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A zero-dimensional system that is affected by field-dependent fluctuations evolves toward the field’s values
in which the fluctuations’ effect is minimized. For a high enough noise intensity, it causes an exchange of roles
between the stable and unstable state. In this paper, we report symmetry breaking in two stable states, but one of
them stabilized by the fluctuations while exchanging its role with a previously stable state.
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I. INTRODUCTION

Constructive effects of the noise have been, and even
today are, a very active line of research. Some examples are
stochastic resonance [1-10], noise-induced transport [11-18],
and noise-induced transitions [19]. The extended systems are
of particular interest, where noise, in cooperation with the
spatial coupling, results in phase transitions and structure
formation [20-39]. Some of these phenomena originate from
a short time instability [20-24], while others originate from an
entropic mechanism [25,28-39], which was first reported in
Ref. [25] and used in many others investigations [28—39]. In
said paper, a class of exactly soluble models was introduced,
exhibiting an ordering noise-induced phase transition in which
the order arises as a result of a balance between the relaxing
deterministic dynamics and the randomizing character of the
fluctuations. In this regard, we highlight a paragraph that seems
significant: “A simple interpretation can be found in terms of
a balance between the role of the deterministic monostable
local potential, which tends to take the system towards the
disordered phase, and the stochastic motion, which is due to
the fact that fluctuations are more intense in the disordered
phase, and thus push the system away from it. The presence
of a spatial coupling K helps to break the symmetry! of the
homogeneous state.” The fact that a noise may push a system
designates a kind of dynamic, an average “force” that acts on
the homogeneous state of the system. We use this concept in
a series of works in order to displace the homogeneous state?
toward a constructive field value region, meaning a region
where any inhomogeneity destabilizes the homogeneous state,
resulting in the formation of structures [35-39]. However, we
did a comprehensive study on the subject, in which we showed
that a multiplicative noise that corresponds to a given dynamic
is indeed able to push the homogeneous state (HS) toward
predetermined field values by the noise factor [40]. Moreover,
we found that the effect’s strength increases with the negative
slope of the multiplicative factor [40].

Nature displays many cases of physical interest where
the role of fluctuating parameters can be considered by
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'The translational symmetry is broken resulting in a true ordering
phase transition (a disordered state becomes unstable, and two more
ordered stable states arise).

2State: stationary solution for a given system.
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a multiplicative noise [32,41]. In this regard, we recently
reported a study about the generalized Nagumo model’s
parameter fluctuation effects (the extinction option is replaced
by one of low density homogeneous population) [42]. These
fluctuations can be mimicked by a multiplicative noise with
a factor that depends on the positive parabola-shaped field.
First, we solved the problem analytically by mapping it as
a nongradient relaxational dynamic in a free-energy function
with a field-dependent kinetic coefficient, and then we checked
the results numerically. We found that, for high enough noise
intensities, the noise-affected state exchanges its role with
the unstable state (called adversity); therefore, the previously
unstable state becomes stable, and the one affected by the
fluctuations plays the role of the unstable one. This transition
is another example originated by an entropic mechanism and
must be interpreted as mentioned above. The HS is determined
by the balance between the deterministic force and the
fluctuations which drive the system toward field values where
the noise’s effect is minimized. We note that the transition can
occur not only in the Stratonovich interpretation but also in the
Itd interpretation [28]. A more interesting situation can arise by
introducing spatial coupling between nearest neighboring sites
(diffusion term for a spatially continuous system). Therefore,
in this work, we turned the zero-dimensional system into an
extended one by adding this coupling, and, as a result, we
found interesting phase transitions.

To sum up, in a previous work, and using a method inspired
by Ibafies et al. [25], in which a generalization of Nagumo
model (zero-dimensional) was studied, we found interesting
state transitions which are driven by the parameter fluctuations
that characterize the aforementioned model. In this paper, we
reported effects of spatial coupling between nearest individuals
in the already strongly modified dynamic by such fluctuations.

In the first section, we explain our proposal and results for
the zero-dimensional case. A mean-field analysis is carried
out in Sec. I, in which we obtain evidence of two symmetry
breakings. In the following section, we show numerical
results which confirm the result predicted by the mean-field
approximation. Finally, in the last section, we analyze our
results, and we expose the corresponding conclusions.

II. MODEL AND PREVIOUS RESULTS

By applying the Nagumo model, we consider that each
individual requires a minimum vital space (a space that
cannot be invaded by another individual). Thus, we define
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u as the covering of the space available (with # a dimen-
sionless variable normalized to 1). As aforementioned, we
also consider a low-density homogeneous population: u = 8b
as an alternative proposal to extinction. Under these condi-
tions, the modified Nagumo nonlinearity can be expressed
as F(u) = (u — Bb)(u — ab)(b — u). This also shows two
uniform attractors (v = 8b and u = b) and an ejector (ab),
where o is known as the adversity factor. The ejector u = ab
marks a limit between domains (low and high population
density). When u is lower than this value, the system evolves
toward the low population density u = b, and when u is
higher, the system evolves toward a population with density
u=nhb.

Natural systems are undeniably subject to random fluctua-
tions, arising from either environmental variability or thermal
effects. In this regard, we choose to consider the fluctuation
effects of the background population density (v = Bb), by
turning the B parameter in a stochastic variable using a
Gaussian white noise with zero mean and correlation:

Oy = 2228t — t'). (1)

Thus, by describing B fluctuations as g = By + n(t), the
modified zero-dimensional dynamic that the Nagumo model
imposes can be expressed as

du = Fg,(u) + T @) n(), 2)

where Fg () = (u — Bob)(u — ab)(b —u) and T''*(u)=
—b(u —ab)(b —u) [Eq. (2) is to be interpreted in the
Stratonovich sense]. We note that I''/?(u) is a parabola with
positive curvature and has a minimum value located right at
the midpoint between the two roots which are not affected by
fluctuations (Upmin = b3%).

According to our proposal (to introduce a spatial coupling
between nearest individuals), we add a diffusion term to the
dynamic. Therefore, the dynamic is modified as

du = Fp,(u) + DO7u + T'2(u) n(x.1), 3)

where the correlation is now (n(x,?)n(x,1)) = 2A28(x —
X8t —1)3

In order to turn the system into a nongradient relaxational
one, we first take Eq. (2) in the absence of fluctuations (nor
spatial coupling) and multiply and divide Fg, (u) by —I'(u).
Thus, we can force a dynamic nongradient relaxational in
some free-energy function F(u) with a field-dependent kinetic
coefficient I'(u). The fictitious relaxation function so defined
is written as

1-Bgy

- [adtn e
Fu) = /du W) —1In - @

lu — ab|a-ow?

It is clear that the fictitious relaxation function does not
include the solution to be affected by fluctuations. However,
the real dynamic does not change because of the action of the

3A typical reaction-diffusion equation which is affected by a
multiplicative noise produced by generalized Nagumo model’s S-
parameter fluctuations, where the reaction term is defined by the
nonlinearity corresponding to generalized Nagumo model.
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relaxation coefficient which reintroduces the aforementioned
solution.

Therefore, Eq. (2) written in terms of the fictitious relax-
ation function is

du = —F(u)% + T2y n(2). 5)
When raising this issue, we observe that the fluctuations fulfill
the fluctuation-dissipation theorem [25,43,44].

Under these conditions, the stationary probability distribu-
tion function (SPDF) for the field Py (u) is of the Boltzmann’s
type and can be described by effective relaxation function
[25,28]:

Fetr(u) } lu—ab|” ©

P - - 3
(1) oc exp { 2 | Pu—b
where Fop(u) = F(u) + /\_22 In[C(u)], e* = zwfﬂr(lfa)bz)\z,

(I—a)b?2?
1—Bo+(1—a)b?A>
and e’ = 2—‘?‘; _;)bf‘;Z

We have already reported these results as well as the results
of the simulation of stochastic process described by Eq. (2)
and the corresponding numeric calculation of the stationary
probability density Py(u) [37]. All these confirm the analytic
result of the expression (6). Specially, we observe that the
fluctuations always “displace” the fluctuations-affected state
toward the middle point between the two nonaffected states.
Moreover, for high enough noise intensities, the affected
state exchanges its role with the adversity («); therefore, the
previously unstable state becomes stable and the one affected
by the fluctuations plays the role of the unstable one. In a
normal situation, a larger (smaller) adversity value means to
promote the low (high) density population state, but with the
contribution of fluctuations, once A.* is overcome, the affected
state (now in the adversity role) gives the previously unstable
(and now stable) state more weight (by being displaced toward
the aforementioned middle point), while the noise intensity
increases, until both stable states reach an equilibrium for
higher intensities. Moreover, the aforementioned middle point
coincides with the value that minimizes the multiplicative
factor of the noise, which corroborate the vision about the
possible existence of an underlying average dynamic that
is able to push the system toward such minimum, until
balanced by the deterministic forces. This vision is enhanced
when we consider that the forcefulness of this effect grows
proportionally to the negative multiplicative noise factor’s
derivative with respect to the field [40]. Then, when the
noise intensity is high enough, the stochastic average dynamic
prevails over the deterministic dynamic, and, therefore, the
system is localized in a state that minimizes the multiplicative
factor of the noise. In this paper, we locate the system in a
situation so that the two stable states are u = b and u = b.
That is to say, choosing the noise intensity values in such
a way that the (driven by fluctuations) exchange of roles
between u = Bb (fluctuations-affected state which is stable
in its absence) and u = ab (unstable state in absence of
fluctuations) is carried out. To clarify, Fig. 1 shows a temporal

). indicate the noise intensity in which the exchange of roles
occurs.

062136-2



COOPERATION BETWEEN FLUCTUATIONS AND SPATIAL ...

U+

0.5

% t 6

FIG. 1. Numerical simulation of the zero-dimensional system
(fluctuations of B): u vs t (time unit: 10787). A =10, o = 0.5,
Bob =0.001, and b = 0.9.

evolution (numerical simulation of the stochastic process) of
field u revealing both stable states. It can be observed that
the state u = ab (u = 0.45 for the illustrated case) has been
stabilized by the fluctuations. In the absence of fluctuation,
u = ab is an unstable state, being the stable state: u = b
(u = 0.001 for the illustrated case). As aforementioned, our
objective is to research the impact that can be produced on
these previous results by adding spatial coupling between
nearest neighbors. Results obtained by using a mean-field
approximation are shown in the following section.

III. SPATIAL COUPLING AND FLUCTUATIONS:
MEAN-FIELD APPROXIMATION

First, we use a mean-field approximation (MFA) to know
what to expect of spatial coupling’s effects on the states
affected by fluctuations. Of course, this technique does not give
accurate quantitative information, but it can give us guidance
in this regard. Even more, taking into account that without
spatial coupling but with fluctuations affecting the system,
the stationary states are not disordered (two stable solutions,
u = ab and u = b when the fluctuating parameter is §). We
are mainly interested in knowing how the spatial coupling
could impact in the unstable state that is stabilized because of
fluctuations (u = ab).

Consequently and to simplify, starting from Eq. (3), we
proceed to do a spatial discretization in a regular one-
dimensional lattice with spacing éx, i.e., u(x;) — u;, with
i the cell index. Considering that 87u —> <> >~ (u; — u;)
(one dimension), where the sum is over nearest neighbors, the
discretized version of Eq. (3) is written as

K
dui = F,(wi) + = ;w = u) T2, ()

where K = 22
Sx

2)\28(1 — t/)(Sjj .

The mean-field approximation is tantamount to replacing
the exact value of the neighbors by a mean-field common value
(u). When starting from a disordered state, there are two typical
ways to proceed: (1) finding the functional form corresponding

and now the correlation is (n(t)n(t")) =
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to the deterministic dynamic including the diffusion term and
then performing the MFA, and (2) performing the MFA first
and, subsequently, finding the corresponding functional form.
Given the context of our approach, the first way is unfeasible;
therefore, we choose to use the second option. Therefore, the
equation describing the stochastic dynamic in MFA is

du = Fg, ) + K((u) —u) + T2 @) n(). (8)

Here we eliminate the subindex i, because it is irrelevant. Thus,
by proceeding as in the zero-dimensional case, we define a
free-energy function F(u) as

F K —
P = [ a0 K 0
I'(u)
And then we obtain the SPDF by calculating an effective free-
energy function as
+ — In[I"(u)]

Fi(u) = —/du ) 7

{b2|u—b|f5’+e’7}
—n| =

lu — ozb|%;)+eub
n KW
b*(1 — )2 (u — b)(u — ab)’

where © = 2W and W = 2(u)u — (u)(1 + a)b +

Fg (u) + K({u) — u) A2

©))

u(l —a)b.
As before, the corresponding SPDF is
c Fee(u)
Py (u) oc exp { - ";;2}

and using (9), this latter is written as

ju — ab| 2+

Py (u) « m

—Kv¥
A2b*(1 — a)*(u — b)(u — ab)
Then the mean-field value (1) can be computed by using the
consistency relation:

y exp{ } (10)

(up = LALRO_
T = ey = W

The expression (10) takes infinite values inu = abandu =
b, but it is relevant only in the exponent Txzr—arpruan>
since this shows discontinuous jumps between +o0o and —oo,
which indicate destabilizing effects driven by the cooperation
between fluctuations and spatial coupling. In other words, the
discontinuous jumps are produced in the noise multiplicative
factor, but its effect is enabled by the spatial coupling.

Before we continue this exposition, we would like to
emphasize that even without coupling, the stable states are
already ordered states; this is why, we must introduce a
variant in the usual modus operandi for the mean-field
approximation. Since there are two stable states to consider, we
did two mean field calculations, one around each state. We are
particularly interested in obtaining qualitative evidences of the
two symmetry breakings (one per each stable state) that could
be caused by the cooperation between fluctuations and spatial

Y
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FIG. 2. (Color online) Results by using mean field in the state u = ab = 0.45 (b = 0.9, « = 0.5, and A = 10). (a) Pg, vs u for K =0, (b)
P vsu, (c) fvs (u), (d) FS vs u, for K = 0.2 (P§ is multiplied by the factor 10*).

coupling. Consequently, we propose an integration range for Figures 2 and 3 highlight the joint effect of fluctuations
each stable state, and therefore, we use Eq. (10) to find the (u). and (K = 0.005) spatial coupling, calculated by MFA in
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FIG. 3. (Color online) Results by using mean field in the state u = b (b = 0.9, « = 0.5, and A = 10). (a) Py vs u for K =0, (b) Pg vs u,
(c) f vs (u), (d) F§ vsu, for K = 0.2 (P, is multiplied by the factor 10%).
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FIG. 4. (Color online) Fg(u) vs u for different K values, increasing from top to bottom on the left side and from bottom to top on the right
side of destabilized states (u = 0.45 or u = 0.9). (a) Close to u = ab = 0.45, (thick line) K = 0, (thin line) K = 0.04, 0.08, 0.4, 2. (b) Close
to u = b, (thick line) K = 0, (thin line) K = 0.04, 0.08, 0.4. The other parameters are b = 0.9, « = 0.5, and A = 10.
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FIG. 5. Numerically computed SPDF: Py vs u. (a) K, =0, (b) K, = 0.0032, (¢) K, = 0.0176, (d)K, = 0.048, (e) K, = 0.32, and (f)
K, =16 (K, = K/200). Other parameters: b = 0.9, « = 0.5, and A = 10.
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the states u = ab and u = b, respectively. These show the
SPDFs (with and without spatial coupling), the mean-field
solution and the effective free-energy function Fg;(u) for both
states. While Figs. 2(a) and 3(a) [SPDF, case without spatial
coupling (K = 0)] confirm the stability of u = ab and u = b,
respectively, Figs. 2(b) and 3(b) [SPDF with spatial coupling
(K =0.005)] clearly denote a symmetry breaking of both
states (the probability in # = ab and u = b is zero; therefore,
we expect four new state states to emerge). The curves of
Figs. 2(d) and 3(d) show that the potential’s walls that separate
the new states are infinite; thus, we expect the phase transitions
between these new states to be unlikely. Then we calculated
curves of Fg:(u) versus u for different K values, which are
shown in Fig. 4. These curves indicate that, by having added
the spatial coupling, the new states move away from the already
destabilized states as K increases.

We note that the discontinuous jumps can be observed for
any (u) value. This means that, regardless of the used criteria
to do the calculation, the evidence for the symmetry breakings
is strong.

In short, we believe the only noteworthy result in this
approximation is the possibility of two symmetry breakings.
Of course, this is just a mean-field approximation as well as an
atypical situation. Therefore, a numeric simulation is required.

IV. SPATIAL COUPLING AND FLUCTUATIONS:
NUMERICAL RESULTS

In this section, we show the results of the equation’s
numerical resolution (7) by using the Heun’s method [45,46].
We define three subregions within the [0, 1] field variability’s

PHYSICAL REVIEW E 92, 062136 (2015)

range: I = [0,ab], Il = [ab,b], and IIIl = [b,1]. When the
simulations are initiated from a given subregion, the system
always remains within such subregion, as long as K # 0
(transitions between subregions do not happen). We calculate
the (Ps) SPDF by taking samples while we let the system
evolve for a T period of time (long time). More specifically,
we divide the field variability’s range in M cells and count the
number of times that u takes values within each cell. We choose
a (At) sampling time long enough to ensure independence.
Since transitions between subregions do not happen, first, we
take the same amount of samples per simulations initiated
in each subregion (enabling the calculation of the SPDF
by subregion), and then we obtain the SPDF corresponding
to the region by means of addition and data normalization.
We defined our lattice with size L = 144005x and spacing
8x = 0.025, and for simulations: temporary step 8¢ = 1074,
T = 60000056t (the system reaches the equilibrium in less
than 7 = 60000), At = 1000 (corresponding to L.T /At =
8 640 000 samples), and M = 1000. Figure 5 shows the SPDF
for different K wvalues, highlighting the main qualitative
aspects of our observations.

The first observation that should be made is that the curve
of Fig. 5(b) is like the ones on Figs. 2(b) and 3(b). This result
confirms the symmetry breaking that predicts the mean-field
approximation: the two stable states are destabilized by the
effect of the cooperation between fluctuations and spatial
coupling causing the emergence of four stable states. We also
note that the new states move away from their precursors as K
increases, a phenomenon which was already predicted by the
mean-field approximation. Other outcomes to highlight are
the successive transformations produced as K varies. First,
we note that the two states within region II approach each
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FIG. 6. (Color online) Numerically computed profiles: u vs x. (a) K, = 0.004, (b) K, = 0.04, (c) K, =04, and (d) K, =16 (K, =
K /200). Other parameters: b = 0.9, « = 0.5, and A = 10. Subregion I =A, subregion II = e, and subregion III = +.
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FIG. 7. (Color online) Numerically computed SPDF: P vs u and
K. (a) Front view from K, = 16-0. (b) Front view from K, = 0-16
(K, = K/200).

another until they overlap, resulting in only three stable states
for large enough K values. We also observe modifications in
the height, width, and location of the probability’s peaks as
K varies. Particularly, for intermediate K values, such peaks
are widened; nevertheless, these later become narrow again
for larger K values. In order to complete the depiction of
these results, Fig. 6 shows profiles of u versus x for different
K values which are consistent with the curves in Fig. 5. As
aforementioned, once the system has been initiated in a given
subregion, it always remains within this last subregion. There-
fore we calculate the profiles for each subregion separately,
and then we compose the graphics by superposing all of them.
Since none of the points u(x) corresponding to one subregion
invade the neighboring subregion, all the points u#(x) indicated
within a given subregion were initiated in such subregion.
When Fig. 6 is interpreted under these considerations, we
can visualize the curves of Figs. 5(b) and 5(c) in those of
Figs. 6(a) and 6(b), as well as the curves of Figs. 5(d)-5(f)
in those of Figs. 6(c) and 6(d). It is striking how the field
variability’s effective range decreases for larger K values. In
addition, Fig. 7 shows a more detailed version of the SPDF
changing with K.

V. ANALYSIS AND CONCLUSIONS

In this work, we have considered the study of the effects of
spatial coupling (closest neighbors) in a system (a generaliza-
tion of the Nagumo model) where, for a zero-dimensional case,
the fluctuations can induce an exchange of roles between an

PHYSICAL REVIEW E 92, 062136 (2015)

unstable state and a stable one. Under this circumstance, there
are two stable states before introducing the spatial coupling,
but one of them is unstable in absence of fluctuations. By
using a mean-field approximation, we found evidence of two
spatial symmetry breakings as a result of cooperation between
fluctuations and spatial coupling. We emphasize that one of
the states that is destabilized by the symmetry breaking is
the one stabilized by fluctuations. In other words, without
spatial coupling (the zero-dimensional model), an unstable
state is stabilized by fluctuations (by changing its role with
another stable state), but with spatial coupling; it goes back
to an unstable state, but, this time, it is also the precursor
of the other two stable states. The MFA also predicts three
regions separated by two infinite walls. This means that a
system localized in one of the regions will remain inside of it.
Moreover, the MFA shows us that the four new stable states
move away from their precursors. The numerical simulations
of corresponding stochastic process not only confirm the
MFA’s predictions, but also show other interesting phenomena.
The two states, located within region II, approach one another
as the spatial coupling constant increases, until they overlap.
That is to say, for larger K values, there are only three stable
states with height, width, and localization varying with K.

It is worth noting that the model used by us does not
really involve a field-dependent relaxation coefficient (our
model is not a nongradient relaxational system such as it
is in Refs. [25,28-31]). We mapped the gradient model in
another model with nongradient relaxational flow only to find
the SPDF, a crucial link to be able to discover our results.
This means that the relaxation coefficient has no impact on
the results, since it does not exist in the studied model. What
matters is the noise’s multiplicative factor form (the noise
pushes the system toward field values, minimizing its effect
until it is balanced by the deterministic forces) and, of course,
the spatial coupling as well.

We believe that our results go beyond the particular model
here studied. Both by nature and human actions, the dynamic
of a system can be changed when developing specific noises,
with a suitable field-dependent multiplicative factor, and when
adding a simple spatial coupling (closest neighbors). There is a
competition between deterministic and stochastic forces. The
deterministic ones drive the system toward the deterministic
attractors, while the stochastic ones push the system toward
situations in which the noise effects are minimized. The
possible stationary states are the result of a balance between
both forces. Due to the noise cooperation, the spatial coupling
drives ordering noise-induced phase transitions.
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