
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.192.114.19

This content was downloaded on 17/06/2015 at 11:52

Please note that terms and conditions apply.

Comment on: ‘PT-/non-PT-symmetric and non-Hermitian Hellmann potential: approximate

bound and scattering states with any -values’

View the table of contents for this issue, or go to the journal homepage for more

2015 Phys. Scr. 90 087001

(http://iopscience.iop.org/1402-4896/90/8/087001)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1402-4896/90/8
http://iopscience.iop.org/1402-4896
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Comment

Comment on: ‘PT-/non-PT-symmetric and
non-Hermitian Hellmann potential:
approximate bound and scattering states
with any ℓ -values’

Paolo Amore1 and Francisco M Fernández2,3

1 Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima, Mexico
2 INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla
de Correo 16, 1900 La Plata, Argentina

E-mail: paolo.amore@gmail.com and fernande@quimica.unlp.edu.ar

Received 16 November 2014
Accepted for publication 20 May 2015
Published 16 June 2015

Abstract
We carry out an analysis of the paper published in Arda and Sever (2014 Phys. Scr. 89 105204)
and reveal several unclear points. In the first place, the derivation of the main equations does not
appear to be correct. In the second place, the expression for the energy does not appear to yield
the results reported by the authors. In the third place, they failed to indicate the references
reporting the eigenvalues chosen for comparison. In the fourth place the eigenvalues reported by
the authors do not show the same order as those of the Hellmann potential thus leading to a
different underlying physics. What is more: the spectrum of the modified model is qualitatively
different from the one supported by the Hellmann potential.

Keywords: Hellmann potential, energies, analytical expression

Some time ago, Hellmann [1] proposed an approximation to
the study of atoms in which the atomic kernel is treated by
means of the Thomas–Fermi equation and the valence elec-
trons by means of the Schrödinger one. In this way the author
derived a simple potential for the valence electrons of the
form V r r A r( ) 1 ( )e r2= − + κ− in atomic units. This poten-
tial also proved suitable for the study of metallic binding [2].

In a recent paper Arda and Server [3] obtained approx-
imate expressions for the eigenvalues and eigenfunctions of
the Hellmann potential as well as for a non-Hermitian variant.
They resorted to a suitable modification of the Coulomb
interaction and the centrifugal part of the radial eigenvalue

equation in order to obtain an exactly solvable equation. Since
the authors did not discuss the range of validity of the sub-
stitutions carried out we tried to fill this gap. However, when
trying to reproduce their results we found several incon-
sistencies that we want to discuss in this comment.

The authors studied the Schrödinger equation with the
Hellmann potential

V r
a b

r
( )

e
. (1)

r

= − + λ−

The behaviour near the origin is given by V r b a r( ) ( ) 1≈ − −

and at a great distance from the origin by V r a r( ) ≈ − .
Therefore, if a 0> the attractive Coulomb tail at sufficiently
large r supports an infinite number of bound states.
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The radial part of the Schrödinger equation is
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where l 0, 1,= … is the angular-momentum quantum
number and the boundary conditions
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apply to the bound states.
In order to solve the equation analytically the authors

carried out the following substitutions
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that have already been used by other authors in the past [4–6].
It follows from the Taylor expansions
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that the errors increase with λ.
By means of the ansatz

u R u u u F u( ) ( ln( ) ) (1 ) ( ) (6)1 2ψ λ= − = −λ λ

Arda and Sever obtained a differential equation for F(u).
Since the transformation u e r= λ− maps r0 ⩽ < ∞ onto

u1 0⩾ > the exponents 1λ and 2λ should be positive in order
to have a solution that satisfies both boundary conditions. In
order to obtain a suitable differential equation the authors
chose
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but, curiously, did not specify the sign of these parameters. As
argued previously both should be positive.

The authors stated that the function F(u) reduces to a
polynomial when
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Since the left- and right-hand sides of this equation have
opposite signs one concludes that there is no possible
solution. However, from this equation the authors derived

the following expression for the energy
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that we rewrote in such a way that m and  always appear in
the ratio m2 . In their table 1 the authors gave dimensionless
values to the potential parameters a, b, and λ but did not
specify the ratio m2 . In order to test this expression they
chose 0λ = , 1 = and obtained the hydrogenic energy levels

E
ma

n l2( 1)
(10)

2

2
= −

+ +

but never specified the value of m. The authors made their
paper even more unclear when in their table 1 chose
n l 1⩾ + instead of the quantum number indicated above
in equation (9). When n l 0= = the energy given by
equation (9) becomes independent of λ in disagreement with
the results in their table 1.

We could not reproduce the authors’ results in the third
column of their table 1 by trying some reasonable choices of

m2 in their expression (9). To make any analysis even more
difficult the authors claimed to compare their results in table 1
with those of the references [11] and [28] of their paper
(present references [1] and [7]). However, those references do
not show any result for the eigenvalues of the Hellmann
potential.

Some time ago Adamowski [8] calculated the eigenva-
lues of the Hamiltonian with the Hellmann potential

H
m

A

r

B

r2

e
, (11)

Cr2
2

= − − +
−

where A C, 0> . This paper, which is useful for present
purposes as shown below, was omitted by Arda and Sever [3].

Table 1. Eigenvalues of the radial equation (14) with 0.01λ =
and b = 1.

State Present [8] [3]

1s −0.2598520035 −0.25985 −0.26502
2s −0.07192801595 −0.07193 −0.07760
2p −0.07202032438 −0.07202 −0.07502
3s −0.03656400027 −0.03656 −0.04300
3p −0.03664789365 −0.03664 −0.04180
3d −0.03681429863 −0.03681 −0.03947
4s −0.02363657974 −0.02364 −0.03102
4p −0.02371070818 −0.02371 −0.03031
4d −0.02385702542 −0.02386 −0.02891
4f −0.02407191089 −0.02407 −0.02690
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It follows from the Hellmann–Feynman theorem
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where E is the energy of any bound-state solution to
H Eψ ψ= . These bounds can be calculated exactly because
the potential is Coulombic at both limits [8].

Adamowski chose the length and energy units
a mA( )0

2= and mA (2 )2 2 , respectively. After separation
of the angular part of the Schrödinger equation the remaining
radial equation becomes
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derived above are
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Now that we have an equation derived in a clear way we
are able to calculate its eigenvalues. Table 1 shows the
eigenvalues of the radial equation (14) with 0.01λ = and
b = 1. From left to right the four columns display the states
labelled as in the hydrogen atom, present results obtained by
means of the Riccati–Padé method [9], the results of Ada-
mowski [8], and those of Arda and Sever [3] . Although we
do not know the value of m 2 chosen by the latter authors or
how they calculated their eigenvalues the column of results
labelled present in their table 1 seems to match the other two
ones quite satisfactorily. At first sight the approximate
eigenvalues reported by Arda and Sever appear to agree
reasonably well with those calculated accurately for
equation (14). However, the order of the almost degenerate
energy levels appears to be incorrect. If we denote the energy
levels by E lν , where n l 1 1, 2,ν = + + = … is the princi-
pal quantum number, then we appreciate that the eigenvalues
of (14) exhibit the order E El l1 <ν ν+ whereas the substitution
(4) leads to the opposite order (assuming that the results of
Arda and Sever were already calculated for the Hellmann
potential with the substitutions indicated by equation (4)).

The Riccati–Padé method enables us to calculate the
eigenvalues with much more accuracy than the one in table 1.
We do not show more accurate results here because it is
obviously unnecessary for present purposes.

Our original purpose of determining the range of validity
of the substitutions (4) was hindered by the fact that we could

not reproduce the results of the authors’ table 1 with the
authors’ analytical expression (9). However, we can easily
show that the approximation is bound to fail for sufficiently
large values of λ. The reason is that the modified Coulomb
potential 2

1 e r
− λ

− λ− does not longer support an infinite number
of bound states and, what is more, this number shrinks to
none at some critical value of λ. The addition of the Hulthen-

like potential b e

1 e

r

r

λ
−

λ

λ

−

− does not change this fact.
In conclusion: present analysis of the paper by Arda and

Sever [3] reveals a number of unclear points. In the first place,
it is not clear to us how they derived their expression for the
bound states. In the second place, this expression does not
appear to yield the eigenvalues shown in their table 1. In the
third place, they failed to indicate the references reporting the
eigenvalues used for comparison. One may give the authors
the benefit of the doubt and assume that all such obscurities
are merely due to misprints and typos. However, even in this
case there remains the fact that the eigenvalues obtained by
the authors for a given ν and different l exhibit the wrong
order; in other words: the analytical formula describes the
underlying physics incorrectly. In addition to it, the dis-
crepancy between the eigenvalues calculated with the left and
right expressions in (4) should increase with λ. This is
probably the reason why the authors only showed results for
quite small values λ. Our analysis above shows that the
substitution (4) transforms a problem with an infinite number
of bound states into one with a finite number. As λ increases
the bound states of the modified model disappear one by one
until a critical value is obtained beyond which there is no
eigenvalue. This drastic change introduced by the substitution
(4) was entirely omitted by the authors.
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