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Stability of composite thin-walled beams with shear deformability
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Abstract

In this paper, a theoretical model is developed for the stability analysis of composite thin-walled beams with open or closed cross-
sections. The present model incorporates, in a full form, the shear flexibility (bending and non-uniform warping), featured in a consistent
way by means of a linearized formulation based on the Reissner’s Variational Principle. The model is developed using a non-linear dis-
placement field, whose rotations are based on the rule of semi-tangential transformation. This model allows to study the buckling and
lateral stability of composite thin-walled beam with general cross-section. A finite element with two-nodes and fourteen-degrees-of-free-
dom is developed to solve the governing equations. Numerical examples are given to show the importance of the shear flexibility on the
stability behavior of this type of structures.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Slender composite structures are increasingly used in
many applications of aeronautical, mechanical, naval and
even civil engineering industries. The composite materials
have many advantages that motivate their use in structural
applications. The most well-known features of composite
materials are their high strength and stiffness to weight
ratio, good corrosion resistance, enhanced fatigue life and
low thermal expansion among others [1]. Many structural
members are constructed in the form of thin-walled beams.
Accordingly, many research activities have been conducted
toward the development of theoretical and computational
methods for the analysis of the aforementioned structural
members.

The structural analysis of isotropic thin-walled open
beams is appropriately performed by means of the Vlasov’s
theory. This theory incorporates the warping deformation,
which is a very important effect in these types of beams [2].
0045-7949/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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In the middle 80s, Bauld and Tzeng [3] introduced an
extension of the Vlasov’s theory for composite materials.
Recently, Ghorbanpoor and Omidvar [4] introduced new
equivalent moduli of elasticity and rigidity to allow decou-
pling (in an approximate form) of Bauld and Tzeng equa-
tions. This simplified approach yields nearly the same
numerical values obtained with the theory of Bauld and
Tzeng. Massa and Barbero [5] proposed a strength-of-
materials formulation for static analysis of composite
thin-walled beams. A study on the location of shear center
was performed by Pollock et al. [6].

Since the middle nineties many authors have focused
their research efforts in proposing mathematical models
to study the instability behavior of composite thin-walled
beams. Shearbourne and Kabir [7] analyzed the shear effect
in connection with the lateral stability of composite I-sec-
tion beams. Godoy et al. [8] developed a mathematical
model for I-section composite beams considering shear
effects and cross-sectional distortion for interactive buck-
ling analysis. Omidvar [9] analyzed shear flexibility associ-
ated to bending and introduced new formulae for shear
coefficients. On the basis of earlier works of Librescu and
Song [10], Bhaskar and Librescu [11] introduced a model
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Fig. 1. Geometry of the beam.
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for the buckling analysis under axial compression of com-
posite box-beam with extension-twisting coupling. In the
last three references, it may be seen an interesting analysis
about the influence of secondary warping on the mechanics
of composite thin-walled beams. Recently, Lee et al. [12–
14] developed extended models of the Bauld and Tzeng’s
theory, in order to perform lateral buckling analysis of
composite laminated I-section and channel-section beams.

The above-mentioned papers neglect the shear flexibility
or at least do not consider the shear flexibility in a full
form, i.e. shear flexibility due to bending and shear flexibil-
ity due to non-uniform warping. It has to be noted that the
aforementioned works of Massa and Barbero [5], Pollock
et al. [6], Librescu and Song [10], Bhaskar and Librescu
[11] and Omidvar [9] consider the shear flexibility due to
bending, however none of them take into account the shear
flexibility due to non-uniform warping. These two effects
may play an important role in the prediction of natural fre-
quencies and buckling loads of thin-walled beams (for both
isotropic and composite materials as shown by Cortı́nez
et al. [15,16]).

According to authors’ knowledge there are a few papers
that take into account the shear flexibility effect in a full
form on the mechanics of composite materials. The first
one is that of Wu and Sun [17], however in their paper
these authors obtained only natural frequencies and
emphasis was given in showing the effectiveness of the
developed finite element. Recently, Kollár [18] and Sapkás
and Kollár [19] explored the buckling behavior of compos-
ite columns by means of an analytical study including full-
shear flexibility. However, in these last works, no general
loading conditions were involved and the governing equa-
tions were obtained by means of classical (equilibrium)
approaches [20,21].

Recently, the authors have developed a new model of
composite thin-walled beams, based on the use of the
Hellinger–Reissner principle, that considers shear flexibility
in a full form, general cross-section shapes and symmetric
balanced or especially orthotropic laminates. On the other
hand, it was formulated taking into account the existence
of a uniform distribution of initial axial force and bending
moments.

The model was applied for analyzing vibration and
buckling problems.

This paper introduces a generalization of the aforemen-
tioned model in order to consider the existence of an arbi-
trary state of initial stresses, including general off-axis
loadings.

To do this, a generalized displacement field is employed
which includes non-linear terms based on the rule of semi-
tangential rotations introduced by Argyris et al. [22,23].

This displacement field enhances the one employed by
the authors in a previous work [16]. In these circumstances
the functional is extended to account for the new displace-
ment terms as well as generalized initial volume forces and
initial off-axis forces that were not considered in the previ-
ous work.
The aforementioned non-linear terms play an important
role in general buckling problems. In fact, in the context of
isotropic thin-walled beams, Kim et al. [24,25] demon-
strated that the omission of these terms may lead to inaccu-
rate results of buckling loads for some cases, especially
when an off-axis loading is considered.

A non-locking finite element with fourteen degrees of
freedom is developed for analyzing stability under both
axial and lateral loads. Parametric studies with different
cross-sections and laminate stacking sequences are carried
out.

2. Theory

2.1. Assumptions

A composite thin-walled beam with an arbitrary cross-
section is considered (Fig. 1a and b). The points of the
structural member are referred to the Cartesian co-ordinate
system {x,y,z} located at the geometric center, where the
x-axis is parallel to the longitudinal axis of the beam, while
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ŝ

s

A

n̂
_

Un

e

U
φ

φ

Fig. 2. Displacements defined with respect to the wall co-ordinate system.

980 V.H. Cortı́nez, M.T. Piovan / Computers and Structures 84 (2006) 978–990
y and z are the axes of the cross-section, but not necessarily
the principal ones. The co-ordinates corresponding to
points lying on the middle line are denoted with Y and
Z. In addition, a circumferential co-ordinate s and a nor-
mal co-ordinate n are introduced on the middle contour
of the cross-section.

The present structural model is based on the following
assumptions: (1) the cross-section contour is rigid in its
own plane; (2) the warping distribution is assumed to be
given by the Saint-Venant function for isotropic beams;
(3) shell force (Nss) and moment (Mss) resultants corre-
sponding to the circumferential stress rss and the inter-lam-
inar force resultant (Nsn) corresponding to inter-laminar
strain cns are neglected; (4) the curvature at any point of
the shell is neglected; (5) twisting curvature of the shell is
expressed according to the classical plate theory, but bend-
ing curvature is expressed according to the first-order shear
deformation theory; in fact, bending shear strain of the
wall is incorporated; (6) the laminate stacking sequence is
assumed to be symmetric and balanced, or specially ortho-
tropic [1] (the corresponding constitutive equations for the
shell stress resultants are given in Appendix I); (7) the dis-
placement field is considered to be represented by a linear
component and a second-order component based on the
semi-tangential rotations introduced by Argyris [22,23];
(8) higher-order strain components due to second-order
displacements are neglected in the Green–Lagrange strain
tensor; (9) higher-order shell stress resultants (i.e. depend-
ing on nk, where k > 1) are neglected.

2.2. Variational formulation

Taking into account the adopted assumptions, the
Hellinger–Reissner principle for a composite shell may be
presented in the following form: [26]:Z Z

Nxxde
L
xx þMxxdjL

xx þ Nxsdc
L
xs þMxsdjL

xs þ NxndcL
xn

� �
dsdx

þ
Z Z

N 0
xxdeNL

xx þM0
xxdjNL

xx þ N 0
xsdcNL

xs þM0
xsdjNL

xs þ N 0
xndcNL

xn

� �
dsdx

�
Z Z

T xduL
x þ T sduL

s þ T nduL
n

� �
dsdx

�
Z Z Z

X xduL
x þ X sduL

s þ X nduL
n

� �
dsdndx

�
Z Z

T 0
xduNL

x þ T 0
s duNL

s þ T 0
nduNL

n

� �
dsdx

�
Z Z Z

X 0
xduNL

x þ X 0
s duNL

s þ X 0
nduNL

n

� �
dsdndx

�
Z
ðNxxdU L

x þMxxd/xx þ NxsdUL
s

�

þMxsd/ss þ NxndU L
n Þds

�x¼L

x¼0

¼ 0 ð1aÞZ Z
eL

xx �
Nxx

A11

� �
dNxx þ cL

xs �
Nxs

A66

� �
dNxs þ kL

xs �
Mxs

D66

� �
dMxs

� �
dsdx

þ
Z Z

kL
xx �

Mxx

D11

� �
dMxx þ cL

xn �
Nxn

AðHÞ55

 !
dNxn

" #
dsdx ¼ 0 ð1bÞ

where Nxx, Nxs, Mxx, Mxs and Nxn are shell stress resultants
defined according to the following expressions:
Nxx ¼
Z e=2

�e=2

rxx dn; Mxx ¼
Z e=2

�e=2

ðrxxnÞdn;

Mxs ¼
Z e=2

�e=2

ðrxsnÞdn ð2a; b; cÞ

Nxs ¼
Z e=2

�e=2

rxs dn; Nxn

Z e=2

�e=2

rxn dn ð2d; eÞ

Initial shell stress resultants are denoted with the super-
script ‘•0’ and the applied shell stress resultants on the
boundaries are denoted as ‘�’. T x, T s and T n are applied
forces per unit area in x, s and n directions, respectively,
while X x, X s and X n are forces per unit volume in x, s

and n directions, respectively. The strain components
eL

xx; c
L
xs; c

L
xn; j

L
xx; j

L
xs and eNL

xx ; c
NL
xs ; c

NL
xn ; j

NL
xx ; j

NL
xs are the first-

and second-order shell strains which are defined later in
terms of the shell displacements U L

x ;U
L
s ;U

L
n and shell rota-

tions /xx;/ss, see Fig. 2. Finally, uL
x ; u

L
s ; u

L
n and uNL

x ; uNL
s ; uNL

n

are linear and non-linear components of the displacement
field with respect to the contour co-ordinate system. In
the following pages, superscripts ‘‘L’’ and ‘‘NL’’ identifies
the linear and second-order components of the displace-
ment field and shell strains, respectively.

It should be noted that, in Eqs. (1), the stress resultants
and the displacements are variationally independent quan-
tities. Expressions (1a) and (1b) represent the variational
forms of the equilibrium and compatibility equations,
respectively.

2.3. Kinematic expressions

The displacement field, compatible with assumptions
(1), (2) and (7), is adopted in the form [27]:

uL
x ðx; tÞ ¼ uxcðx; tÞ � yhzðx; tÞ � zhyðx; tÞ � xhxðx; tÞ ð3aÞ

uL
y ðx; tÞ ¼ uycðx; tÞ � z/xðx; tÞ ð3bÞ

uL
z ðx; tÞ ¼ uzcðx; tÞ þ y/xðx; tÞ ð3cÞ

uNL
x ðx; tÞ ¼

1

2
z/xðx; tÞhzðx; tÞ � y/xðx; tÞhyðx; tÞ
� �

ð3dÞ

uNL
y ðx; tÞ ¼ �

y
2

/xðx; tÞð Þ2 þ hzðx; tÞ2
h i

� z
2

hzðx; tÞhyðx; tÞ

ð3eÞ
uNL

z ðx; tÞ ¼ �
z
2

/xðx; tÞð Þ2 þ hyðx; tÞ
� 	2

h i
� y

2
hzðx; tÞhyðx; tÞ

ð3fÞ
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where

yðs; nÞ ¼ Y ðsÞ � n
dZ
ds
; zðs; nÞ ¼ ZðsÞ þ n

dY
ds

ð4Þ

In expressions (3), uxc, uyc, uzc are the displacements of the
centroid, /x is the torsional rotation, hy and hz are the
bending rotations. The variable hx measures the warping
intensity. When the non-linear components (3d)–(3f) are
neglected, the displacement field is equivalent to that pro-
posed in reference [16].

The warping function can be written in the following
form:

xðs; nÞ ¼ xpðsÞ þ xsðs; nÞ ð5Þ
where xp and xs are the contour warping function and the
thickness warping function, respectively. They are defined
in the form [27]:

xpðsÞ ¼
1

S

Z S

0

Z s

s0

rðsÞ þ wðsÞ½ �ds
� �

ds
� �

�
Z s

s0

rðsÞ þ wðsÞ½ �ds

xsðs; nÞ ¼ nlðsÞ
ð6a;bÞ

with

rðsÞ ¼ ZðsÞ dY
ds
� Y ðsÞ dZ

ds
;

lðsÞ ¼ Y ðsÞ dY
ds
þ ZðsÞ dZ

ds
ð7a; bÞ

In expression (6a), w is the shear strain in the middle line,
obtained by means of the Saint-Venant theory of pure tor-
sion, and normalized with respect to d/x/dx, as can be seen
in reference [27] for composite beams or in Krenk and
Gunneskov [28] for isotropic beams. For the case of open
sections, it can be proved that w = 0.

The displacements with respect to the curvilinear system
are obtained by means of the following geometric
transformation:

U L
x ¼ uL

x ðx; s; 0Þ;
U NL

x ¼ uNL
x ðx; s; 0Þ ð8a; bÞ

U L
s ¼ uL

y ðx; s; 0Þ
dY
ds
þ uL

z ðx; s; 0Þ
dZ
ds
;

U NL
s ¼ uNL

y ðx; s; 0Þ
dY
ds
þ uNL

z ðx; s; 0Þ
dZ
ds

ð8c; dÞ

U L
n ¼ �uL

y ðx; s; 0Þ
dZ
ds
þ uL

z ðx; s; 0Þ
dY
ds
;

U NL
n ¼ �uNL

y ðx; s; 0Þ
dZ
ds
þ uNL

z ðx; s; 0Þ
dY
ds

ð8e; dÞ

/xx ¼
ouxc

on
; /ss ¼

o

on
uL

y

dY
ds
þ uL

z

dZ
ds

� �
ð8f ; gÞ

By introducing the displacements (8) into the definitions of
strain components [16], and taking into account hypotheses
(1)–(9), one can obtain the following expressions for the
first (exx,cxs,cxn) and second (gxx,gxs,gxn) order strain
components:
exx ¼ eL
xx þ njL

xx; cxs ¼ cL
xs þ njL

xs; cxn ¼ cL
xn ð9a; b; cÞ

gxx ¼ eNL
xx þ njNL

xx ; gxs ¼ cNL
xs þ njNL

xs ; gxn ¼ cNL
xn

ð9d; e; fÞ

where

eL
xx ¼ u0xc� Y ðsÞh0z�ZðsÞh0y �xP ðsÞh0x;

jL
xx ¼ h0z

dZ
ds
� h0y

dY
ds
� h0xlðsÞ ð10a;bÞ

cL
xs ¼ ðu0yc� hzÞ

dY
ds
þðu0zc� hyÞ

dZ
ds
�ð/0x� hxÞðrþwÞþ/0xw;

jL
xs ¼ 2/0z ð10c;dÞ

cL
xn ¼�ðu0yc� hzÞ

dZ
ds
þðu0zc� hyÞ

dY
ds
þð/0x� hxÞlðsÞ ð10eÞ

eNL
xx ¼

1

2
u02ycþ u02ycþ/02ycðY 2þZ2Þ
n
þZ½�2/0xu

0
ycþ /xhzð Þ0� þ Y 2/0xu

0
zc� /xhy

� 	0h io
ð10fÞ

jNL
xx ¼

1

2
/xhy

� 	0 dZ
ds
þ /xhzð Þ0 dY

ds




�2/0x u0yc

dY
ds
þ u0zc

dZ
ds
�/0xrðsÞ

� ��
ð10gÞ

cNL
xs ¼

1

2
/x hz

dZ
ds
� hy

dY
ds

� �
þ rðsÞ h0yhz� h0zhy

� 



�2 rþwð Þhx h0zY þ h0yZ
� 
�

þ /x u0zc

dY
ds
� u0yc

dZ
ds

� �


� u0xc�xph
0
x

� 	
hy

dZ
ds
þ hz

dY
ds
� hx rþwð Þ

� ��
ð10hÞ

cNL
xn ¼

1

2
/x hy

dZ
ds
þ hz

dY
ds

� �
� lðsÞ h0yhz� h0zhy

� 



þ2lðsÞhx h0zY þ h0yZ
� 
�

þ �/x u0zc

dZ
ds
þ u0yc

dY
ds

� �


þ u0xc�xph
0
x

� 	
hz

dZ
ds
� hy

dY
ds
� hxlðsÞ

� ��
ð10iÞ

jNL
xs ¼ h0yhz� h0zhy

� 

� rþwð Þhx h0y

dY
ds
� h0z

dZ
ds
þ h0xlðsÞ

� �

þ lðsÞh0x hy
dZ
ds
þ hz

dY
ds

� �
ð10jÞ

In the above expressions (•) 0 denotes derivation with re-
spect to the x variable.

The first and second terms in expressions (10c) and (10e)
may be regarded as the shear strains associated to bending,
the third terms correspond to the shear strain due to non-
uniform warping and the last term in expression (10c) is the
Saint-Venant (or pure torsion) shear strain.

2.4. Equations of motion

Substituting expressions (9) and (10) into Eq. (1a) and
integrating with respect to variable s, one can obtain the
expression for the virtual work equation given by

LK þ LKG1 þ LKG2 þ LP ¼ 0 ð11Þ
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where

LK ¼
Z

L
QX du0xc �MY dh0y �MZdh0z � Bdh0x þ T SV d/0x

h i
dx

þ
Z

L
QY d u0yc � hz

� 

þ QZd u0zc � hy

� 	
þ T W d /0x � hx

� 	h i
dx

ð12aÞ

LKG1 ¼
Z

L

Qð0ÞX

2
d u02zc þ u02yc

� 

þ P ð0ÞW

2
d /02x
� 	

þM ð0Þ
Z

2
d 2u0zc/

0
x � /xhy

� 	0h i( )
dx

þ
Z

L

M ð0Þ
Y

2
d �2u0yc/

0
x þ /xhzð Þ0

h i(

þM ð0Þ
X

2
d h0zhy � h0yhz

� 

� T ð0ÞW d u0xchx

� 	)
dx

þ
Z

L
Qð0ÞY d u0zc/x � u0xchz �

/xhy

2

� �


þ Qð0ÞZ d
/xhz

2
� u0xchy � /xu

0
yc

� ��
dx

þ
Z

L
Qð0ÞYW d h0xhz

� 	
þ Qð0ÞZW d h0xhy

� 	
þ T ð0ÞWW d h0xhx

� 	n

þ T ð0ÞWZd h0yhx

� 

þ T ð0ÞWY d h0zhx

� 	o
dx ð12bÞ

LKG2 ¼ �
Z

L
X ð0Þ3 dhz þ X ð0Þ5 dhy þ X ð0Þ6 d/x

h i
dx

� T ð0Þ3 dhz þ T ð0Þ5 dhy þ T ð0Þ6 d/x

h ix¼L

x¼0
ð12cÞ

LP ¼ �
Z

L
q1ðx; tÞduxc þ q3ðx; tÞdhz þ q5ðx; tÞdhy þ q7ðx; tÞdhx

� �
dx

�
Z

L
q2ðx; tÞduyc þ q4ðx; tÞduzc þ q6ðx; tÞd/x

� �
dx

� QX duxc þ QY duyc �MZdhz � Bdhx

�
þQZduzc �MY dhy þMX d/x

�x¼L

x¼0
ð12dÞ

In the previous equations the following definitions, for the
beam forces have been made:

QX ¼
Z

S
N xx ds; B ¼

Z
S

N xxxpðsÞ þMxxlðsÞ
� �

ds ð13a; bÞ

QY ¼
Z

S
Nxs

dY
ds
� Nxn

dZ
ds

� �
ds;

QZ ¼
Z

S
Nxs

dZ
ds
þ Nxn

dY
ds

� �
ds ð13c; dÞ

MY ¼
Z

S
N xxZðsÞ þMxx

dY
ds

� �
ds;

MZ ¼
Z

S
NxxY ðsÞ �Mxx

dZ
ds

� �
ds ð13e; fÞ

T W ¼
Z

S
�Nxs rðsÞ þ wðsÞ½ � þ NxnlðsÞf gds;

T SV ¼
Z

S
NxswðsÞ � 2Mxs½ �ds ð13g; hÞ

MX ¼ T SV þ T W ð13iÞ
In the above expressions the integration is carried out over
the middle contour perimeter. QX is the axial force, MY and
MZ are the bending moments, B is the bimoment, QY and
QZ are the shear forces, TW is the flexural torsional mo-
ment, TSV is the Saint-Venant torsional moment and MX

is the total torsional moment. QX ;QY ;MZ ;B;QZ ;MY ;MX

correspond to external generalized forces acting at the
ends.

The functions qi(x, t), i = 1, . . . , 7, are the generalized
applied forces per unit length. X ð0Þ3 ;X ð0Þ5 ;X ð0Þ6 and

T ð0Þ3 ; T ð0Þ5 ; T ð0Þ6 are functions which condense the initial vol-
ume and surface (at the ends) forces, respectively. Qð0ÞX ;

Qð0ÞY ;Qð0ÞZ ;M ð0Þ
X ;M ð0Þ

Y ;M ð0Þ
Z ; T ð0ÞW and T ð0ÞWW ; T

ð0Þ
WY ; T

ð0Þ
WZ ;Q

ð0Þ
YW ;Q

ð0Þ
ZW

are initial beam stress resultants and generalized beam
stress resultants, respectively. All these entities are exten-
sively described in Appendix II.

One may notice that LK, LKG1, LKG2 and LP in Eqs. (12)
represent the virtual work contributions due to incremen-
tal, initial and external forces respectively. It has to be
pointed out that the virtual work due to initial external
forces, LKG2, would have no meaning if the displacement
field were reduced to the linear form. However, this contri-
bution is fundamental in order to solve stability problems
with off-axis loadings or general loadings.

It is important to point out that in Eq. (12b) the term
corresponding to the initial torsional moment M ð0Þ

X , was
obtained naturally without amending the functional
expression, as it was performed in other works (for exam-
ple in reference [29]). This fact is due to the adoption of
an enhanced displacement field in connection with a more
comprehensive strain field, in order to describe the virtual
work contribution of initial stresses and forces (see refer-
ence [27] for a detailed discussion of this subject, in the con-
text of composite beams).

2.5. Constitutive equations for the beam stress resultants

The shell stress resultants can be derived with a similar
approach to the one employed previously by Cortı́nez
and Piovan [16], where the reference axes were parallel to
the principal ones and two-poles where employed. How-
ever, with the aim to generalize that conception (remember,
in this article the axes are located at the geometric center
but not necessarily parallel to the principal ones), it is
important to use matrix representation for the strain and
stress components, in order to avoid excessive algebraic
manipulation. Accordingly, the field of shell stress resul-
tants can be assumed in the following way:
Nxx ¼ eCT
N1 J�N
� 	�1

QN ; Mxx ¼
e3

12
CT

N2 J�N
� 	�1

QN ð14a; bÞ

Nxs ¼ eCT
N3 J�T
� 	�1

QT ; Nxn ¼
e3

12
CT

N2 J�T
� 	�1

QT ;

Mxs ¼
e3

12
CT

N5 J�T
� 	�1

QT ð14c; d; eÞ



Table 2
Comparison of buckling loads for a pinned–pinned closed section beam

Sequence Model Method h/L

0.05 0.10 0.15 0.20

0/0/0/0 No shear
flexible

FEM 5.23 20.86 46.96 81.45
Analytic 5.21 20.84 46.89 81.36

Shear
flexible

FEM 4.41 12.00 17.59 21.02
Analytic 4.39 11.98 17.54 20.97

0/90/90/0 No shear
flexible

FEM 2.81 11.27 25.20 44.43
Analytic 2.79 11.17 25.14 44.39

Shear
flexible

FEM 2.57 8.06 13.33 17.30
Analytic 2.54 7.99 13.25 17.23

45/�45/�45/45 No shear
flexible

FEM 0.55 2.17 4.85 8.58
Analytic 0.54 2.17 4.88 8.59

Shear
flexible

FEM 0.54 2.16 4.77 8.30
Analytic 0.54 2.15 4.77 8.30
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In case of using a principal-axes and two-pole reference
system, expressions (14) can be reduced to simplified forms
(see Appendix III). The shell strains can be expressed in the
following form:

eL
xx ¼ CT

N1eN ; jL
xx ¼ CT

N2eN ð15a; bÞ

cL
xn ¼ CT

N2eT ; cL
xs ¼ CT

N4eT ; jL
xs ¼ CT

N5eT ð15c; d; eÞ

In expressions (14) and (15) the following vectors and
matrices are introduced:

QN ¼ QX ;MY ;MZ ;Bh iT;

QT ¼ T SV ;QZ ;QY ; T Wh iT ð16a; bÞ

eN ¼ u0xc;�h0y ;�h0z;�h0x

D ET

;

eT ¼ /0x; u0zc � hy

� 	
; u0yc � hz

� 

; /0x � hx

� 	D ET

ð16c; dÞ

CN1 ¼ 1; ZðsÞ; Y ðsÞ;xP ðsÞh iT;

CN2 ¼ 0;
dY
ds
;� dZ

ds
; lðsÞ

� �T

ð16e; fÞ

CN3 ¼ w;�ky ;�kz;�kx

� �T
;

CN4 ¼ w;
dZ
ds
;
dY
ds
;� r þ wð Þ

� �T

;

CN5 ¼ �2; 0; 0; 0h iT ð16g; h; iÞ

J�N ¼

J 11 0 0 0

0 J 22 J 23 J 24

0 J 23 J 33 J 34

0 J 24 J 34 J 44

2
66664

3
77775;

J�T ¼

J 55 0 0 0

0 J 22 J 23 J 24

0 J 23 J 33 J 34

2
66664

3
77775 ð16j; kÞ
0 J 24 J 34 J 44
where the following definitions are employed:
Table 1
Convergence of the element for buckling and lateral buckling loads of
clamped–free closed section beam

Number of
elements

Axial buckling
load QX [N]

Lateral buckling
load QZ [N]

1 454,890 243,922
2 444,268 186,978
5 441,634 165,998
10 441,271 163,473
15 441,204 162,996
20 441,181 162,824
30 441,164 162,700
J ij ¼ e
Z

S
gðaÞi gðaÞj

� 

dsþ e3

12

Z
S

gðdÞi gðdÞj

� 

ds ð17aÞ

ky ¼
Z s

0

ZðsÞdsþ a
S

I
ds
Z s

0

ZðsÞds ð17bÞ

kz ¼
Z s

0

Y ðsÞdsþ a
S

I
ds
Z s

0

Y ðsÞds ð17cÞ

kx ¼
Z s

0

xP ðsÞdsþ a
S

I
ds
Z s

0

xP ðsÞds ð17dÞ

with

gðaÞ ¼ 1; ZðsÞ; Y ðsÞ;xP ðsÞ;wðsÞh i;

gðdÞ ¼ 0;
dY
ds
;� dZ

ds
; lðsÞ; 2

� �
ð18Þ

In expressions (17b)–(17d) the coefficient a can have the
value 0 or 1 depending on whether the cross-section con-
tour is open or closed, respectively. S denotes the contour
perimeter.

The selected field of shell stress resultants (14) verifies
expressions (13) in addition to the following shell equilib-
rium equations:
Fig. 3. Cross-sections analyzed. (a) b = h = 0.1 m, (b) b = h = 0.1 m,
(c) b = h/2 = 0.1 m. The thickness is e = 0.01 m in the three cases.



984 V.H. Cortı́nez, M.T. Piovan / Computers and Structures 84 (2006) 978–990
oN xx

ox
þ oNxs

os
¼ 0 ð19aÞ

oMxx

ox
þ oMxs

os
� N xn ¼ 0 ð19bÞ

Substituting expressions (14) and (15) into (1b), integrating
with respect to variable ‘‘s’’ and taking variations with re-
spect to QX, MY, MZ, B, TSV, QZ, QY and TW one obtains,
after some algebraic manipulation, the following constitu-
tive equations for the beam stress resultants:

QN ¼ E�J�N eN ð20aÞ

QT ¼ G� J�T
� 	T

CQ

� 	�1
J�T eT ¼ G�SeT ð20bÞ

where S is the shear stiffness matrix and

CQ ¼ CN3CT
N3 þ

e4A66

144AðHÞ55

CN2CT
N2 þ

G�

12G��
CN5CT

N5 ð21Þ

and E*, G* and G** are expressed in the form:
Table 3
Buckling loads (QX [N]) for a U-section beam with different stacking sequenc

Boundary conditions Stacking sequence Model h/L =

SS–SS 0/0/0/0 [I] 2.67
[II] 2.49
[III] 6.83

0/90/90/0 [I] 1.63
[II] 1.57
[III] 3.83

45/�45/�45/45 [I] 1.23
[II] 1.23
[III] 0.19

C–C 0/0/0/0 [I] 9.50
[II] 7.45
[III] 21.57

0/90/90/0 [I] 5.37
[II] 4.70
[III] 12.42

45/�45/�45/45 [I] 2.75
[II] 2.74
[III] 0.19

C–SS 0/0/0/0 [I] 5.05
[II] 4.36
[III] 13.61

0/90/90/0 [I] 2.94
[II] 2.61
[III] 11.15

45/�45/�45/45 [I] 2.00
[II] 1.99
[III] 0.39

C–F 0/0/0/0 [I] 0.94
[II] 0.92
[III] 2.23

0/90/90/0 [I] 0.67
[II] 0.65
[III] 1.68

45/�45/�45/45 [I] 0.30
[II] 0.30
[III] 0.00

[I] Model neglecting shear flexibility. [II] Model allowing for shear flexibility. [I
(C) clamped, (F) free.
E� ¼ A11

e
; G� ¼ A66

e
ð22a; bÞ

G�� ¼
G� for closed sections
12D66

e3 for open sections

(
ð22cÞ

The constitutive form (20) is a generalization of that ob-
tained by Cortı́nez and Piovan [16]. The present beam
model is governed by expressions (12) and (20) along with
corresponding boundary conditions.

3. Finite element analysis

In order to obtain the buckling loads of the thin-walled
shear deformable beams, a finite element is formulated
based on the present theory. The element has two nodes
with seven degrees of freedom in each one, and constitutes
an extension of the element developed by Cortı́nez and
Rossi [15] for isotropic materials.
es, slenderness ratios and boundary conditions

0.05 h/L = 0.10 h/L = 0.15 h/L = 0.20

4(XZ) 9.501(XZ) 20.828(XZ) 36.588(XZ)
1(XZ) 7.323(XZ) 12.451(XZ) 16.655(XZ)
3 22.925 40.219 54.480
5(XZ) 5.370(XZ) 11.559(XZ) 20.169(XZ)
2(XZ) 4.625(XZ) 8.468(XZ) 12.223(XZ)
5 13.881 26.742 39.398
5(Y) 2.750(XZ) 4.129(XZ) 5.843(XZ)
2(Y) 2.736(XZ) 4.097(XZ) 5.770(XZ)
7 0.526 0.795 1.249

3(XZ) 36.595(XZ) 81.028(XZ) 141.769(XZ)
3(XZ) 16.891(XZ) 22.237(XZ) 25.004(XZ)
2 53.844 72.557 82.363
1(XZ) 20.173(XZ) 44.444(XZ) 77.619(XZ)
4(XZ) 12.429(XZ) 18.348(XZ) 22.048(XZ)
6 38.388 58.717 71.595
0(XZ) 5.844(XZ) 10.512(XZ) 16.832(XZ)
5(XZ) 5.828(XZ) 10.367(XZ) 16.291(XZ)
7 0.269 1.376 3.215

8(XZ) 18.982(XZ) 41.995(XZ) 73.819(XZ)
9(XZ) 11.436(XZ) 16.858(XZ) 20.314(XZ)
7 39.753 59.857 72.481
1(XZ) 10.551(XZ) 23.123(XZ) 40.506(XZ)
3(XZ) 7.312(XZ) 12.508(XZ) 16.729(XZ)
9 30.694 45.905 58.699
5(XZ) 3.920(XZ) 6.418(XZ) 9.759(XZ)
7(XZ) 3.900(XZ) 6.347(XZ) 9.550(XZ)
6 0.535 1.106 2.145

7(XZ) 2.674(XZ) 5.522(XZ) 9.501(XZ)
6(XZ) 2.481(XZ) 4.715(XZ) 7.291(XZ)
6 7.206 14.620 23.261
0(XZ) 1.635(XZ) 3.195(XZ) 5.370(XZ)
8(XZ) 1.572(XZ) 2.893(XZ) 4.654(XZ)
0 3.827 9.463 13.335
9(Y) 1.234(XZ) 2.100(XZ) 2.750(XZ)
9(Y) 1.232(XZ) 2.090(XZ) 2.733(XZ)
0 0.165 0.485 0.621

II] Percentage difference: 100(QX[II] � QX[I])/QX[II]. (SS) Simply supported,
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The generalized nodal displacements may be written as

w ¼ uxc1
; uyc1

; hz1
; uzc1

; hy1
;/x1

; hx1
; uxc2

; uyc2
; hz2

; uzc2
; hy2

;/x2
; hx2

� �T

ð23Þ
while the displacement field in the element is interpolated in
the form:

uxc ¼ a0þ a1~x; uyc ¼ b0þ b1~xþ b2~x2þ b3~x3;

hz ¼ b1þ
b1b3

2
þ 2b2~xþ 3b3~x2 ð24a;b; cÞ

uzc ¼ c0þ c1~xþ c2~x2þ c3~x3; hy ¼ c1 þ
b2c3

2
þ 2c2~xþ 3c3~x2

ð24d; eÞ

/x ¼ d0þ d1~xþ d2~x2 þ d3~x3; hx ¼ d1þ
b3d3

2
þ 2d2~xþ 3d3~x2

ð24f ;gÞ

where the coefficients ais , bis , cis and dis are indeterminate
constants whereas
Table 4
Buckling loads (QX [N]) for a I-section beam with different stacking sequence

Boundary conditions Stacking sequence Model h/L

SS–SS 0/0/0/0 [I] 5.9
[II] 5.5
[III] 6.6

0/90/90/0 [I] 3.1
[II] 3.0
[III] 3.0

45/�45/�45/45 [I] 0.6
[II] 0.6
[III] 0.0

C–C 0/0/0/0 [I] 23.6
[II] 18.5
[III] 21.7

0/90/90/0 [I] 12.7
[II] 11.1
[III] 12.4

45/�45/�45/45 [I] 2.4
[II] 2.4
[III] 0.3

C–SS 0/0/0/0 [I] 12.1
[II] 10.4
[III] 13.7

0/90/90/0 [I] 6.5
[II] 6.1
[III] 5.7

45/�45/�45/45 [I] 1.2
[II] 1.2
[III] 0.2

C–F 0/0/0/0 [I] 1.4
[II] 1.4
[III] 1.7

0/90/90/0 [I] 0.8
[II] 0.7
[III] 1.1

45/�45/�45/45 [I] 0.1
[II] 0.1
[III] 0.0

[I] Model neglecting shear flexibility. [II] Model allowing for shear flexibility. [I
(C) clamped, (F) free.
~x ¼ x
le

; b1 ¼
12E�J 22

G�S22l2
e

; b2 ¼
12E�J 33

G�S33l2
e

; b1 ¼
12E�J 44

G�S44l2
e

ð25a; b; c; dÞ
It must be noted that this interpolation yields:
ouyc

ox
� hz ¼ �

b1b3

2
;

ouzc

ox
� hy ¼ �

b2c3

2
;

o/x

ox
� hx ¼ �

b3d3

2
ð26a; b; c; dÞ
It may be easily seen that when the coefficients bi (i =
1,2,3) are very small (i.e. slender beams), expressions (26)
become zero. Therefore this element avoids the shear-lock-
ing phenomenon. On the other hand it is possible to use the
present element as a Vlasov-type beam element, which may
be obtained from the present one as a limiting case, by tak-
ing large values to the shear coefficient (G*Sii) in the ele-
ment stiffness matrix, in order to neglect the shear effect.
s, slenderness ratios and boundary conditions

= 0.05 h/L = 0.10 h/L = 0.15 h/L = 0.20

43(Y) 23.474(Y) 52.910(Y) 93.179(Y)
48(Y) 18.454(Y) 32.438(Y) 36.811(Z)
51 21.385 38.692 60.494
97(Y) 12.734(Y) 28.470(Y) 50.114(Y)
98(Y) 11.008(Y) 21.552(Y) 30.890(Y)
82 13.553 24.299 38.361
20(Y) 2.468(Y) 5.515(Y) 9.713(Y)
19(Y) 2.458(Y) 5.468(Y) 9.569(Y)
98 0.387 0.855 1.484

81(Y) 93.198(Y) 204.215(Y) 350.235(Y)
37(Y) 36.900(Z) 39.270(Z) 40.177(Z)
21 60.407 80.770 88.529
36(Y) 50.125(Y) 109.834(Y) 188.369(Y)
56(Y) 31.156(Y) 35.087(Z) 38.152(Z)
08 37.843 68.055 79.746
68(Y) 9.715(Y) 21.287(Y) 36.509(Y)
59(Y) 9.574(Y) 20.639(Y) 34.702(Y)
78 1.449 3.044 4.950

42(Y) 48.163(Y) 106.883(Y) 186.445(Y)
71(Y) 29.578(Y) 34.487(Z) 37.534(Z)
59 38.587 67.734 79.869
30(Y) 25.904(Y) 57.486(Y) 100.277(Y)
57(Y) 19.987(Y) 31.446(Z) 36.458(Z)
15 22.841 45.298 63.643
66(Y) 5.020(Y) 11.141(Y) 19.435(Y)
63(Y) 4.978(Y) 10.936(Y) 18.829(Y)
18 0.851 1.845 3.119

87(Y) 5.943(Y) 13.349(Y) 23.676(Y)
61(Y) 5.546(Y) 11.503(Y) 18.435(Y)
70 6.684 13.831 22.135
00(Y) 3.196(Y) 7.180(Y) 12.734(Y)
91(Y) 3.057(Y) 6.512(Y) 10.777(Y)
33 4.371 9.301 15.366
55(Y) 0.619(Y) 1.391(Y) 2.468(Y)
55(Y) 0.619(Y) 1.388(Y) 2.458(Y)
00 0.000 0.221 0.390

II] Percentage difference: 100 (QX[II] � QX[I])/QX[II]. (SS) Simply supported,



Table 5
Buckling loads (QX [N]) for a closed-section beam with different stacking sequences, slenderness ratios and boundary conditions

Boundary conditions Stacking sequence Model h/L = 0.05 h/L = 0.10 h/L = 0.15 h/L = 0.20

SS–SS 0/0/0/0 [I] 5.235(Y) 20.863(Y) 46.664(Y) 81.446(X)
[II] 4.651(Y) 13.912(Y) 22.041(Y) 27.708(Y)
[III] 11.148 33.318 52.766 65.980

0/90/90/0 [I] 2.810(Y) 11.267(Y) 25.201(Y) 44.432(X)
[II] 2.681(Y) 9.152(Y) 15.142(Y) 19.285(Y)
[III] 4.591 18.773 39.915 56.597

45/�45/�45/45 [I] 0.546(Y) 2.175(Y) 4.854(Y) 8.576(Y)
[II] 0.544(Y) 2.156(Y) 4.774(Y) 8.301(Y)
[III] 0.213 0.846 1.659 3.211

C–C 0/0/0/0 [I] 20.867(Y) 81.448(X) 88.478(X) 98.284(X)
[II] 13.988(Y) 27.858(Y) 34.066(Y) 36.934(Y)
[III] 32.967 65.796 61.498 62.421

0/90/90/0 [I] 11.270(Y) 44.411(Y) 82.877(X) 88.348(X)
[II] 9.152(Y) 18.875(Y) 24.821(Y) 27.365(Y)
[III] 18.790 57.499 70.051 69.026

45/�45/�45/45 [I] 2.175(Y) 8.578(Y) 18.857(Y) 32.477(Y)
[II] 2.157(Y) 8.309(Y) 17.627(Y) 29.071(Y)
[III] 0.825 3.138 6.523 10.489

C–SS 0/0/0/0 [I] 10.696(Y) 42.471(Y) 82.295(X) 87.329(X)
[II] 8.356(Y) 20.118(Y) 27.301(Y) 31.360(Y)
[III] 21.874 52.631 66.826 64.090

0/90/90/0 [I] 5.776(Y) 22.936(Y) 50.987(Y) 82.235(X)
[II] 4.972(Y) 14.250(Y) 19.874(Y) 26.125(Y)
[III] 13.923 37.872 61.022 68.231

45/�45/�45/45 [I] 1.115(Y) 4.427(Y) 9.842(Y) 17.207(Y)
[II] 1.110(Y) 4.345(Y) 9.450(Y) 16.060(Y)
[III] 0.475 1.850 3.980 6.665

C–F 0/0/0/0 [I] 1.310(Y) 5.234(Y) 11.760(Y) 20.863(Y)
[II] 1.269(Y) 4.648(Y) 9.168(Y) 13.893(Y)
[III] 3.115 11.204 22.041 33.408

0/90/90/0 [I] 0.707(Y) 2.827(Y) 6.351(Y) 11.297(Y)
[II] 0.695(Y) 2.684(Y) 5.359(Y) 8.984(Y)
[III] 1.747 5.055 15.620 20.474

45/�45/�45/45 [I] 0.137(Y) 0.546(Y) 1.226(Y) 2.175(Y)
[II] 0.136(Y) 0.544(Y) 1.220(Y) 2.156(Y)
[III] 0.051 0.216 0.482 0.850

[I] Model neglecting shear flexibility. [II] Model allowing for shear flexibility. [III] Percentage difference: 100 (QX[II] � QX[I])/QX[II]. (SS) Simply supported,
(C) clamped, (F) free.

Fig. 5. Lateral buckling loads of a composite clamped–clamped I-beam
with stacking sequence {0/90/90/0}. Comparison of models neglecting and
allowing shear flexibility.

Fig. 4. Variation of lateral buckling load with respect to slenderness ratio,
for a composite clamped–clamped I-beam with stacking sequence {0/90/
90/0}.
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Fig. 6. Buckling loads of a composite simply supported I-beam with
stacking sequence {a/�a/a/a}. Comparison of the present model (reduced
neglecting shear flexibility) with other models.
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Substituting (23) into the governing variational Eq. (11)
and assembling in the usual way, one arrives to

ðK þ kKGÞW� ¼ 0 ð27Þ

where K, KG, and W* are the global stiffness, global geo-
metric stiffness matrices and the global displacement vector
respectively. In order to calculate the eigenvalues, it is nec-
essary to obtain the prebuckling state by solving the self-
equilibrating system of initial stresses and, initial volume
and surface forces (see references [24,25,27]).

4. Numerical examples and discussion

In order to evaluate the shear effect on the stability
behavior of the analyzed structural members, numerical
comparisons are performed among the present model pre-
dictions and results obtained by neglecting the shear defor-
mability (Ghorbanpoor and Omidvar, [9], and Lee et al.
[12–14]). Different cross-sectional shapes, laminate schemes
and slenderness ratios are considered. The analyzed mate-
rial is graphite-epoxy (AS4/3501) whose properties are
E1 = 144 GPa, E2 = 9.65 GPa, G12 = 4.14 GPa, G13 =
4.14 GPa, G23 = 3.45 GPa, m12 = 0.3, m13 = 0.3, m23 = 0.5,
q = 1389 kg/m3. The considered laminate schemes are: (a)
{0/0/0/0}, (b) {0/90/90/0} and (c) {45/�45/�45/45}. The
analyzed cross-sections are shown in Fig. 3.

4.1. Convergence analysis and comparisons

In Table 1, it is presented a convergence analysis for
buckling and lateral buckling of a clamped–free beam with
a closed rectangular section, with h/L = 0.1, {h,b,e} =
{0.1, 0.5,0.01} m, and stacking sequence of {0/0/0/0}. On
the other hand, in Table 2 a comparison with analytical
results [16] of buckling loads for a pinned–pinned beam
with closed section is shown. Different stacking sequences
and slenderness ratios were considered. In Table 2 models
with 30 finite elements were employed. From these tables, it
is possible to note a fast convergence as well as good agree-
ment with analytical results.

4.2. Buckling problems

In Tables 3–5, comparisons of buckling loads, of shear
flexible and non-shear flexible models for U-section, I-sec-
tion and closed section are presented. In these tables, the
eigenvalues (buckling loads) are normalized with respect
to 105 and the capital letters (Y), (Z), (X) and (XZ) are
employed, in order to indicate the corresponding buckling
mode. In this way, (Y), (Z), (X) and (XZ) stand for flexural
mode in y-direction, flexural mode in z-direction, tor-
sional mode and flexural torsional mode (characteristic of
monosymmetric cross-sections), respectively.

In Tables 3–5, it is possible to see the strong influence of
shear flexibility in laminates {0/0/0/0} and {0/90/90/0},
which increases with the slenderness ratio h/L. In this sense
the percentage differences can reach 88.529% for clamped–
clamped I-beams with a {0/0/0/0} stacking sequence (see
Table 4, h/L = 0.20). Also, it is possible to note that buck-
ling modes are dominant flexural torsional in the U-beams
and dominant flexural in y-direction, for beams with the
other two types of cross-section. The influence of shear flex-
ibility is also observed in the change of the buckling mode
shape, as it can be seen, for example, in Table 5, in the case
of a clamped–clamped boundary condition, laminates
{0/0/0/0} or {0/90/90/0} with h/L = 0.15 or higher. These
tables were obtained with models of 30 finite elements.

4.3. Lateral buckling problems

In Fig. 4, the variation of the lateral buckling load with
respect to the slenderness ratio is depicted. This case, per-
formed with the shear flexible model, corresponds to a
clamped–clamped I-beam with stacking sequence {0/90/
90/0}, carrying a point load at the middle of the beam.
On the other hand, in Fig. 5, a comparison of lateral buck-
ling loads between models allowing and neglecting shear
flexibility is performed. It is possible to see a strong influ-
ence of shear effects in the prediction of lateral buckling
loads, especially at large slenderness ratios (i.e. h/L). The
aforementioned figures were obtained with models of 30
finite elements.

4.4. Comparisons

In order to check the efficiency of the introduced theory,
in the present section comparisons with the theories of Lee
and Kim [12], Sherbourne and Kabir [7] and with shell
models of COSMOS/M are performed. In these compari-
sons, models with 30 finite elements of the present beam
theory are employed.

The model of Lee and Kim [12] is compared with the
present theory neglecting the shear flexibility in the
Fig. 6. This Figure shows buckling loads due to compres-
sive loads (applied at both ends) for a simple supported
composite I-beam with stacking sequence {a/�a/�a/a} in



Table 7
Comparisons of buckling loads (QX) and lateral buckling loads (QZ) of a
cantilever I-beam, obtained with the present shear deformable beam
theory and finite element shell models of COSMOS/M

Type of
load

Material Type of model Value
[N]

QZ Steel Beam theory 85,045
Shell8T (COSMOS/M) 81,643
Difference [%] 4.16%

QX Steel Beam theory 112,082
Shell8T (COSMOS/M) 109,840
Difference [%] 2.04%

QX AS4/3501-6
{0/90/90/0}

Beam theory 41,861
Shell8T (COSMOS/M) 40,698
Difference [%] 2.85%

QX AS4/3501-6
{45/�45/�45/45}

Beam theory 8012
Shell8T (COSMOS/M) 7958
Difference [%] 0.68%

The difference [%] is taken with respect to the load values of the shell
models.

Table 6
Lateral buckling loads (concentrated load QZ [kN] in x = L/2, applied at
the centroid) for a simply supported composite I-beam (flanges—fiber-
angle a = 0�, web lamination {a/�a/�a/a})

Web fiber
angle, a

Allowing shear
flexibility

Neglecting shear flexibility

[I] [II] [III] [I] [II] [III]

0 82.1 83.4 1.57 88.4 89.2 0.96
10 84.1 85.5 1.66 90.3 91.3 1.07
20 89.0 90.4 1.63 95.2 96.4 1.17
30 93.3 94.4 1.15 100.2 101.5 1.36
40 96.2 95.1 1.22 103.2 102.2 0.98
45 96.5 95.0 1.49 103.4 102.1 1.20

[I] Model of Sherbourne and Kabir [30]. [II] Authors model. [III] Per-
centage difference: 100jQZ[I] � QZ[II]j/QZ[I].
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both the web and flanges. The beam has the following
dimensions: length 800 cm, web height 20 cm, flange width
10 cm and thickness 1 cm. The composite material is a
graphite-epoxy with E11 = 133.4 GPa, E22 = 8.78 GPa,
G12 = 3.67 GPa and m12 = 0.26. As one can see, the present
theory can be reduced to the Lee and Kim [12] model.

Sherbourne and Kabir, in their theory, considered only
the shear flexibility due to bending, whereas they neglected
the shear flexibility due to non-uniform torsion warping.
Also the virtual work terms due to off-axis forces were
not taken into account by Sherbourne and Kabir. In this
context, the authors’ model can be reduced to the Sher-
bourne and Kabir model, by neglecting the aforementioned
components.

Table 6 offers the critical loads for the lateral buckling of
a simply supported I-beam, whose flanges have a fiber
orientation a = 0� and the web has the stacking sequence
{a/�a/�a/a}. The loading scheme is composed by a point
load applied in the web direction and located at the
midspan in the cross-sectional centroid, i.e. {x,y,z} =
{L/2,0,0}. The cross-section dimensions are {h,b,e} =
{20.32, 10.16,0.953} cm., the beam has a length L = 12h,
and the material properties can be found in Reference [7].
As one can see in Table 6, the reduced model of the authors
agrees well (with less that 1.70%) with the model of Sher-
bourne and Kabir, both, allowing or neglecting the shear
flexibility components.

Finally Table 7 shows a comparison of the present
shear deformable beam theory with shell models of
the finite element program COSMOS/M for an isotropic
and orthotropic cantilever I-beam. The materials are steel
(E = 210 GPa, G = 80.76 GPa) and Graphite-Epoxy AS4/
3501-6 (E11 = 144 GPa, E22 = 9.68 GPa, G12 = 4.14 GPa,
G23 = 3.45 GPa, m12 = 0.3, m23 = 0.48). The beam has the
following dimensions: length 100 cm, web height 10 cm,
flanges width 5 cm and overall thickness 1 cm. Two types
of loads are considered. The first is a lateral load QZ

applied in the cross-sectional center at the free end in the
web direction. The second is a compressive load QX applied
in the cross-sectional center at the free end. For this com-
parison models with more than 12000 shell elements
(SHELL8T) were employed to calculate the buckling loads
in COSMOS/M. In Table 7 one can see a good agreement
of buckling loads obtained with the present theory and
with finite element shell models.
5. Conclusions

A new model for general stability analysis of shearable
thin-walled composite beams has been presented in this
paper. This model constitutes a generalization of that pro-
posed by the authors in Ref. [16].

The generalization consists in the adoption of an
enhanced displacement field with non-linear terms based
on the rule of semi-tangential rotations. On the other hand,
the model takes into account an arbitrary state of initial
stresses.

In order to solve the governing variational equation, a
non-locking finite element with fourteen degrees of free-
dom was employed. The numerical results demonstrate
that the shear flexibility has a remarkable effect on the crit-
ical loads, especially when one of the material axes coin-
cides with the longitudinal axis of the beam.
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Appendix I

The constitutive equations of symmetric balanced lami-
nates may be expressed in terms of shell stress resultants in
the following form [1]:
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A2
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; A66 ¼ A66 �
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A22

;
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AðHÞ45

� 
2

AðHÞ44

ðA:I:2:a; b; cÞ
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; D66 ¼ D66 �
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26

D22
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where Aij, Dij and AðHÞij are plate stiffness coefficients defined
according to the lamination theory presented in reference
[1, chapter 6]. The coefficient D16 has been neglected, be-
cause of its low value for the considered laminate stacking
sequence.

Appendix II

The initial forces expressions due to initial volume forces
and initial surface forces, which were introduced in (12c),
are now defined extensively in the following form:

(1) Volume initial forces:
X ð0Þ3 ¼ �N ð0Þ1 hz �
N ð0Þ3 þ N ð0Þ4

2
hy þ

N ð0Þ6

2
/x ðA:II:1Þ

X ð0Þ5 ¼ �
N ð0Þ3 þ N ð0Þ4

2
hz � N ð0Þ2 hy �

N ð0Þ5

2
/x ðA:II:2Þ

X ð0Þ6 ¼
N ð0Þ6

2
hz �

N ð0Þ5

2
hy � N ð0Þ1 þ N ð0Þ2

� 

/x ðA:II:3Þ
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n o
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Z
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yX ð0Þy ; zX ð0Þz ; yX ð0Þz

n o
dsdn

ðA:II:4Þ
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Z

A
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n o
dsdn

ðA:II:5Þ
(2) Surface initial forces:
T ð0Þ3 ¼ �H ð0Þ1 hz �
H ð0Þ3 þ H ð0Þ4

2
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2
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with
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(3) Consider an initial point-load F ð0Þ ¼ F ð0Þx ; F ð0Þy ; F ð0Þz

n o
,

applied at an off-axis point B(xB,yB,zB), as it is shown
in the Fig. 1b. Now, applying Delta–Kronecker mul-
tipliers at the point B, the virtual work term for the
off-axis forces can be expressed as
LKG22 ¼ � T ð0Þ3 dhz þ T ð0Þ5 dhy þ T ð0Þ6 d/x

h i
x¼xB

ðA:II:11Þ

where
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(4) The generalized beam stress resultants can be defined
in terms of the shell stress resultants introduced in
(A.I.1) by means of the following expressions:
Qð0ÞYW ¼
Z
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dY
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ds
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Appendix III

When the cross-section axes are assumed to be the prin-
cipal ones and a two-pole reference is employed, the forms
(16) can be simplified and the field of the shell stress resul-
tants can assumed to be of the form:
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It is clear that, as defined in (17a) J11, J22, J33, J44 and J55

are the cross-sectional area, second-order area moments,
cross-sectional warping constant and St. Venant torsion
constant, respectively.

Further explanations of the aforementioned expressions
(A.III.1)–(A.III.5) can be found in Cortı́nez and Piovan
[16] for composite materials or Vlasov [2] for isotropic
materials.
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