
  

1Abstract— This paper presents the development of a dynamic 
model to study the flight mechanics of a micro-air-vehicle with 
flapping wings. This model is based on Lagrange’s equations for 
constrained systems. The micro-air-vehicle is modeled as a 
collection of three rigid bodies (a central body and two wings). 
The wings have prescribed motions relative to the central body, 
i.e., they are kinematically driven. The numerical integration of all 
the governing equations, which are differential-algebraic, is 
performed simultaneously and interactively in the time domain. 
The integration scheme couples a 4th-order predictor-corrector 
method, the modified method of Hamming, with a procedure to 
stabilize the resulting differential-algebraic equations. 
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I. INTRODUCTION 
ECENTLY, researchers and specialist in different areas of 
 science have focused on the study and design of Micro-

Air-Vehicles (MAVs) inspired by biology. The development 
of this new class of vehicles is motivated by numerous civilian 
and military applications that these apparatus will be able to 
perform. Such applications involve surveillance missions, 
inspection of collapsed buildings, exploration of dead-dirty-
dangerous environments, among others. A vehicle capable of 
carrying out such missions, in indoors and outdoors environ-
ments, should exhibits extraordinary abilities to maneuver, 
avoid obstacles, navigate at low speeds, switch quickly between 
forward and hovering flight, and to move efficiently in reduced 
spaces. All these requirements make attractive the idea of using 
flapping-wings to design a functional MAV, filling a niche left 
by conventional fixed and rotary wings.  

Nevertheless, there are still major technical barriers to be 
overcome such as: energy generation and storage; light materials; 
miniaturization of sensors, actuators and high-accuracy 
processing units of low power; understanding of unsteady 
aerodynamics at low Reynolds numbers; development of mecha-
nisms that can be sharply controlled to bend and twist the 
wings at appropriate frequencies; and the capability of design 
wings with adequate size, shape and flexibility to maximize 
lift and minimize energy consumption.  

Another important issue is to develop an accurate dynamic 
model to study the flight stability of these vehicles and predict 
their behavior in different flight configurations as well as 
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diverse flow conditions. However, a complete dynamic model 
of such vehicles remains a challenge because the high nonlinear-
unsteady aerodynamics, variable mass properties, and highly-
nonlinear motions that characterize the flight at small scale 
(flying insects and small birds). 

The research in the flapping wing field has greatly increased 
over the last ten years, especially in aerodynamics [1]. Studies 
on dynamics of MAVs with the flapping-wing concept are 
generally addressed by using standard aircraft equations with 
six degrees of freedom [2]. This technique was used by several 
researchers to conduct studies on the dynamics of different 
species of insects and various prototypes of MAVs [3, 4 y5]. 
However, in all these works, the mass of the wings and the 
associated inertial effects were neglected due to the small 
relative mass respect to the rest of the body.  

Later, Grauer and Hubbard derived the equations of motion 
of an ornithopter using the Boltzman-Hamel equations [6]. 
They modeled the MAV as five rigid bodies: one for the 
central body, one for each wing, and two for the tail. 
Recently, Orlowski and Girard used an approach based on 
multibody dynamics to derive the non-linear equations of 
motion of a flapping-wing micro-air-vehicle [7] to carry out a 
comprehensive study of the influence of the wings mass on the 
MAV body. They showed that when the mass of the wings is 
decreased relative to the body mass, their numerical results 
approach to the results given by the standard aircraft model.  

In this paper, we study the flight dynamics of a flapping-
wing micro-air-vehicle by means of: i) an aerodynamic model 
based on the nonlinear-unsteady vortex-lattice method (UVLM); 
and ii) a dynamical model for the MAV founded on a multi-
body system approach. The coupling between the two models is 
strong, since aerodynamic loads “deform” the set of rigid bodies 
that make up the vehicle, and reciprocally, this “deformation” 
modifies the aerodynamic loads acting on wing surfaces. 
Although for the flight mechanics of MAVs, it is very 
important to model correctly the coupling between aerodynamics 
and dynamics, in this paper, as a first stage, we use a 
decoupled version in order to separately test, verify and 
validate the dynamic model. 

II. GEOMETRY OF THE MAV 
The computational model of the micro-air-vehicle adopted 

in this paper to study the dynamics of flapping-wings is based 
on the fruit fly (Drosophila melanogaster) morphology [8]. 
For simplicity, we modeled each part of the central body, the 
fuselage, as a revolution surface (see Fig. 1). The revolution 
surfaces that define the body as well as the wing surfaces were 
discretized using simple quadrilateral elements with four nodes. 
The reasons for this discretization are explained in section IV. 
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III. AERODYNAMIC MODEL 
In this work, we used an enlarged and modified version of 

the general method known as unsteady vortex-lattice method. 
This method can be applied to three-dimensional lifting and 
non-lifting flows. The surface of the body may undergo arbitrary 
time-dependent deformation, and it can execute any type of 
maneuver in the space surrounded by moving air. The flow 
around the full body, i.e. the fuselage and wings of the MAV, 
is assumed to be irrotational and incompressible over the 
entire flowfield, except surrounding regions of the solid 
boundaries of the body and wakes. As a result of the relative 
motion between the body and the fluid, vorticity is generated 
in a thin region surrounding the surface of the body (the 
boundary layer). Part of this vorticity is shed from the sharp 
edges and forms the wakes. We consider the boundary layers 
and wakes as zero-thickness sheets of vorticity.  

The proposed model considers a flow of an incompressible 
fluid characterized by a very high Reynolds number. The 
governing equation is the well-known Laplace’s equation of 
continuity for incompressible and irrotational flows: 

 ( )2 , 0ψ∇ =x t , (1) 

where ψ (x,t) is the velocity potential function, which is valid 
in the whole irrotational and incompressible fluid domain 
(outside of the boundary layers and the wakes), x is the 
position vector and t is time.  

The time dependence is introduced in Laplace’s equation by 
the boundary conditions. In the fluid domain the vorticity field 
Ω and the velocity field V co-exist. 

In the case of a finite straight vortex segment of circulation 
Γ(t) the velocity associated can be computed using the following 
discrete version of the Biot-Savart law: 
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where x1 and x2 are the position vectors of the point where the 
velocity are computed relative to the ends of the straight 
vortex segment, 1ê and 2ê unit vectors associated to x1 and x2 
vectors, and 1 2= −ω x x . 

A. Discretization of the vortex sheets 
In the unsteady vortex-lattice method, we replace the 

bound-vortex sheets by a lattice of short, straight vortex 
segments of circulation Γi ( t). These segments divide the 
surface of the insect’s body and insect’s wings into a number 
of elements of area (panels). The model is completed by 
joining free vortex lines, representing the free-vortex sheets, 
to the bound-vortex lattice along the edges of separation; such 
as the trailing edges and leading edges of the lifting surfaces. 

 
Figura 1. Computational model of the MAV and MAV dimensions based on 
morphological parameters of a fruit fly. 

B. Boundary conditions 
The governing equation of the problem is complemented 

with the following boundary conditions: 

1) Regularity at infinity: this condition requires that all 
disturbances due to a moving body in a fluid, initially at rest, 
decay away from body and its wakes. 

2) The non-penetration condition: it is applied over the entire 
boundary of the solid immersed in the fluid. This condition also 
called of impermeability requires that the normal component 
of the velocity of all fluid particles relative to the body surface 
must be zero on the body surface. This condition is imposed on 
control points located in the geometric center of each panel.  

C. Aerodynamics loads 
The aerodynamics loads on the lifting surfaces (MAV’s 

wings) are computed as follows: i) for each element the 
pressure jump at the control point is computed with the 
unsteady Bernoulli equation (3); ii) the force in each element 
is computed as the product of the pressure jump times the 
element area times the normal unit vector; iii) the resultant 
forces and moments are computed as the vector summation of 
the forces and moments produced by each element. 

 ( ) ( ) ( ) ( ) ( ),1, , ,
2

ψ
ρ

∂ + ⋅ + =
∂

x
x V x V x

p t
t t t H t

t
, (3) 

where V(x,t) is the absolute velocity, the spatial gradient of ψ , 
p(x,t) is the unknown pressure, ρ is the constant density of the fluid, 
and H is the energy per mass unit which is a function of time. 

For a detailed mathematical formulation of the unsteady 
lattice-vortex method, the reader may consult [9]. 

IV. DYNAMIC MODEL 

The MAV is modeled as a system of three rigid bodies (nb=3), a 
central body and two wings. The dynamic equations of motion 
for the MAV are derived by means of Lagrange’s equations for 
constrained systems. The location of each body in space is 
identified by using a set of six absolute generalized coordinates 
( three coordinates define the position of a fixed point on the 
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body and three define its orientation). It makes a total of 
eighteen generalized coordinates (6nb = 18), which are not 
independent, these are linked through constraint equations. 
The wings have a prescribed motion (kinematically driven) 
with respect to the central body. This fact introduces twelve 
constraint equations (nc = 12), six to specify the joint point 
between the central body and the wings and another six to 
specify the orientation of the wings with respect to the central 
body. Thus, the number of degrees of freedom of the multibody 
system is six (ndof = 6nb – nc = 6).   

In this work, we used four reference systems (see Fig. 2): i) 
a Newtonian or inertial system N; and ii) a reference system 
fixed to each body of the MAV Bi. To orientate each body 
with respect to the inertial frame, we used a rotation 
representation based on Euler angles, a (2-3-1) rotation 
sequence for the central body and a (1-3-2) rotation sequence 
for each wing.  

The set of the absolute generalized coordinates for each 
body are 

 ( ), , , , , ,   for 1, 2,3,φ θ ψ= =q T
i i i i i i ix y z i  (4) 

where xi, yi, and zi are rectangular Cartesian coordinates 
associated to the unitary vectors 1 2 3ˆ ˆ ˆ,  and n n n respectively, 
and φi,  θi, ψi are angular coordinates which orientate each 
body relative to the inertial frame N. 

A. Constraint Equations 
For each wing, we have two different constraint equations: 

1) Position constraint: it specifies the joint point between the 
wings and the central body; and 

2) Orientation constraint: it specifies the orientation of each 
wing with respect to the central body. 
All constraint equations are written with respect to the 

inertial reference frame N. Equation (5) presents the constraint 
equations for the left wing only. Constraint equations for the 
right wing are obtained with the same procedure. These are: 
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where Ri for i = 1,2,3 is the position vector of the origin of 
the reference frame fixed to each part of the multibody system 
with respect to the inertial frame N (see Fig. 2), TNBi for i = 
1,2,3 represents the coordinate transformation matrix between 
the reference frame Bi and the inertial frame N, rrai is the position 
vector of the joint point between the left wing and central 
body with respect to the reference frame B2 fixed to the 
central body, S(t) is a rotation matrix which orients the left 
wing with respect to the central body and it depends of the 

 
Figura 2. Reference systems attached to each body of the multibody system. 

adopted kinematic description for the motion of the wings 
during a stroke cycle [10], and the unit vectors ˆ ia for i = 1,2,3 
forms an additional reference frame called A which results 
from composing the rotations S(t) and TNB 1 . 

Finally, the constraint vector Φ(q, t) can be expressed as 

 ( ) ( )1 2 12, , ,..., ,ϕ ϕ ϕ=Φ q
T

t   (6) 

where q = (q1, q2, q3)
T. 

Position constraint equations as well as orientation constraint 
equations are both holonomics. In particular, the first ones are 
scleronomics because the time variable does not appear explicitly 
in the formulation. On the contrary, the last ones are rheonomics 
because the prescribed motion of the wings introduces an 
explicitly time dependence which is reflected by the rotation 
matrix S(t) in (5) [10].   

B. Generalized Loads 
The generalized loads associated with the set of absolute 

generalized coordinates are calculated using the principle of 
virtual work [11]. These loads may be of very different nature. 
In this work we consider two kinds of forces: i) the forces that 
arise from the aerodynamics (non-conservatives); and ii) the 
forces due to the action of the terrestrial gravitational field 
(conservatives). The virtual work of an external force, F, 
applied to the system can be expressed as 

 ,Wδ δ= ⋅F r  (7) 

where δ r is an admissible virtual displacement contained in the 
tangent space ΤrΜ to the configuration space manifold Μ [12]. 

The virtual displacement of an arbitrary point belonging to 
the i-th body can be expressed as 

 ( ).
iiδ δ δ= + NBr R T r  (8) 

Substituting (8) into (7) and making some manipulations we 
obtain the following general expression for the aerodynamic 
generalized loads associated to the i-th body, given by 

 ( ) 3
1

,   for 2,3,
np Tnc i

i j j
j

i
=

 = = Q F I H  (9) 

ANTONIO  AND GUILLERMO : DYNAMICS OF MICRO-AIR-VEHICLES WITH 185



where I3 is the identity matrix 3x3, np is the number of panels 
in which each wing of the MAV has been discretized, i Fj is a 
vector force acting on the area center of the j-th aerodynamic 
panel belonging to the i-th body, and H j is a matrix of 3x3 
obtained by evaluating the partial derivative of TNB i r with 
respect to the vector of generalized coordinates qi.  

The generalized loads due to the terrestrial gravitational field 
are obtained with a similar procedure. Therefore, the mathe-
matical expression for this term is given by 

 
( )
( ) [ ]

1
1 3

3

,

,   for 2,3,

Tg
g

Tg i
i g i i

=

= =

Q F I

Q F I H
 (10) 

where 3ˆi
g im g=F n , mi is the mass of the i-th body and g is 

the gravity acceleration constant. 

C. Equations of motion 
The equations of motion for the MAV are derived by means 

of an energetic formulation based on Lagrange’s equations for 
constrained systems. In this work, the potential due to the 
gravitational field is directly included into the term of genera-
lized loads (see subsection IV.B). Thus, Lagrange’s equations 
take the following form: 

 
( ) ( ) ( )
( )

,

, ,

∂ − ∂ + = +

=

q q qB λ Q Q

Φ r 0



T TT nc c
tD T T

t
  (11) 

where (˙) denotes the first time derivative, Dt denotes the total 
time derivative, ∂x  denotes the partial derivative with respect to 
the vector x, T is the kinetic energy of the system, λ is the vector 
of Lagrange’s multipliers, Bq is the nc x6nb Jacobian Matrix of 
constraints, ( )1 2 3, ,nc nc nc nc=Q Q Q Q  and ( )1 2 3, ,c g g g=Q Q Q Q . 

Using the methodology proposed by Shabana [13], the 
kinetic energy of the i-th body can be expressed as 

 1 ,
2

= q M qT
i i i iT   (12) 

where matrix Mi represents the generalized mass and inertia 
properties of the i-th body and it is dependent upon the rotation 
parameterization adopted to describe its orientation in space. 

Introducing (12) into (11) we obtained the equations of 
motion for the i-th body, 

 ( ) ( )
i

T TT v nc c
i i i i i+ = + +qM q B λ Q Q Q ,  (13) 

where v
iQ is a quadratic velocity vector that arises from different-

tiating the kinetic energy with respect to time and with respect 
to the generalized coordinates of the i-th body. 

This quadratic velocity vector is given by, 

 
i

v
i i i iT= − + ∂qQ M q  .  (14) 

Finally, the equations of motion for the complete multibody 
system are obtained by assembling the equations of motion for 
each body complemented with constraint equations, as 

 ( ) ( )
( )

,

, .

+ = + +

=
qM q B λ Q Q Q

Φ r 0


T TT v nc c

t
  (15) 

The term T
qB λ represents the generalized constraint forces, 

i.e., a force acting in the configuration space. The meaning of 
each multiplier depends on the specific manner in which the 
constraint was written [11].  

V. NUMERICAL SIMULATIONS 

The differential equations and the vector of kinematic 
constraints in (15) represent a system of differential-algebraic 
equations (DAEs) of index three for the multibody system. 
These dynamic equations are, in general, nonlinear and a close-
form solution for these equations is often difficult to obtain. 
To solve the governing equations (15) we differentiate the 
constraints twice. This new equation is often called constraint 
acceleration level and is given by, 

 ( ) ( )2 t tt= + ∂ + ∂ ∂ + ∂ =q q q qΦ B q B q q Φ q Φ 0     , (16) 

where ∂t and ∂tt denotes first and second partial time derivatives. 
The set of ordinary differential equation in (15) is written 

together with (16) as an index-1 DAE, 

 ( ) ( )
( )12

,  
, ,

T TT v nc c

t

     + +   =     
         

q

q

M B q Q Q Q
B 0 λ U q q




 (17) 

where ( ) ( ) ( ), , 2= − ∂ − ∂ ∂ − ∂q q qU q q B q q Φ q Φ   t ttt  and 
              012 is a null matrix of 12x12. 

Equation (17) may be integrated using standard codes for 
ODEs. However, there are serious problems associated with 
the numerical integration of (17). The easily visible one is that 
the position and velocity constraints are no longer satisfied 
exactly – there is a drift off the constraints, which does not look 
good in a graphical depiction of motion simulation. Moreover, 
the drift magnitude as well as the error in generalized positions 
and velocities grows with time – at worst quadratically. This is 
not because of the numerical method used to integrate (17) but 
because the system (17) itself is mildly unstable [14, 15].  

In the bibliography it can be found several stabilization 
methods to correct this numerical drift, among which the most 
widely used because its simplicity is Baumgarte’s technique 
[16]. However this technique may get into trouble in difficult 
situations and the choice of the parameters involved in it has 
proved to be tricky in practice. Another technique currently used 
to stabilize (17) is based on the projection of the solution onto 
the constraint manifold (or part of it). There are two basic ways 
to perform this projection, one of them consists in redefining 
the ODE by adding new Lagrange’s multipliers (projected 
invariants), and the other approach consists in discretizing 
numerically the ODE and at the end of each discretization step 
to project the approximate solution onto the selected 
constraints manifold (coordinate projection) [17]. In this 
work, we adopted the coordinate projection method to 
eliminate the numerical drift that arises during the numerical 
integration of the index-1 DAE (17).   
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A. Integration scheme and stabilization method 
The approach followed in this work treat the airflow and 

the structure as elements of a single dynamical system and 
integrate all the governing equations numerically, simulta-
neously, and interactively in the time domain. Although the 
coupling between the aerodynamic and the dynamic model is 
been developed, we prefer to implement a numerical procedure 
able to deal efficiently with this problem in the future. The 
adopted procedure is based on Hamming’s fourth-order 
predictor-corrector method [9]. This scheme was chosen for 
two reasons: i) the aerodynamic model behaves better when 
the loads are evaluated at integral time steps, and ii) the 
aerodynamic loads contain contributions that are proportional 
to the accelerations, therefore it is necessary to use methods 
that can treat those contributions on both sides of the equations.  

Once the solution is computed by Hamming’s method, it is 
projected onto both, the position and velocity constraint manifold h. 
Such a projection is performed by the following scheme: 

 ( ) ( )1 1
1 1 1 1 1 1

1 1

, , , , ,α+ +
+ + + + + +

+ +

   
= −   

   

q q
F q q h q q

q q
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h q q 0

B q Φ q
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form an invariant set of the ODE (17) and the solution 
( ),T Tq q 

T
 is computed by Hamming’s method at t = tn+1. 

The stabilization scheme (18) has the desired stability 
behavior if HF is positive definite (where H = ∂q h). For the 
mechanical system under study, the constraint manifold results 
asymptotically stable for 0 < α < 2, and the choice α= 1 (which 
certainly depends on the discretization step size h), is close to 
be optimal. In addition, the stabilization matrix F defined as 

 ( ) 1 12 12

12 12

,T T −  
=  

  
q q q

I 0
F B B B

0 I
  (20) 

renders a good compromise between the requirements of 
efficiency and stability (procedure (18) together the definition 
(20) for the stabilization matrix F form a post-stabilization 
method which is denoted S-both). More details about the 
stability of scheme (18) as well as the selection criteria for the 
matrix F can be found in the works of Petzold [17, 18]. 

Another important issue to control or to completely eliminate 
constraint violations is to start an integration process with a 
set of initial conditions on the coordinates and velocities that 
satisfy their corresponding constraints. To find an adequate set 
of initial conditions we used the procedure described by 
Nikravesh [19] which is based on a partition of coordinates 
and velocities into dependent and independents sets. It is 
important to mention that this method does not consider any 
correction in the estimated values of the independent variables. 
Therefore, the kinematics constraints at coordinate and 
velocity levels are restated as 

 
Figura 3. Verification of the dynamic model: circle dots for the formula 1/2gt2, 
solid line for the current model with no prescribed motion and dashed line for 
the current model with prescribed motion. 

 
 ( ) ( )( ), ,ind dep t =Φ q q 0 ,  (21) 

and 

 
( ) ( )

( )

( )

( ) ( )

dep ind
tdep

ind indind

  −∂        =            

q q q ΦB B

q q0 I



 
,  (22) 

where (ind) denotes independent coordinates, (dep) denotes 
dependent coordinates, ( )dep

qB is selected to be a nonsingular 
ncxnc matrix, ( )ind

qB  is an ncx(6nb–nc) matrix and I(ind) represents 
an ndof x ndof identity matrix.  

The equation set (21) is solved iteratively by the Newton-
Raphson method, and the set (22) is solved as a set of linear 
algebraic equations. This type of coordinate and velocity 
correction can be found in a variety of forms in the literature. 

B. Preliminary numerical results 
In this section, we present some results obtained with the 

numerical tool that we developed. Data reported by Bos et al. 
[20] on the actual kinematics of a fruit fly (drosophila melano-
gaster) in hover were used to describe the pattern of wing 
motion over a flapping cycle. The setup of the numerical 
experiment shown in this section consists of: i) a flapping 
frequency nf =200 Hz; ii ) a wing length R = 2.5 mm and wing 
area S = 2.21 mm2; and iii ) a fully-spatial discretization of the 
MAV of 3448 aerodynamic panels. 

First, we tested the current dynamic model to assess its validity 
and limitations. For this, we suppress the aerodynamic forces 
acting on the wing surfaces and the prescribed motion of the 
wings with respect to the central body, thus leaving the MAV 
in free fall. Figure 3 shows that the vertical path predicted by 
the current model exactly matches the results obtained by the 
simple formula, ½gt2, found in any basic physics textbook. 
On the other hand, if we add a prescribed motion of the wings, 
small differences can be observed with respect to the previous 
curves. This phenomenon occurs because an initial velocity of 
the wings results in an initial velocity on the whole mechanical 
system (in this case downwards).  
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Figura 4. Path of the central body mass center for three complete wingbeat 
cycles. Dimensionless time shown in figure is related to dimensional time 
through the flapping frequency, t = t*/nf. 
 

Figure 4 shows the simulated flight path of the central body 
mass center superimposed with silhouettes of the MAV 
configuration at several points in time. 

The set of aerodynamic forces used as input for the current 
dynamic model allows the MAV remain aloft (also it can be 
seen a small rise of it). However, while the MAV rises, it can 
be observed that the pitch angle decreases. If this phenomenon 
continues, the flight becomes unstable and the MAV will 
crash. This fact is due to the lack of control elements for 
stabilizing the flight, allowing the MAV navigate properly.   

Lateral displacement as well as yaw and roll angles are null 
because the wing movement is symmetric with regard to the 
plane defined by the unit vectors 1n̂ and 3n̂  (sagittal plane, see 
Fig. 2). On the other hand, the post-stabilization method chosen 
to control the numerical drift showed remarkable results with 
respect to other stabilization methods such as Baumgarte’s 
technique. Moreover, the chosen stabilization matrix F showed 
better performance than other possible choices. 

VI. CONCLUSIONS 
In this paper we developed the dynamic equations of 

motion for a flapping-wing micro-air-vehicle. The dynamic 
model was formulated by using Lagrange’s equations for 
constrained systems. Moreover, this model takes into account 
the contribution of the inertial effects of the wings on the 
central body (fuselage) of the MAV, effect that has been 
neglected in most of the works found in the literature. 

The numerical integration of the dynamical equations was 
performed successfully by means of a modified scheme proposed 
in this work. This modified scheme consists of the Hamming’s 
fourth-order predictor-corrector method coupled with a post-
stabilization procedure based on the coordinate projection. 

The model was validated by comparing its results with the 
simple formula for free fall found in any basic physics textbook. 
In addition, we presented results for the flight dynamics of a 
MAV in hovering and, although the aerodynamic and dynamic 
models still are decoupled, we obtained encouraging results. 

Currently, we are developing an algorithm to combine the 
aerodynamic and dynamic model as a single dynamical system 
for solving all the governing equations through the numerical 
procedure proposed in this work. 
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