Zp)
T , with E(Z) = 0,

such that each observed Xj is a discretizing of Zj as follows. There exists a set of thresholds

Θ
(j) = {θ(j)0 , θ

(j)
1 , . . . , θ

(j)
Gj
}, that split the real line in disjoints intervals −∞ = θ

(j)
0 < θ

(j)
1 <

· · · < θ
(j)
Gj−1

< θ
(j)
Gj

= +∞ and

Xj =

Gj∑

g=1

gI(θ
(j)
g−1 ≤ Zj < θ(j)g ), (1)

where I(A) is the indicator function of the set A. Therefore, Xj = g ⇔ Zj ∈ [θ
(j)
g−1, θ

(j)
g ) and

P (Xj = g) = P (θ
(j)
g−1 ≤ Zj < θ

(j)
g ).

In the framework of model-based inverse regression, we adopt, following [11] that the vari-

able Z given Y is normal with mean depending on Y and constant variance, i.e.

Z|Y = µY + ǫ, (2)
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where µY = E(Z|Y ) and the error ǫ is independent of Y , normally distributed with mean 0 and

covariance (positive definite) matrix ∆. As usual in latent variable models for ordinal data (see

[26]), additionally to E(Z) = 0, we set the diagonal [∆]jj
.
= δj = 1 in order to allow for model

identification.

Since E(Z|Y ) depends on Y we could model that dependence as a function of fY ∈ R
r

a vector of r known functions with E((fY − E(fY ))(fY − E(fY ))
T ). Under this model, each

coordinate of Z|Y follows a linear model with predictor vector fY and therefore, when Y is

quantitative, we can use inverse plots to get information about the choice of fy, which is not

possible in the regression of Y on X. When Y is continuous, fy usually will be a flexible set

of basis functions, like polynomial terms in Y , which may also be used when it is impractical

to apply graphical methods to all of the predictors. When Y is categorical and takes values

{C1, . . . , Ch}, we can set r = h − 1 and specify the jth element of fy to be I(y ∈ Cj), j =
1, . . . , h. When Y is continuous, we can also slice its values into h categories {C1, . . . , Ch} and

then specify the jth coordinate of fy as for the case of a categorical Y . For more details see [1].

As a consequence, model (2) can be expressed as

Z|Y = Γ{fY −E(fY )}+ ǫ, (3)

where ǫ is independent of Y , normally distributed with mean 0 and covariance (positive definite)

matrix ∆.

For the regression of Y on the continuous latent variable Z, under model (3) the minimal

SDR is R(Z) = αT
Z, with α a basis for ∆

−1span(Γ) by [11], Theorem 2.1. Note that if

R(Z) = αT
Z is a sufficient reduction, then R(Z) = AαT

Z is a sufficient reduction for any

invertible A ∈ R
d×d [9]. Therefore what is identifiable is the span of α, not α itself. In the

SDR literature, the identifiable parameter span(α) is called a sufficient reduction subspace. If

dim(span(Γ)) = d ≤ min{r, p}, (3) can be re-written as

Z|Y = ∆αξ{fY −E(fY )}+ ǫ, (4)

where α ∈ R
p×d with d ≤ p is a semi-orthogonal matrix whose columns form a basis for the

d-dimensional subspace ∆−1span(Γ), ξ ∈ R
d×r is a full rank d matrix with r ≥ d (see [11], [1]).

Coming back to our problem of interest, in order to propose a supervised dimension reduction

for the regression of Y |X let us observe that, since X is a function of Z, αT
Z will be also the

sufficient dimension reduction for Y |X, i.e. Y X|αT
Z (see Proposition 4.5 in [9]). However,

since Z is unobservable, and the only information available is X, we take the conditional expec-

tation of αT
Z given X, instead of αT

Z for the reduction of Y |X since it is the best predictor

of αT
Z in terms of minimum Mean Square Error. Therefore, for the regression of Y on X , the

proposed supervised dimension reduction will be

R(X) = E(αT
Z|X). (5)

Remark 1. Observe that in this case, regardless of the encoding of X, the reduction R(X) is
completely identified since for each j = 1, . . . , p, E(Zj) = 0 and Xj = g ⇔ Zj ∈ [θ

(j)
g−1, θ

(j)
g )

and therefore, whatever the coding of Xj is, the underlying (and as a consequence the thresholds)
does not change.
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Figure 1: Data generation and processing chain according to the assumed model and proposed dimension reduction

scheme.
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Figure 2: Residual dependence between the response and the predictors, given the reduction. Hilbert-Schmidt

condicional independence criterion (HSCIC) is used as measure of conditional dependence.

Figure 1 helps to understand how the proposed method works, showing an example corre-

sponding to a categorical outcome with three nominal values Y ∈ {1, 2, 3}. Suppose we are

able to observe the underlying continuous variables Z and that their distribution follows model

(4), with α ∈ R
p×2. It means that the characteristic information needed to discriminate between

the three groups lies actually in the two-dimensional subspace spanned by the columns of α.

Top panel of Figure 1 shows such information, plotting the coordinates of αT
Z. For each group

indexed by Y , the data fall in a cluster well separated from the others. If we are not allowed to

observe this reduced subspace but the complete underlying predictors Z, we would have a situ-

ation as described by the scatter plots between pairs of predictors depicted in the second panel

of Figure 1. Despite we can still see some separation between clusters, it is not as clear as in

the sufficient low-dimensional subspace. In real scenarios with ordinal data, according to the

assumed model we do not have access to observe Z either, but a discretized version X which is a

function of the underlying Z throught the set of fixed thresholds Θ. This situation is illustrated in

the third panel. It is clear from the figure that the continuous values of Z collapse into a discrete

set of values in X and it is now much harder to discriminate between the groups indexed by Y .

Nevertheless, the dimension reduction approach proposed in this paper projects the data again

onto a 2-dimensional subspace, as shown in panel at the bottom of Figure 1. Note that clear sep-

aration between clusters is recovered; indeed, the information available in this subspace closely

resembles that in the characteristic subspace spanned by α (compare the first and last panels).

It is interesting to see also how well the proposed reduction captures the information about

Y that is available in X. We know that for the underlying variables, Z Y | αT
Z. If we

can measure the residual dependence between Z and Y given αT
Z using a suitable measure of

statistical independence ρ(Z, Y | αT
Z) , we will have ρ(Z, Y | αT

Z) = 0 in the population.

In practice, for a finite random sample of (Y,Z,αT
Z), this value will be greater than cero. This

is shown in the left-most boxplot in Figure 2. The boxplot was computed using 100 simulated

data sets and choosing for the measure ρ the Hilbert-Schmidt condicional independence criterion

introduced in [41]. Isotropic Gaussian kernels are used to embed the observations into a RKHS.

Kernel bandwiths are set to the median of the pairwise distances between samples. Since αT
Z is
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still a sufficient reduction for the regression Y |X, in the population we would also have ρ(X, Y |
αT

Z) = 0. A sample estimate of this quantity, using the same data and dependence measure as

before, is shown in the second boxplot of the figure. Finally, if we compute the same empirical

measure, with the same random sample but for the practical reduction R(X) = E(αT
Z | X)

instead of αT
Z, we obtain the boxplot shown on the right of the figure. This figure shows that on

average the empricial version of ρ(X, Y | E(αT
Z|X)) is a little bigger than the empirical version

of ρ(X, Y | αT
Z) for the same random sample of (Y,Z,αT

Z), albeit they are very close. This

suggests that, even if we cannot claim sufficiency of the proposed reduction, it is really close to

the ideal unattainable reduction αT
Z.

3. Estimation

For the supervised dimension reduction given in (5), we need to estimate the semiorthogonal

basis matrix α. If Z were observed, the maximum likelihood estimator of α would be the one

derived in [11]. That is, α̂ = Σ̃
−1/2

v, where v are the first d eigenvectors of the symmetric matrix

Σ̃
−1/2

Σ̃fitΣ̃
−1/2

, Σ̃ is the sample marginal covariance of the predictors and Σ̃fit is the sample

covariance of the fitted values of the regression Z|fy. This estimation procedure is called Principal

Fitted Components (PFC). However, Z is not observed, and therefore the sample covariance

matrices (marginal and fitted) cannot be estimated directly. In view of the robustness proven in

[11], we could consider applying the methodology directly to X in a naive way and it still will

obtain a
√
n consistent estimator. This approach will be the initial value of our algorithm to

obtain the maximum likelihood estimate under the true model.

For the estimation, let as assume we have a random sample of n points (yi,xi) drawn from

the joint distibution of (Y,X) following model (4) and that the dimension d of the reduction

is known (later in Section 4 we will consider how to infer it). In what follows, we will call

Θ
.
= {Θ(1), . . . ,Θ(p)} = {θ(1)0 , . . . , θ

(1)
G1
, . . . . . . , θ

(p)
0 , . . . , θ

(p)
Gp
} and C(X,Θ) = [θ

(1)
X1−1, θ

(1)
X1
) ×

· · · × [θ
(p)
Xp−1, θ

(p)
Xp
). In order to obtain the estimator we need to maximize the log-likelihood

function of the observed data
n∑

i=1

log fX(xi|yi;Θ,∆,α, ξ). (6)

Since Z|Y is normally distributed, using (1) we can compute, for each i, the truncated unnormal-

ized density fX,Z(xi, zi|yi;Θ,∆,α, ξ) as

fX,Z(xi, zi|yi;Θ,∆,α, ξ) = (2π)−p/2|∆|−1/2e−
1
2
tr(∆−1(zi−∆αξf̄yi)(zi−∆αξf̄yi)

T )I{zi∈C(xi,Θ)},

where f̄yi
.
= fyi − n−1

∑n
i=1 fyi . Therefore, for each i, the unnormalized marginal density X|Y

will be

fX(xi|yi;Θ,∆,α, ξ) =

∫
fX,Z(xi, zi|yi;Θ,∆,α, ξ) dzi.

As an exact computation of the likelihood is difficult due to the multiple integrals involved,

maximum likelihood estimates are often obtained using an iterative expectation-maximization

(EM) algorithm. This is a common choice for models with latent variables, since it exploits

the reduced complexity of computing the joint likelihood of the complete data (X,Z). We will

follow this approach in the present paper. The corresponding algorithm is described below.
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3.1. Algorithm

In this section we present the EM algorithm, closely related to the one given in [23], to

estimate the parameters in model (4). Throughout this section, we will use superscripts A(k) to

indicate the value of quantity A at the kth iteration of the algorithm. In addition, to make notation

easier, let us collect the parameters ∆,α, ξ into a single parameter vector Ω
.
= {∆,α, ξ}. The

procedure starts with Step 0, where we initialize Ω
(0) using the estimators obtained from PFC

applied to X. Then, the algorithm iterates between the following two steps until convergence

is reached: Step 1 is devoted to estimating Θ
(k) given Ω

(k−1) and Step 2 to getting Ω
(k) by

maximizing the conditional expectation (given Ω
(k−1) and Θ

(k)) of the joint log-likelihood (6).

This step is properly the EM step.

Step 1: Estimation of Θ: GivenΩ(k−1) from Step 0 or from a previous iteration, letΨ(k−1) .
=

∆
(k−1)α(k−1)ξ(k−1). For each j = 1, . . . , p and g = 1, . . . , Gj define

L(j)
g (θ)

.
= #{i : xij ≤ g} −

n∑

i=1

Φ

(
θ −Ψ

(k−1)
j f̄yi

δ
(k−1)
j

)
,

where Φ is the cumulative distribution function of the standard normal, for each j, δ
(k−1)
j =

(∆(k−1))jj , Ψ
(k−1)
j indicates the jth row of Ψ

(k−1), xij is the jth coordinate of xi, and #S

indicates the cardinality of the set S. Then, take θ̂
(j)
0 = −∞ =, θ̂

(j)
Gj

= +∞. For g =

1, . . . , Gj − 1, assign to θ̂
(j)
g the unique solution of the equation L

(j)
g (θ) = 0. Set Θ

(k) =

{θ(1)0 , . . . , θ
(1)
G1
, . . . , θ

(p)
0 , . . . , θ

(p)
Gp
}. Here the definition of L

(j)
g is based on the normality assump-

tion on the conditional distribution of the underlying continuous variable. More precisely, we

define L
(j)
g as a search function of thresholds using the underlying (normal) cumulative distribu-

tion function.

Step 2: Estimation of ∆
(k),α(k), ξ(k) : Given Θ

(k) computed in Step 1 and Ω
(k−1) from

Step 0 or from a previous iteration, we apply the EM algorithm to maximize (6). The EM algo-

rithm consist in finding Ω
(k) that maximize over Ω

Q(Ω|Ω(k−1)) =
n∑

i=1

Ezi|yi;Ω(k−1)

[
log fxi,zi(xi, zi|yi;Ω)

∣∣yi;Ω(k−1)
]
. (7)

These produce

α(k) = S
−1/2ζ̂dN,

(∆−1)(k) = S
−1 +α(k)((α(k))TSresα

(k))−1(α(k))T −α(k)((α(k))TSα(k))−1(α(k))T ,

ξ(k) = ((α(k))T∆(k)α(k))−1(α(k))TMT
F(FT

F)−1,

where N is a matrix such that (α(k))Tα(k) = Id and the ζ̂d are the first d eigenvectors of

S
−1/2

SfitS
−1/2, where the matrices S ∈ R

p×p and Sfit ∈ R
p×p are given by

S =
1

n

n∑

i=1

Ezi|xi,yi;Ω(k−1)(ziz
T
i |xi, yi;Ω

(k−1)) and Sfit = n−1
M

T
F(FT

F)−1
F

T
M

8



with F ∈ R
n×r and M ∈ R

n×p matrices whose transposes are given by F
T = [f̄y1 , . . . , f̄yn ] and

M
T = [Ez1|x1,y1;Ω(k−1)(z1|x1, y1;Ω

(k−1)), . . . , Ezn|xn,yn;Ω(k−1)(zn|xn, yn;Ω
(k−1)))] and the resid-

ual matrix Sres is defined by Sres = S− Sfit. Details of the derivation and the EM algorithm are

given in Appendix A.

Step 3: Check convergence. If it is not reached, go to Step 1. We check convergence simply

by looking to see whether Q(Ω(k)|Ω(k−1)) stops increasing from one iteration to the next. Specif-

ically, we check whether (Q(Ω(k)|Ω(k−1)) − Q(Ω(k−1)|Ω(k−2)))/Q(Ω(k−1)|Ω(k−2)) < ǫ, with ǫ
typically set to 10−6.

3.2. Estimation with variable selection
When we compute the linear combinations implied in (5), we need to include all the origi-

nal variables. This means that even non-relevant or redundant variables are included in the final

model, making it harder to interpret. To overcome this limitation, we can perform variable se-

lection, in this way obtaining linear combinations that include only the active, relevant variables.

Following [6], the maximization of (7) is equivalent to finding, in each iteration,

α(k) = argmin
α

{
− tr(αT

Sfitα)
}
, subject to αT

Sα = Id. (8)

To induce variable selection in dimension reduction, we introduce a group-lasso type penalty

since, in order not to choose a particular variable Xj , we need to make the whole jth row of α,

αj , equal to 0. For that, following [6], we use a mixed ℓ1/ℓ2 norm, where the inner norm is the

ℓ2 norm of each row of α. Adding the penalty term to (8), we get

α(k) = argmin
α

{
− tr(αT

S
−1/2

SfitS
−1/2α) + λ

p∑

i=1

||αi||2
}
, subject to αT

Sα = Id.

The parameter λ can be found using an information criterion, such as Akaike’s (AIC) or

Bayes’ (BIC) criteria. Details are given in [6]. Another approach is to find the value λ∗ that

minimizes the prediction error via a cross-validation experiment, but this requires adopting a

specific prediction rule.

It is interesting to note that this procedure performs at the same time variable selection and

dimension reduction without modeling the regression for Y |E(Z|X) or Y |X. Thus, the obtained

reduction can be used later with any prediction rule of choice. This is different, for instance, from

the approach proposed in [21], where the variable selection is driven by a particular regression

model.

3.3. Computing the reduction
In order to compute the reduction (5), we need to estimate α and E(Z|X). In the preceding

paragraph we focused on computing an estimate of α. To estimate E(Z|X), observe that, when

the response Y is discrete, using Bayes’ rule we get

E(Z|X) = EY |X

(
E(Z|X, Y = y)

)

=
∑

y∈SY

P (Y = y|X)E(Z|X, y)

=
∑

y∈SY

w(y)E(Z|X, y),

9



where,

w(y) =
P (X|Y = y)P (Y = y)∑

y∈SY
P (X|Y = y)P (Y = y)

,

Then, to estimate E(Z|X) we take: Ê(Z|X, y) = M from the Step 2 of the EM algoritm (Section

3.1); P̂ (X|Y = y) =
∫
C(X,Θ̂)

fZ|Y (z|y; ∆̂, α̂, ξ̂) dz with Θ̂, ∆̂, α̂, ξ̂ obtained from Steps 1 and

2 of Section 3.1 or 3.2; and P̂ (Y = y) from the sample. When the response is continuous, we

can simply slice Y in h bins and use the previous procedure. Note also that the sample space of

X is finite and so the sample space of E(αT
Z|X) is finite too. Thus, a priori we can tabulate

those values for future use and avoid computations when we need to reduce a new instance of

X. Nevertheless, when p is moderately large and there are several ordered categories for each

variable Xj , the amount of memory needed to store such a look up table can become too large

in practice. For instance, if p = 20 and we have Gj = 3 for each Xj , to store all the values of

E(αT
Z|X) in double precision we need around 26 GB of memory.

4. Choosing the dimension

Our developments in Section 3 assumed that the dimension d ≤ min(p, r) of the reduction

subspace was known. In practical settings, this dimension should be inferred from the data. For

model-based SDR, which allows for likelihood computation, likelihood-ratio and information

criteria such as AIC or BIC have been proposed to drive the selection of d [11]. The accuracy of

these methods, however, is not robust to deviations from the assumed model. When the main goal

is prediction, a common choice is to assess different values of d according to their performance

at predicting out-of-sample cases in a cross validation setting. The value of d picked is the one

that achieves the minimum prediction error.

Another way to choose the dimension is via permutation tests, as introduced in [17]. For

that, assume that α ∈ R
p×m and (α,α0) ∈ R

p×p is unitary. A permutation test relies on the

fact that Sα is a sufficient dimension reduction subspace for the regression of Y on Z whenever

(Y,αT
Z) αT

0Z. Note that this implies m ≥ d. For this test, we consider the statistic Λ̂m =
2(Qp(Ip) − Qm(α̂)), where Qr is given by the Q function in (7), evaluated at the estimator

obtained in the EM algorithm given above, for a fixed dimension of Sα. Set m = 0. A procedure

adapted to ordinal data to infer d via permutation testing involves the following steps:

(i) Obtain α̂, the MLE of α and compute Λ̂m. Obtain also α̂0.

(ii) For the data (Yi, E(α̂T
Z|Xi), E(α̂T

0Z|Xi)), permute the columns corresponding toE(α̂T
0Z|Xi)

to get a new sample (Yi, E(Z|Xi)
∗). For the new data, obtain the MLE and compute Λ̂∗

m.

(iii) Repeat step 2, B times.

(iv) Compute the fraction of the Λ̂∗
m that exceed Λ̂m. If this value is smaller than the chosen

significance level and if m < min(r, p) set m = m+ 1 and go to step 1. Otherwise, return

d = m.

In this way, the inferred d is the smallest m that fails to reject the null hypothesis of indepen-

dence between (Y,E(α̂T
Z|Xi)) and E(α̂T

0Z|Xi).
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5. Simulations

In this section we illustrate the performance of the proposed method using simulated data.

A critical aspect of the implementation is the computation of the E-step of the EM algorithm.

Exact computation of the truncated moments involved in this step would make the proposed

method infeasible in practice even for a dimensionality of the predictors of order 5 < p < 10,

depending on the number of ordered categories. To address this, we implement an approximate

estimation method adapted from [23]. The main idea is to use a recursion to iteratively compute

the truncated moments of a multivariate normal distribution. The derivation and further details

are given in Appendix B. The first step is to validate the proposed approximate method on the E-

step by comparing its performance with the exact computation of the truncated moments. Then,

we compare the performance of the proposed SDR-based method against standard methodology

developed for continuous data. Taking advantage of the computational savings obtained with

the approximate E-step computation, we then illustrate the performance of the proposed stra-

tegy to infer the dimension of the dimension reduction subspace using permutation testing and

cross validation. Finally, we illustrate the performance of the regularized estimator proposed in

Section 3.2 in a prediction task.

5.1. Validation of the proposed algorithm for the E-step of the algorithm

The most demanding part of the proposed method is the computation of the truncated mo-

ments of the multivariate normal distributions in the E-step. The approximate iterative method

proposed for its computation is a main ingredient to allow the application of the methodology in

practical settings. In this section we validate this strategy by comparing the approximate compu-

tation against the exact computation using the algorithm proposed in [29]. Since the exact compu-

tation involves a high computational cost even for moderate dimensions of the predictor vectors,

we set p = 5 and n = 100. In addition, we set Gj = 4 for j = 1, 2, . . . , 5. The data was generated

according to (4), with Y ∼ N(0, 1). For the basis matrix α, we set
√
p α = (1p sign(e)), with

1p a column vector of ones of size p = 5 and e ∼ Np(0, I). For the covariance matrix ∆, we set

∆ = I + αBαT , with B a 2 × 2 symmetric random matrix fixed at the outset. We also chose

a polynomial basis for fY , with r = 2. The same choice of fY was used for the estimation. The

experiment was replicated 100 times. In each run, the same training sample was used with both

methods.

To assess the accuracy of the estimation, we measured the angle between the subspace spanned

by the true α and the one spanned by the estimate α̂. This quantity ranges from 0 degrees if the

two subspaces are identical to 90 degrees if they do not share any information. The average angle

obtained with the exact method was 10.21 degrees with a standard deviation of 6.37 degrees,

whereas for the estimate obtained with the approximate method the average angle was 12.65 de-

grees with a standard deviation of 5.70 degrees. The 95% confidence interval for the average

difference between the angles obtained with both methods is (2.07, 2.81) degrees. These values

suggest that the price to pay for the introduction of the approximate computation is very small.

It is also illustrative to see the impact of the approximation on prediction. Using plain linear

regression for Y |E(α̂T
Z|X), the MSE of the residuals averaged over the 100 runs is 0.863 when

estimating the reduction using the approximate E-step, whereas it is 0.811 when using the exact

method. In both cases the standard deviation of the averaged MSE is 0.04. Thus, the differense

in the MSE obtained with the approximate method represents less than 1.5% of the average MSE
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obtained with the exact method. The importance of the approximate method for the E-step is

better understood when noting the big difference in computing time. Using plain MATLAB im-

plementations for both methods, computation with the exact method takes on average 1.13× 102

seconds for each run, while with the approximate method this time was reduced to 0.26 sec-

onds, a difference of three orders of magnitude. Overall, these results show that the approximate

method to compute the truncated moments is a viable alternative: it reduces the computing time

in practical applications without a significant loss in accuracy.

5.2. Performance of the proposed method

In this section we assess the performance of the proposed method on simulated data. For this

example, we set p = 20, d = 2 and a polynomial basis with r = 2 for fY . As in Section 5.1, we

generate the data according to (4), with Y ∼ N(0, 1),
√
pα = (1p sign(e)), with e ∼ Np(0, I),

and covariance matrix ∆ = I + αBαT , with B a d × d symmetric random matrix fixed at the

outset. The values of Gj in this case ranged from 3 to 5. For the estimation we used a polynomial

basis with r = 2. To evaluate the performance, we computed the angle between the true reduction

αT
Z and the estimated reduction R(X). We considered three choices for R(X): (i) the reduction

is given by α̂
T
PFC
X, with α̂PFC computed as in standard PFC for continuous variables; (ii) the

reduction is α̂
T
ORD

X, with α̂ORD computed as proposed here but applied on the observed ordinal

data X; (iii) R(X) = E(α̂T
ORD

Z|X) as proposed in Section 2.

Figure 3-(a) shows boxplots of the obtained results for 100 runs of the experiment and a

sample of size n = 500. The angle is measured in degrees. It can be seen that the mean value

of the angle is significantly smaller for the proposed method for ordinal predictors, compared

to using choices (i) or (ii). It can be seen that the variance is somewhat increased, but the gain

in accuracy clearly worths the price. It is less obvious from the figure that α̂ORD provides a

better estimation of the true subspace spanned by α than the standard α̂PFC estimator. The 95%

normal confidence interval for the difference [angle(α, α̂PFC) − angle(α, α̂ORD)] is (9.59, 11.02)
degrees. These results show that for ordinal data, estimation of the subspace spanned by α using

the proposed method for ordered predictors clearly outperforms standard PFC as derived for

continuous predictors.

It seems fair to ask whether the gain in performance discussed in this example still holds

when the normality assumption for the underlying latent variables does not hold. For standard

PFC, Cook and Forzani [11, Theorem 3.5] showed that the estimator is still consistent when

Z|Y deviates from multivariate normality. To assess the performance of the proposed method

in this scenario, we generated data similarly as before, but with ǫ non-normally distributed. In

particular, we assumed that ǫ had chi-squared distributed coordinates (ǫ)j ∼ χ2(5). The rest of

the simulation parameters remained fixed as before. The results obtained are shown in Figure 3-

(b). It can be seen that the angles obtained with both methods are very close to those obtained for

conditionally normal data. This confirms the superiority of the proposed method and algorithm

to estimate span(α) when the predictors are ordered categories.

5.3. Inference about d

In this section, we carry out a simulation study to evaluate methods to infer the dimension

of the reduction subspace from the data. In particular, we compare the accuracy of permutation

testing against 10-fold cross validation (CV) and well-known information criteria like Akaike’s
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Figure 3: Angle between span(α̂) and span(α), for α̂ obtained using PFC and the proposed approach for ordinal

predictors. (a) normal conditional model for Z|(Y = y); (b) non-normal conditional model for Z|(Y = y).

information criterion (AIC) and Bayes’ information criterion (BIC). For this study, we generate

data as described in Section 5.2, with p = 10, d = 2 and we use a polynomial basis with degree

r = 4 for fY . Since d ≤ min(r, p), we search for the true value of d within the set {0, 1, 2, 3, 4}.
For permutation testing, we build the permutation distribution of Λ̂m resampling the data 500

times as discussed in Section 4 and use a significance level of 0.01. For CV we used the averaged

mean-squared prediction error over the test partition as the driving measure of performance,

taking simple k-NN regression as the prediction rule. For information criteria, we take

d̂IC = argmin
do

{2Qdo(α) + cIChΘ(do)},

where cAIC = 2, cBIC = log(n), hΘ(do) = rdo + do(p − do) + p(p + 3)/2 + nΘ and nΘ is the

number of thresholds estimated during the computation of α̂. The experiment was repeated using

two different sample sizes, n = 200 and n = 300, and it was run 500 times for each sample size.

Table 1 shows the obtained results. For n = 300, permutation testing finds the true dimension

83% of the runs, while CV finds it 66% of the time. In addition, for this sample size, both methods

hardly ever pick less than two directions, and therefore no information is lost. The fraction of the

runs that at most one extra direction is chosen, that is, d̂ = 2 or d̂ = 3, is 0.898 for permutation

testing and 0.85 using cross-validation. On the other hand, information criteria show a poorer

performance. AIC picks the right dimension around half of the runs. Nevertheless, the rest of the

runs it picks d̂ = 1, thus losing information. Underestimation of the true dimension is even more

severe with BIC, since it picks only one direction almost always.

For the smaller sample size n = 200, permutation testing is less accurate. It finds the true

dimension 67% of the runs in this scenario, but in 24% of the runs it picked only one direction for

projection instead of two. CV finds the true dimension 59% of the runs, but tends to overestimate

the required dimension d, leading to a potential loss in efficiency but preserving information. A

test for the difference in the proportion of choices d̂ ≥ 2 between permutation testing and CV
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Table 1: Fraction of times a given value of d was chosen

PERMUTATION CV AIC BIC

d = 1 0.240 0.000 0.794 0.998

n = 200 d = 2 0.670 0.591 0.206 0.002

d = 3 0.067 0.214 0 0

d = 4 0.023 0.195 0 0

d = 1 0.077 0.000 0.488 0.986

n = 300 d = 2 0.832 0.657 0.512 0.014

d = 3 0.066 0.191 0 0

d = 4 0.025 0.152 0 0

gives a p-value of ≈ 10−15, evidencing a statistical significant advantage of the cross-validation

in this scenario of small samples in order to avoid information loss. On the other hand, in this

setting AIC and BIC underestimate the true dimension even more frequently than for the larger

sample size.

Summarizing, both permutation testing and CV provide more accurate results compared to

AIC and BIC, with information criteria typically underestimating the true dimension of the re-

duction. Permutation testing seems to be a better procedure to infer d when the sample size is

large enough. Nevertheless, cross-validation can provide a safer solution regarding information

loss when the available data is limited.

5.4. Performance of the proposed method including regularization

Finally, we conducted a simulation study to assess the performance of the regularized version

of the proposed method. Unlike the previous setting, the reduction depends now on a subset

of the predictors only. We chose that the first four predictors conveyed information about the

response, that is, α = (A 02×p−4)
T , with

A =

(
1/2 1/2 1/2 1/2
−1/2 1/2 1/2 −1/2

)
.

We set the values for the rest of the parameters as described in Section 5.2. The reduction was

estimated using PFC for continuous predictors, the non-regularized method introduced in Section

4, and the regularized version proposed in Section 5. In all cases we used a polynomial basis with

degree r = 2 for fY . For each estimator, we computed the angle between the subspaces Sα and

Sα̂ in each of 100 runs of the experiment. Figure 4 shows the obtained results for p = 10. It can

be seen that the obtained angles are smaller than in the case where all the predictors are relevant.

Since all the methods are applied to identical data, it is clear from the boxplot that the estimators

specifically tailored to ordinal predictors still perform significantly better than the standard PFC

approach. Moreover, for this situation, the regularized estimator (from now on, reg-PFCord)

clearly proves to be superior to the non-regularized version.

To further study the performance of the proposed regularized estimator, another set of exper-

iments was carried out in order to evaluate the stability of the subset of variables chosen by the

algorithm. Denote by S0 ⊂ {1, 2, . . . , p} the index set for the subset of variables that are truly rel-

evant for describing the response Y and let Sc
0 be its complement. Similarly, let Ŝ be the subset of
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Figure 4: Angle between span(α̂) and span(α), for α̂ obtained using PFC, the proposed approach for ordinal

predictors without regularization, and the regularized approach introduced in Section 5.

variables chosen by the regularized estimator, in the sense that αj = 0 for j /∈ Ŝ, and let ZS0 be

the random vector with entries Zj for j ∈ S0, with a similar definition for ZSc
0
. We are interested

in assessing: (i) Pr(S0 ⊂ Ŝ), as an indicator of the relevant variables that are indeed retained; (ii)

the average cardinality of the set Ŝ (#Ŝ) as a measure of the amount of non-relevant variables

that are preserved. Moreover, we are interested in evaluating how these performance measures

vary for different amounts of correlation between ZS0 and ZSc
0
. To measure this dependence we

use the distance correlation measure as defined in [47, 46], denoted here by dCorn(ZS0 ,ZSc
0
)

when it is computed from a sample of size n. This is a generalized nonparametric measure of

correlation that is suitable for random vectors of different size and it does not require tuning any

parameter for its computation. To control this quantity, we adjust the value of ∆ used to gen-

erate the data. In particular, we set ∆ = 4Ip + ραBαT for different values of ρ. We obtained

dCorn(ZS0 ,ZSc
0
) ≈ 0.3 for ρ = 0.2, 0.5 for ρ = 0.3 and approximately 0.7 for ρ = 0.5. During

all the experiments, the number of relevant variables in S0 was held fixed at 4, with p = 20.

Table 2 shows the results obtained using 100 replicates of the experiment for each assessed

condition. It can be seen that for a large enough sample (n = 500), the penalized versions of both

PFCord and PFC achieve perfect accuracy in selecting the true active set when the predictors are

not correlated each other. For moderate levels of correlation between the predictors (ρ = 0.3),

using reg-PFCord the true active set S0 is contained in the solution 96% of the time, with

a very low fraction of false insertions. On the other hand, using the regularized version of the

standard PFC (from now on, reg-PFC) in the same scenario allows picking the true active set of

variables only 63% of the time. This difference is statistically significant at the 0.001 level. More-

over, the average number of variables picked by the reg-PFC is around 3.50, meaning that some

information is typically lost in the procedure. For very high levels of correlation between the pre-
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Table 2: Performance of variable selection algorithms when using reg-PFCord or reg-PFC.

n ρ reg-PFCord reg-PFC

Pr(S0 ⊆ Ŝ) #Ŝ Pr(S0 ⊆ Ŝ) #Ŝ
0.0 0.98 3.87 (±0.15) 0.92 3.88 (±0.63)

200 0.2 0.90 3.91 (±0.29) 0.13 2.36 (±0.76)

0.3 0.53 3.49 (±0.61) 0.04 2.23 (±0.46)

0.5 0.21 2.86 (±0.63) 0.01 2.07 (±0.38)

0.0 1.00 4.11 (±0.00) 1.00 4.00 (±0.00)

500 0.2 0.98 4.05 (±0.10) 0.96 4.52 (±0.73)

0.3 0.96 3.92 (±0.38) 0.63 3.52 (±0.98)

0.5 0.54 4.05 (±1.08) 0.17 2.53 (±0.83)

dictors (ρ = 0.5), the true set of active variables is picked only 17% of the time using reg-PFC,

whereas reg-PFCord still finds it half the time. The loss of accuracy of reg-PFCord usually

involved replacing one of the predictors in the true active set by a highly correlated alternative,

mantaining the average cardinality of the estimated set Ŝ close to 4. When the sample size is

smaller (n = 200), the performance of reg-PFC for variable selection degrades much faster

with the level of correlation than the ordinal counterpart. When the predictors are uncorrelated,

reg-PFC picks the true active set S0 92% of the time, whereas reg-PFCord does it 98% of

the time. But for low levels of correlation between the predictors (ρ = 0.2), the performance of

reg-PFC decreases quickly to 13%, while for the ordinal counterpart it is still greater than 90%.

For very high levels of correlation, both procedures tend to underestimate the number of relevant

variables, with this trend being stronger for the reg-PFC. These results show that using the

proposed method especially tailored to ordinal data provides significantly higher accuracy when

variable selection is needed.

6. Real data analysis: SES index construction

For many social protection and welfare programs carried out by governments and NGOs, a

classification of households or individuals into different socio-economic groups is required. For

example, over the last decades, it has become common in developing countries that governments

establish economic aid programs focused on the most deprived households. This tailoring of the

aid is achieved via a focalization index, which basically mounts to a Socio-Economic Status (SES)

index, as it is commonly known in the related literature. In particular, in many Latin American

countries, this focalization index (called Índice de Focalización de Pobreza) has been used to

implement several programs to reduce poverty (e.g., the CAS in Chile, Sisben in Colombia,

SISFOH in Perú, Tekoporá in Paraguay, SIERP in Honduras, and PANES in Uruguay, among

others).

Income or consumption expenditures constitute a traditional focus of poverty analysis, and

some countries take an income-based poverty line from a household survey to infer the socioeco-

nomic situation of the population [38, 42]. However, the collection of income data presents many

problems in terms of unavailability or unreliability [48, 18]. For this reason, asset-based indexes

are often constructed as a proxy of income, taking into account some housing and household
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variables that are easier to observe. This proxy, usually called the SES index, is most of the time

computed using principal component analysis (PCA) [37, 24]. Since the observable variables

used to construct these indexes are ordered categorical variables, [28] proposed a variant of PCA

adapted for ordinal data using polychoric correlations between predictors instead of the standard

covariance matrix.

In this example, we provide a different approach to the construction of an SES index, based

on the proposed SDR methodology for ordinal data. The main idea is to obtain a single index to

predict a unidimensional measure of some socioeconomic aspect, such as household income or

the poverty condition. Therefore, in this case we fix the dimension of the reduction to be d = 1
and derive the index as a normalized version of the supervised dimension reduction α̂

TE(Z|X) ∈
R. Unlike PCA-based indexes, this new approach uses information about the response under

analysis.

The data comes from the microdata of the Encuesta Permanente de Hogares (EPH) of Ar-

gentina, taking the fourth trimester of 2013. The EPH is the main household survey in Argentina

and is carried out by the Instituto Nacional de Estadísticas y Censos (INDEC). We consider nine

ordinal variables about household living conditions, and two socio-economic variables of heads

of households (educational attainment and work situation). More details about these variables

can be found in Appendix C. To take into account regional heterogeneity, we estimate separate

SES indexes for the following five regions: the metropolitan area of Buenos Aires (n = 2351
households), Humid Pampas (n = 5003), the Argentine Northwest (n = 2852), the Northeast

(n = 1594), and Patagonia (n = 2398). Two cases with different types of response are consid-

ered: a continuous one, household income per capita (ipcf), and a binary one based on income

(poverty) that indicates whether a household is poor or not. We are interested in demonstrating

that the proposed reg-PFCord provides a superior alternative to a PCA-based method for con-

structing an SES index, while retaining a predictive power comparable to the full set of predictors.

To do this, the predictive performance of the proposed response-driven index is compared to the

following strategies:

• The full set of predictors is included without dimension reduction and they are treated as

continuous (metric) predictors. We will refer to this apporach as FULL.

• The full set of predictors is included without dimension reduction and they are treated

through dummy variables. We will refer to this approach as FULL-I.

• The full set of predictors is considered but using a group-lasso-type procedure for or-

dinal predictors that induces variable selection [21]. We will refer to this approach as

LASSOord.

• A variant of PCA tailored to ordered categorical predictors using polychoric correlations

[28]. We will refer to this method as PCApoly.

• A nonlinear variant of PCA that uses special scaling to take into account the ordered cate-

gories [34]. We will refer to this approach as NLPCA.

• Standard moments-based sufficient dimension reduction methods SIR, SAVE and DR.
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The first three strategies are included in order to provide a reference for the performance

achievable using the full set of predictors, but it should be clear that they do not provide an

index. Actually, only the last three approaches in the list are competing methods for SES-index

extraction. Among them, PCApoly and NLPCA can deal explicitely with ordinal predictors and

they will be further compared later.

For every strategy, we fit a logistic regression for the poverty response and a linear re-

gression for the ipcf response. When computing the reduction, we use a different choice of fY
for each type of outcome. For the continuous response, we use a polynomial basis with degree

r = 2. For the binary response, fY is simply a centered indicator variable. The data was parti-

tioned into ten disjoint sets to allow for ten replications of the experiment. In each run, one of

the subsets was used as the test set, while the rest of them formed the training sample. Averaged

10-fold cross-validation MSEs obtained with each method are shown in Table 3, along with the

corresponding standard deviations.

From the table it can be seen that for the continuous response, using dummy variables for

the full set of predictors, as in FULL-I and LASSOord, is more effective than considering the

full set of predictors as continuous variables (FULL). Among the SES indexes, scores show that

reg-PFCord is superior to both PCApoly and NLPCA, with the latter being slightly superior to

the former. In addition, all these methods specifically targeted to ordinal predictors perform better

than standard sufficient dimension reduction methods represented here by SIR, SAVE and DR,

which were originally aimed to continuous predictors only. Moreover, prediction errors obtained

with reg-PFCord are very close to those attained with FULL across all the regions.

On the other hand, it is interesting to see that for the binary outcome, unlike the continu-

ous case, FULL performs better than FULL-I and LASSOord. Among the SES indexes, the

predictive performance of reg-PFCord is again very close to or identical with that of FULL,

and it outperforms the PCA-based methods and standard moment-based sufficient dimension re-

duction methods in this scenario too. Moreover, reg-PFCord outperforms LASSOord for

three of the regions when the discrete response is considered. It should also be remarked that,

unlike LASSOord, obtaining the indexes from the SDR-based techniques allows us to use any

predictive method.

As an illustration of the obtained fit, Figure 5 shows marginal model plots for the regression

of ipcf on the SES index obtained for the whole database. A quadratic term SES2 was added

to correct for curvature in the estimated regression function and the response was transformed

by ipcf ← ipcf1/3 following a Box–Cox transformation analysis. It can be seen that for SES

modeled using PCA on polychoric correlations, the index values are concentrated mainly in the

interval [0.5; 1.0] whereas, for SES modeled using reg-PFCord, the spread of the index values

is more regular over the whole interval [0; 1.0]. This allows for a better fit of the linear model, as

shown by an R2 value of 0.302 compared to 0.231 obtained with the SES index based on PCA.

Tables 4 and 5 show the estimated coefficient vectors that define the SES index using ipcf

and poverty as response variables, respectively. To keep the analysis clear, standard methods

not targeted to ordinal predictors like SIR, SAVE and DR were not included, since they showed a

clearly inferior performance for prediction in Table 3. Note that for the proposed method, some of

the elements of α̂ have been pushed to zero in the regularized estimation, whereas for PCApoly

and NLPCA only working hours seems not to be relevant for constructing the index. In addition,

several differences can be appreciated between the reg-PFCord and PCA-based approaches

18



0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

SES_PCApoly

ip
cf

^0
.3

3

Data Model

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
5

2
5

3
5

SES_ordinalPFC

ip
cf

^(
0
.3

3
)

Data Model

Figure 5: Marginal model plots showing the fit of linear model of income as a function of the obtained SES index.

PCA-based SES index is shown on the left and the proposed method on the right.

(i.e., PCApoly and NLPCA) from the reported results. First, the relative importance of each

predictor in the SES index obtained is different for the two methods. For instance, overcrowding
obtains the highest weight with reg-PFCord across all the regions for both responses, whereas

toilet facility and water location appear as the most important in index construction based on

PCApoly, and toilet facility and toilet drainage for NLPCA. Second, SES indexes constructed

using both PCA methods give similar weights to the predictors across the different regions. On

the other hand, SES indexes based on reg-PFCord capture the regional economic divergence

explained by different factor endowments, productivity, activity levels and regional economic

growth patterns. Moreover, in the richest Argentinian urban regions (specifically, Buenos Aires

and Humid Pampas) the regularized estimation of reg-PFCord often sets to zero the variables

with more weight in PCA-derived SES index. This difference is appealing, since these regions

have in general better services and public infrastructure, so that variables related to drainage,

source of water and toilet facility are less important for measuring socio-economic status. In this

way, other variables, such as overcrowding or schooling, are needed in order to have a better SES

index to predict household income. In the same line, for regions with higher levels of poverty

(Northwest and Northeast) the reg-PFCord-based SES index shows that other variables, such

as housing location, source of drinking water or water location, become important for determin-

ing socio-economic status.

Comparing both PCAmethods, it can be noted that the NLPCA is more sensitive to the regional

heterogeneity than is the PCApoly, but differences in the index weights compared to those

of the reg-PFCord remain substantial. Additionally, it can be appreciated that SES indexes

obtained using reg-PFCord are sensitive to the response variable used to characterize a social

phenomenon of interest. For example, in Buenos Aires, Humid Pampas and Patagonia, schooling
has a considerable weight in the SES index to explain per capita income but not to predict poverty.

This makes sense, since for these richest regions it is easier for all the population to get access

to basic levels of schooling. On the other hand, the decision to pursue higher levels of education

is often driven by income. Moreover, for these richest regions, some variables, such as toilet
drainage, toilet facility or toilet sharing become relevant to explaining whether a household is

poor or not (following poverty line criteria). Such differences cannot be captured by an SES

index based on PCA methods.
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Table 3: 10-fold MSE for SES index
Prediction Errors -MSE

Response Method Buenos Aires Humid Pampas Northwest Northeast Patagonia
Per capita Income REG-PFCORD 7.29 4.72 4.73 3.34 12.80

(continuous) (2.91) (1.73) (2.69) (1.52) (3.72)

PCApoly 7.60 5.10 5.07 3.68 14.7

(2.45) (0.90) (1.77) (0.90) (4.01)

NLPCA 7.38 4.95 4.89 3.52 13.67

(2.29) (0.61) (1.48) (0.65) (3.71)

SIR 7.36 6.21 5.61 6.15 14.41

(4.38) (4.73) (3.72) (0.86) (1.16)

SAVE 9.06 6.09 5.87 4.12 16.21

(4.04) (0.99) (2.73) (1.24) (3.74)

DR 8.96 5.76 5.85 4.10 15.95

(3.96) (1.02) (2.74) (1.24) (3.70)

FULL 7.22 4.69 4.68 3.32 13.14

(3.50) (0.88) (2.47) (0.93) (3.34)

FULL-I 7.01 4.52 4.48 3.08 12.92

(2.46) (0.83) (1.74) (0.76) (3.80)

LASSOord 7.00 4.51 4.42 3.05 12.88

(2.46) (0.83) (1.77) (0.76) (3.84)

Poverty reg-PFCord 0.204 0.169 0.278 0.288 0.126

(discrete) (0.017) (0.012) (0.031) (0.029) (0.025)

PCApoly 0.213 0.188 0.324 0.357 0.133

(0.024) (0.020) (0.026) (0.053) (0.027)

NLPCA 0.212 0.188 0.325 0.358 0.134

(0.023) (0.019) (0.025) (0.055) (0.027)

SIR 0.229 0.204 0.366 0.392 0.1314

(0.018) (0.010) (0.032) (0.047) (0.022)

SAVE 0.229 0.204 0.362 0.378 0.133

(0.019) (0.009) (0.031) (0.042) (0.022)

DR 0.230 0199 0.357 0.364 0.133

(0.019) (0.009) (0.035) (0.040) (0.023)

FULL 0.202 0.162 0.274 0.287 0.129

(0.021) (0.008) (0.026) (0.036) (0.020)

FULL-I 0.206 0.171 0.286 0.298 0.126

(0.023) (0.021) (0.024) (0.065) (0.028)

LASSOord 0.206 0.171 0.286 0.298 0.129

(0.023) (0.021) (0.024) (0.065) (0.027)

Note: standard deviations in parentheses. Database: EPH (2013)
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Table 4: Comparison of SES index results for ordinal PCF and PCApoly to predict household per capita income.

Variables Buenos Aires Humid Pampas Northwest

reg-PFCord PCApoly NLPCA reg-PFCord PCApoly NLPCA reg-PFCord PCApoly NLPCA

housing location 0 -0.1690 -0.0943 0 -0.1903 -0.0976 -0.1314 -0.1068 -0.0835

housing quality -0.1985 -0.3768 -0.2199 0.2591 -0.3557 -0.1985 0 -0.3278 -0.1849

sources of cooking fuel -0.4646 -0.3788 -0.2080 0.3627 -0.3609 -0.1678 -0.1070 -0.3287 -0.1582

overcrowding -0.7272 -0.2888 -0.1788 0.8300 -0.2351 -0.1329 -0.8798 -0.1991 -0.1194

schooling -0.2676 -0.2275 -0.1474 0.2668 -0.2075 -0.1135 -0.3614 -0.2197 -0.1201

toilet drainage -0.0873 -0.3381 -0.2047 0 -0.3519 -0.2333 -0.0901 -0.3623 -0.2462

toilet facility 0 -0.4061 -0.2246 0 -0.4105 -0.2411 0 -0.4217 -0.2545

toilet sharing 0 -0.2759 -0.1186 0 -0.3176 -0.1699 0 -0.2579 -0.1334

water location 0.1700 -0.3918 -0.1790 0 -0.3933 -0.1941 -0.2054 -0.4202 -0.2309

water source 0 -0.2023 -0.1033 0 -0.2461 -0.1129 0 -0.3646 -0.1374

working hours -0.3283 0 0 0.2029 0 0 -0.1277 0 0

Northeast Patagonia

reg-PFCord PCApoly NLPCA reg-PFCord PCApoly NLPCA

housing location -0.1509 -0.1809 -0.0978 -0.1149 -0.1437 -0.0981

housing quality 0 -0.3727 -0.2130 -0.3046 -0.3258 -0.1844

sources of cooking fuel -0.0742 -0.1648 -0.0646 -0.1797 -0.4026 -0.1810

overcrowding -0.8496 -0.2052 -0.1040 -0.7263 -0.2207 -0.0984

schooling -0.3507 -0.1869 -0.1009 -0.3670 -0.1284 -0.0516

toilet drainage 0 -0.3572 -0.2573 -0.1383 -0.4122 -0.2566

toilet facility 0 -0.4383 -0.2735 0 -0.4376 -0.2622

toilet sharing -0.2284 -0.2921 -0.1344 -0.1204 -0.2937 -0.1734

water location 0 -0.4227 -0.2377 0.1877 -0.4169 -0.2196

water source -0.2574 -0.3733 -0.1384 0.2473 -0.1525 -0.0522

working hours -0.0922 0 0 -0.2637 0 0
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Table 5: Comparison of SES index results for ordinal PCF and PCApoly for a discrete response (poverty).

Variables Buenos Aires Humid Pampas Northwest

reg-PFCord PCApoly NLPCA reg-PFCord PCApoly NLPCA reg-PFCord PCApoly NLPCA

housing location 0 -0.1690 -0.0943 0 -0.1903 -0.0976 -0.2434 -0.1068 -0.0835

housing quality -0.4033 -0.3768 -0.2199 0.3347 -0.3557 -0.1985 0 -0.3278 -0.1849

sources of cooking fuel -0.5240 -0.3788 -0.2080 0.3579 -0.3609 -0.1678 0 -0.3287 -0.1582

overcrowding -0.7076 -0.2888 -0.1788 0.7216 -0.2351 -0.1329 -0.7939 -0.1991 -0.1194

schooling 0 -0.2275 -0.1474 0 -0.2075 -0.1135 -0.2094 -0.2197 -0.1201

toilet drainage 0 -0.3381 -0.2047 0 -0.3519 -0.2333 0 -0.3623 -0.2462

toilet facility 0 -0.4061 -0.2246 0.3990 -0.4105 -0.2411 -0.1528 -0.4217 -0.2545

toilet sharing -0.1836 -0.2759 -0.1186 0 -0.3176 -0.1699 0 -0.2579 -0.1334

water location -0.1208 -0.3918 -0.1790 0.2647 -0.3933 -0.1941 -0.4933 -0.4202 -0.2309

water source 0 -0.2023 -0.1033 0 -0.2461 -0.1129 0 -0.3646 -0.1374

working hours -0.1173 0 0 0.0990 0 0 0 0 0

Northeast Patagonia

reg-PFCord PCApoly NLPCA reg-PFCord PCApoly NLPCA

housing location -0.1982 -0.1809 -0.0978 -0.1187 -0.1437 -0.0981

housing quality 0 -0.3727 -0.2130 -0.3693 -0.3258 -0.1844

sources of cooking fuel -0.2509 -0.1648 -0.0646 -0.2788 -0.4026 -0.1810

overcrowding -0.7063 -0.2052 -0.1040 -0.3987 -0.2207 -0.0984

schooling -0.1442 -0.1869 -0.1009 -0.0766 -0.1284 -0.0516

toilet drainage 0 -0.3572 -0.2573 -0.1887 -0.4122 -0.2566

toilet facility 0 -0.4383 -0.2735 -0.1313 -0.4376 -0.2622

toilet sharing -0.3477 -0.2921 -0.1344 -0.1289 -0.2937 -0.1734

water location 0 -0.4227 -0.2377 0.2785 -0.4169 -0.2196

water source -0.5071 -0.3733 -0.1384 0.6585 -0.1525 -0.0522

working hours 0 0 0 -0.1626 0 0
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7. Conclusions

The approximate expectation-maximization (EM) algorithm presented here for dimension

reduction in regression problems with ordinal predictors is proved to outperform the standard in-

verse regression methods derived for continuous predictors, both in simulation settings and with

real data sets involving ordered categorical predictors. Experiments showed that this advantage

is emphasized in variable selection applications, where the proposed method clearly outperforms

its counterpart for continuous data when the counterpart is naively applied to ordinal predictors.

This is not a minor issue since many analyses in the applied sciences usually treat them as con-

tinuous variables, not taking into account their discrete nature. Moreover, it has better computing

efficiency due to the proposed approximate EM algorithm’s rendering the method feasible for a

much larger set of problems compared to using the exact computation of the truncated moments.

This savings also allows permutation testing and cross validation procedures for inferring the

dimension of the eduction, which proved reasonably accurate in simulations. Finally, the appli-

cation of the proposed methodology to socio-economic status (SES) index construction showed

many advantages over common PCA-based indexes. In particular, the method not only helps

get better predictions but also allows understanding the relations between the predictors and the

response. More precisely, for the SES index, it gives varying weights capturing regional, histori-

cal and/or cultural differences, as well as various social measurement criteria (such as household

per capita income or the poverty line), which it is not possible with PCA-based methods. This

property of the proposed method has relevant implications for the applied social analysis.

Considering that many applications involve predictors of different natures (such as ordinal,

continuous, and binary variables), further developments in SDR-based methods could be in this

direction. The Principal Fitted Components (PFC) method for ordinal variables here proposed

constitutes the first step to this extension. In particular, the combination of ordinal and continuous

predictors could be treated by taking all of them as continuous variables, where some of them are

latent and the others are observable. Then, from the results here found, the reduction is identified,

and the parameters can be estimated via maximum likelihood using the EM method on the latent

variables and the PFC conventional method on the observed continuous variables. Nevertheless,

the combination with binary variables requires a more exhaustive treatment, taking into account

that the assumption of the existence of a latent normal variable on a binary variable may be

naive and not make sense when the binary variable does not have a natural order (e.g., gender).

Therefore, it is necessary to find a proper representation for the binary predictors, and search for

a way to combine them with the other types of variables.
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Appendix A. The EM algorithm

In order to simplify the notation we will always omit the conditioning on Ω
(k−1) when taking

expectations. We will also omit the conditioning on some variables in the subscript. For instance,

for any function g, we will call

Ezi

(
g(zi)|yi

) .
= Ezi|yi,Ω(k−1)(g(zi)|yi;Ω(k−1)),

Ezi
(g(zi)|xi, yi)

.
= Ezi|xi,yi;Ω(k−1)(g(zi)|xi, yi;Ω

(k−1)). (A.1)

In order to obtain an explicit form of Q we compute the conditional expectation of the joint

log-likelihood. Following (A.1), we will write

Q(Ω|Ω(k−1)) =

n∑

i=1

E
zi|yi;Ω

(k−1)

[
log fxi,zi(xi, zi|yi;Ω)

∣∣yi;Ω(k−1)
]
=

n∑

i=1

Ezi

[
log fxi,zi(xi, zi|yi;Ω)

∣∣yi
]
.

Therefore,

Q(Ω|Ω(k−1)) =
n∑

i=1

Ezi

[
log fxi,zi(xi, zi|yi;Ω)

∣∣yi
]

=

n∑

i=1

Ezi

[
log
(
(2π)−p/2|∆|−1/2e−

1
2
tr(∆−1(zi−∆αξf̄yi)(zi−∆αξf̄yi)

T )I{zi∈C(xi,Θ)}

) ∣∣∣yi
]

= −pn

2
log(2π) − n

2
log |∆|

−n

2
tr

[
∆

−1

(
1

n

n∑

i=1

Ezi
(ziz

T
i |xi, yi)−

2

n
∆αξ

n∑

i=1

f̄yiEzi
(zTi |xi, yi) +

1

n
∆αξ

n∑

i=1

f̄yif
T
yiξ

TαT
∆

)]

= −pn

2
log(2π) − n

2
log |∆| − n

2
tr

[
∆

−1(S− 2∆αξFT
M

n
+

∆αξFT
FξTαT

∆

n
)

]
, (A.2)

where S ∈ R
p×p, F ∈ R

n×r and M ∈ R
n×p are given by S = 1

n

∑n
i=1Ezi

(ziz
T
i |xi, yi), F

T =
[f̄y1 , . . . , f̄yn ] and M

T = [Ez1(z1|x1, y1), . . . , Ezn(zn|xn, yn))], respectively.

Appendix A.1. Maximizing the Q-function (A.2).
From (A.2), we have

Q(∆,α, ξ) = −pn

2
log(2π)− n

2
log |∆| − n

2
tr(∆−1

S) + tr(αξFT
M)− 1

2
tr(αξFT

FξTαT
∆).

Since Q is a quadratic form in ξ, the maximum will be attained at ξ(k) = (αT
∆α)−1αT

M
T
F(FT

F)−1.

Replacing ξ(k) in the Q-function, we obtain the partial log-likehood

Q(∆−1,α) =− pn

2
log(2π) − n

2
log |∆| − n

2
tr(∆−1

S) +
1

2
tr
[
(αT

∆α)−1αT
M

T
F(FT

F)−1
F
T
Mα

]

=− pn

2
log(2π) − n

2
log |∆| − n

2
tr(∆−1

S) +
n

2
tr
[
(αT

∆α)−1αT
Sfitα

]
, (A.3)

where Sfit = 1
nM

T
F(FT

F)−1
F
T
M. In order to maximize Q with respect to ∆

−1 observe that, by

Proposition 5.14 in [19], if α ∈ R
p×d is fixed and α0 ∈ R

p×(p−d) is the semi-orthogonal complement of
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α, we have a one to one correspondence between ∆
−1 and (H1,H2,H3), with H1 = αT

∆α; H2 =
(αT

0 ∆
−1α0)

−1 and H3 = (αT
∆α)−1αT

∆α0. From [40] and [12] we have

∆
−1 = α(αT

∆α)−1αT +∆
−1α0(α

T
0 ∆

−1α0)
−1αT

0 ∆
−1, (A.4)

|∆| = |αT
0 ∆

−1α0|−1|αT
∆α|. (A.5)

Now the identity (αT
∆α)−1αT

∆α0 = −αT
∆

−1α0(α
T
0 ∆

−1α0)
−1 implies that

αT
∆

−1α0 = −(αT
∆α)−1αT

∆α0α
T
0 ∆

−1α0 = −H3H
−1
2 ,

which, together with ααT +α0α
T
0 = Id,

∆
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∆
−1α0 +α0α

T
0 ∆

−1α0 = −αH3H
−1
2 +α0H

−1
2 = (−αH3 +α0)H

−1
2 .

With all this together in (A.4) we get

∆
−1 = αH

−1
1 αT + (−αH3 +α0)H

−1
2 (−HT

3 α
T +αT

0 ), (A.6)

Therefore, finding Ĥi, i = 1, 2, 3 is equivalent to finding (∆−1)(k). In order to write the Q-function in

terms of H1, H2 and H3, let us write log |∆| and tr(∆−1
S) in terms of them. And therefore, using (A.6)

and (A.5), the Q-function is then written in terms of H1, H2, and H3 as

Q(H1,H2,H3,α) = −pn
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log(2π) − n
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2
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− n

2
tr
[
(α0 −αH3)H

−1
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T
3 α

T )S
]
. (A.7)

Now, since Q is quadratic in H3, the maximum of Q for H3 is attained at

Ĥ3 = (αT
Sα)−1(αT

Sα0). (A.8)

Replacing (A.8) in (A.7) and calling Sres = S − Sfit (which is semidefinite positive), we have the partial

log-likelihood function
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2
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The maximum of Q over H1 and H2 is attained at

Ĥ1 = αT
Sresα;

Ĥ2 = αT
0 Sα0 −αT

0 Sα(αT
Sα)−1αT

Sα0 = (αT
0 S

−1α0)
−1.

After substitution of the maximum for H1, H2, and H3 into (A.6), we get that the maximum for ∆−1 is

attained at

(∆−1)(k) = S
−1 +α(αT

Sresα)−1αT −α(αT
Sα)−1αT .

Since this estimated matrix could not have unit elements in its diagonal, we scale it in order to have an

unit-diagonal one. With this estimator of ∆−1, the partially maximized log-likelihood reads

Q(α) = −pn

2
log(2π) − n

2
log |αT
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n

2
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0 S
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2
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2
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where in the last equality we have used (A.5). Finnally, the maximum in α is attended at

α(k) = S
−1/2ζ̂N,

where ζ̂ are the first d eigenvectors of S−1/2
SfitS

−1/2 and N a matrix such that α̂T α̂ = Id.
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Appendix B. Approximating S and M

Given (Ω(k−1),Θ(k)) and yi fixed, we need to estimate S and M in order to compute the Q-function.

Each entry of matrix S can be written as sjk =
∑n

i=1 Ezi
(zi,jzi,k|xi) with j, k = 1, . . . , p. So, for

j = k we have the conditional second moment Ezi
(z2i,j |xi). Following [23], when j 6= k the terms

Ezi
(zi,jzi,k|xi) can be approximated by Ezi

(zi,jzi,k|xi) ≈ Ezi
(zi,j |xi)Ezi

(zi,k|xi). With this, we can

obtain an estimator of S through the estimation of first and second moments. The following is a mod-

ification of the procedure to compute these moments developed by [23], adapted to the case of condi-

tional distributions. We can write xi as xi = (xi,j ,xi,−j) and zi as zi = (zi,j , zi,−j) where xi,−j =
(xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,p) and zi,−j = (zi,1, . . . , zi,j−1, zi,j+1, . . . , zi,p). So, the first moment is

Ezi
(zi,j |xi) =

∫

Rp

zi,jfzi(zi|xi)dzi

=

∫

Rp

zi,jfzi,j(zi,j |zi,−j, xi,j ,xi,j)fzi,−j
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=

∫
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[∫

R
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]
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= Ezi,−j

{
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}
. (B.1)

In the same way, the second moment can be written as

Ezi
(z2i,j |xi) = Ezi,−j

{
Ezi,j (z

2
i,j |zi,−j , xi,j)|xi

}
. (B.2)

Given yi and Ω
(k−1), (zi,1, zi,2, . . . , zi,p) has a multivariate normal distribution with mean µi = Ψ

(k−1)̄
fyi =

∆
(k−1)α(k−1)ξ(k−1), and covariance matrix ∆

(k−1). Taking ∆
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j,j = 1, for each j = 1, . . . , p we can
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and therefore the conditional distribution of zi,j given zi,−j is
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−j,j . In addition, the conditional distribution of zi,j on observed data

xi,j is equivalent to conditioning on zi,j ∈ C(xi,j,Θ) = [θ
(j)
xi,j−1, θ

(j)
xi,j), which follows a truncated normal

distribution with density
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(j)
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Here, z̃i,j = (zi,j − µ̃i,j)/δ̃i,j , θ̃
(j)
xi,j = (θ

(j)
xi,j − µ̃i,j)/δ̃i,j and θ̃

(j)
xi,j−1 = (θ

(j)
xi,j−1 − µ̃i,j)/δ̃i,j . From the

moment generating function of the truncated normal distribution, the first and second moment of zi,j are

given by

E (zi,j|zi,−j , xi,j) = µ̃i,j + δ̃i,jai,j , (B.3)

E
(
z2i,j|zi,−j , xi,j

)
= µ̃2

i,j + δ̃2i,j + 2ai,jµ̃i,j δ̃i,j + bi,j δ̃
2
i,j , (B.4)

where
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ai,j =
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Using (B.3) and (B.4) in (B.1) and (B.2), respectively, the first and second moments read

Ezi
(zi,j|xi) = Ezi,−j

(µ̃i,j|xi) + δ̃i,jEzi,−j
(ai,j|xi) . (B.5)
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µ̃2
i,j|xi

)
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(bi,j|xi) . (B.6)

Here µ̃i,j is linear in zi,−j then, for ∆(k−1), α̂ and yi fixed, we have

Ezi,−j
(µ̃i,j|xi) = (Ψ(k−1)̄

fyi)j +∆
(k−1)
j,−j (∆

(k−1)
−j,−j)
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)
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(k−1)
j,−j (∆

(k−1)
−j,−j)

−1(Ψ(k−1)̄
fyi)

T
−j(B.7)
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−
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Ψ
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(
Ψ

(k−1)̄
fyi

)T
−j

(
Ψ

(k−1)̄
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)
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]
(∆
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−1(∆
(k−1)
−j,−j)

T (B.8)

On the other hand, we have that the functions ai,j and bi,j are nonlinear in θ̃jxi,j and θ̃jxi,j−1 who are

linear functions of µ̃i,j and thus of zi,−j . So, we can write ai,j and bi,j as ai,j(zi,−j) and bi,j(zi,−j).
Conditioning on xi, zi,−j has a truncated normal distribution with mean ṽi,−j = Ezi,−j

(zi,−j |xi) and

covariance matrix Ṽ = Ezi,−j

(
(zi,−j − ṽi,−j)(zi,−j − ṽi,−j)

T |xi

)
. If we assume that ai,j and bi,j have

continuous first partial derivatives, by the first order delta method we have that

n1/2 {ai,j(zi,−j |xi)− ai,j(ṽi,−j)} D−→ N
(
0,∇ai,j(ṽi,−j)Ṽ∇Tai,j(ṽi,−j)

)
and

n1/2 {bi,j(zi,−j |xi)− bi,j(ṽi,−j)} D−→ N
(
0,∇bi,j(ṽi,−j)Ṽ∇T bi,j(ṽi,−j)

)
,

so we can approximate the expectation Ezi,−j
(ai,j|xi) with ai,j(ṽi,−j) and Ezi,−j

(bi,j|xi) with bi,j(ṽi,−j),
i.e.

Ezi,−j
(ai,j|xi) ≈ ai,j(ṽi,−j) =
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˜̃
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(B.9)

Ezi,−j
(bi,j|xi) ≈ bi,j(ṽi,−j) =

˜̃
θ
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θ
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φ(
˜̃
θ
(j)

xi,j
)

Φ(
˜̃
θ
(j)

xi,j
)− Φ(

˜̃
θ
(j)

xi,j−1)
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with

˜̃
θ
(j)
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Using (B.7), (B.8), (B.9), (B.10) and the approximation Ezi,−j
(ai,jµ̃i,j|xi) ≈ Ezi,−j

(ai,j |xi)Ezi,−j
(µ̃i,j|xi),

the conditional expectation in (B.5) can be approximated by
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, (B.11)

and the second moment in (B.6) by
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Equations (B.11) and (B.12) give recursive expressions for computing (iteratively) S and M, respectively.
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Appendix C. Description of Variables for SES index construction

The following variables are used to construct the SES indices:

• Housing location: indicates if the housing is located in a disadvantaged or vulnerable area. More

precisely, it considers if housing: (i) is located in a shanty town, (ii) or/and near to landfill sites, (iii)

or/and in a floodplain. It has 4 categories: 1 for houses that jointly present the (i)-(iii) characteristics,

2 for housing presenting two of (i)-(iii), 3 if housing has only one of them, and 4 if the house has

none of these characteristics.

• Housing quality: jointly contemplates the quality of roof, walls and floor based on the CALMAT’s

methodology [25] used in the population censuses of Argentina. It has 4 categories in increasing

order in terms of housing quality.

• Sources of cooking fuel: indicates the kind of fuel used for cooking in the housing. It has 3 cat-

egories: 1 if the main source of cooking fuel in the housing is kerosene, wood or charcoal, 2 for

bottled gas, and 3 for natural gas by pipeline.

• Overcrowding: characterizes the overcrowding by computing the ratio between rooms and number

of household members. It has 4 categories: 1 if this ratio is less or equal than 1, 2 if the ratio is in

the interval (1, 2], 3 if it is in (2, 3], and 4 if this ratio is greater than 3.

• Schooling: indicates the formal education attained by the head of household. It has 7 categories: 1

if the head of household has no formal education, 2 in the case of incomplete elementary level, 3 for

complete elementary level, 4 for incomplete secondary school, 5 for a complete level of secondary

school, 6 for an incomplete higher education and 7 if the head of household achieved a university

or tertiary degree.

• Working hours: describes the labor situation of head of household. It has 4 categories: 1 for unem-

ployment or inactive cases, 2 when the head of household works less than 40 hours per week, 3 for

40-45 per week working hours, and 4 when the head of household is employed for more than 45

hours per week.

• Toilet drainage: indicates the type of drainage of the housing. It has 4 categories: 1 if drainage is

a hole, 2 if drainage is only in a cesspool, 3 for cesspool and septic tank, and 4 for drain pipes in a

public network.

• Toilet facility: indicates the toilet facility available in the housing. It has 3 categories: 1 for latrines,

2 for toilets without flush water, and 3 for flushing toilets.

• Toilet sharing: indicates if the toilet is shared or not. It has 3 categories: 1 if the toilet is shared

with other housing, 2 if the toilet is shared with other households into the same housing, and 3 if

the toilet is used exclusively by the household.

• Water location: indicates the nearest location of drinking water. It has 3 categories: 1 if drinking

water is gotten outside the plot of land of housing, 2 if water is into plot of land but outside of

housing, and 3 of drinking water is obtained inside housing by pipe.

• Water source: indicates the source of the water in the housing. It has 3 categories: 1 if drinking

water comes from a hand pump or from a public tap shared with neighbours, 2 if drinking water is

obtained by an automated drilling pump, and 3 for housing with piped drinking water.
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