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Abstract. We generalize a recently proposed small-energy expansion for one-

dimensional quantum-mechanical models. The original approach was devised to treat

symmetric potentials and here we show how to extend it to non-symmetric ones.

Present approach is based on matching the logarithmic derivatives for the left and

right solutions to the Schrdinger equation at the origin (or any other point chosen

conveniently) . As in the original method, each logarithmic derivative can be expanded

in a small-energy series by straightforward perturbation theory. We test the new

approach on four simple models, one of which is not exactly solvable. The perturbation

expansion converges in all the illustrative examples so that one obtains the ground-

state energy with an accuracy determined by the number of available perturbation

corrections.

1. Introduction

In a recent paper Bender and Jones [1] proposed a convergent perturbation series for

the calculation of the eigenvalues of the Schrödinger equation in one dimension. The

approach consists of the expansion of the eigenfunction as a power series of the energy

E itself and the construction of a function f(E) that vanishes when E = 0 and increases

monotonously till f(E0) = 1, where E0 is the lowest eigenvalue. This strategy is based

on the fact that the eigenfunction ψ(x, E) satisfies ψ0(0, E0) = 0 in the case of symmetric

potentials V (−x) = V (x). The authors also showed how to extend the approach for the

treatment of parity-time invariant complex potentials V (−x)∗ = V (x). The method is

not restricted to the ground state; the zeros of the Padé approximants for the small-

energy expansion of f(E)− 1 are estimates of the energies of the excited states [1].

The purpose of this paper is to extend the approach proposed by Bender and Jones

to non-symmetric potentials. In section 2 we outline the method of Bender and Jones but

focus on the logarithmic derivative of the eigenfunction instead of on the eigenfunction

itself. In section 3 we briefly consider an exactly solvable symmetric potential. However,

instead of choosing an example that supports an infinite number of eigenvalues like those

of Bender and Jones we concentrate on a finite well. In section 4 we discuss a finite
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non-symmetric well and develop the extension of the method of Bender and Jones in

terms of the logarithmic derivative of the wavefunction. In section 5 we illustrate the

application of the the generalized approach on three non-symmetric infinite wells, one

of which is not exactly solvable. Finally, in section 6 we summarize the main results

and draw conclusions.

2. The method of Bender and Jones

Consider the Schrödinger equation

ψ′′(x) = [V (x)−E]ψ(x) (1)

where ψ(x) vanishes at ±∞. The method applies to symmetric potentials V (−x) =

V (x) that are bounded from below and, without loss of generality, we assume that

V (x) ≥ V (0) = 0.

The method of Bender and Jones [1] is based on the small-energy expansion for

ψ(x)

ψ(x, E) =
∞
∑

j=0

ψj(x)E
j (2)

For convenience, in what follows we consider the alternative expansion of the logarithmic

derivative

L(x, E) =
ψ′(x, E)

ψ(x, E)
(3)

in the form

L(x, E) =
∞
∑

j=0

Lj(x)E
j (4)

Because of the symmetry of the potential the solutions to the equation (1) are either

even or odd. In particular, the ground state ψ(x, E0) is even so that ψ′(0, E0) = 0 and

L(0, E) vanishes when E is the ground-state energy E0. Therefore, the function

f(E) = 1− L(0, E)

L0(0)
(5)

satisfies f(0) = 0 and f(E0) = 1. Besides, f(E) can be expanded as [1]

f(E) =
∞
∑

j=1

cjE
j (6)
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Since ψ(x, E) is odd when E is the energy of the first-excited state E1, then ψ(0, E1) = 0

and E = E1 is a pole of f(E). Consequently, the radius of convergence of (6) cannot be

greater than E1.

Note that we can also obtain E0 as a root of L(0, E) = 0 that can be obtained

approximately from the small-energy series

L(0, E) =
∞
∑

j=0

Lj(0)E
j (7)

3. Finite symmetric well

Bender and Jones studied several symmetric wells that are unbounded from above and

therefore support an infinite number of bound states. Although the aim of this paper

is the application of the small-energy expansion to non-symmetric potentials we first

consider symmetric wells that are bounded from below and above. Without loss of

generality we assume that 0 ≤ V (x) ≤ VR. It is well-known that such a potential

supports a bound state no matter how small the well depth VR. If there is only one

bound state, then one expects the pole of f(E) closest to the origin in the complex E

plane to be a resonance. This is the main reason for discussing such symmetric well

here.

The simplest exactly-solvable model is given by

V (x) =















0, |x| < 1

VR > 0, |x| > 1
(8)

A straightforward calculation yields the logarithmic derivative at the origin

L(0, E) =

√
E

(√
E sin

(√
E
)

−
√
VR −E cos

(√
E
))

√
E cos

(√
E
)

+
√
VR − E sin

(√
E
) (9)

that can be expanded in the E-series

L(0, E) = −
√
VR√

VR + 1
+

(

2V
3/2
R + 6VR + 6

√
VR + 3

)

E

6
√
VR

(√
VR + 1

)2

+

(

8VR
3 + 48V

5/2
R + 120VR

2 + 180V
3/2
R + 180VR + 135

√
VR + 45

)

E2

360V
3/2
R

(√
VR + 1

)3

+ . . . (10)
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Its radius of convergence is determined by the root Er of
√
Er cos

(√
Er

)

+
√
VR −Er sin

(√
Er

)

= 0 with the smallest absolute value. As an illustrative example

we choose VR = 1 that supports only one bound state. In this case we have

Er = 1.222635745 − 0.5925040566i. Since E0 < 1 < |Er| the perturbation expansion

will enable us to obtain the lowest eigenvalue E0 with increasing accuracy. For example,

table 1 shows the rate of convergence of the approximate eigenvalue estimated from the

expansion (10) for VR = 1.

4. Finite non-symmetric well

As argued in the introduction, the aim of this paper is the extension of the method

proposed by Bender and Jones to non-symmetric potentials that are bounded from

below. As before, without loss of generality we assume that V (x) ≥ V (0) = 0. For a

given value of E we construct the logarithmic derivatives LL(x, E) and LR(x, E) from

the left and right solutions ψ(L)(x, E) and ψ(R)(x, E) to the differential equation (1) that

vanish when x → −∞ and x→ ∞, respectively. The continuity of the eigenfunction

and its first derivative at x = 0 requires that the curves LL(0, E) and LR(0, E) intersect

at each of the eigenvalues E = En. Obviously, we can obtain E-power series for both

LL(0, E) and LR(0, E) in the way proposed by Bender and Jones; that is to say, we

simply apply the method twice, one to the left of x = 0 and one to the right. The

intersection of the two small-energy expansions thus derived provide an estimate of the

lowest eigenvalue E0.

In order to illustrate this approach we choose the exactly solvable non-symmetric

finite well

V (x) =































VL > 0, x < −1

0, |x| < 1

VR > 0, x > 1

(11)
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The exact logarithmic derivatives at the origin

LL(0, E) =

√
E

(√
VL −E cos

(√
E
)

−
√
E sin

(√
E
))

√
E cos

(√
E
)

+
√
VL − E sin

(√
E
)

LR(0, E) =

√
E

(√
E sin

(√
E
)

−
√
VR − E cos

(√
E
))

√
E cos

(√
E
)

+
√
VR −E sin

(√
E
) (12)

can be expanded as

LL(0, E) =

√
VL√

VL + 1
−

(

2V
3/2
L + 6VL + 6

√
VL + 3

)

E

6
√
VL

(√
VL + 1

)2

−
(

8VL
3 + 48V

5/2
L + 120VL

2 + 180V
3/2
L + 180VL + 135

√
VL + 45

)

E2

360V
3/2
L

(√
VL + 1

)3 + . . .

LR(0, E) = −
√
VR√

VR + 1
+

(

2V
3/2
R + 6VR + 6

√
VR + 3

)

E

6
√
VR

(√
VR + 1

)2

+

(

8VR
3 + 48V

5/2
R + 120VR

2 + 180V
3/2
R + 180VR + 135

√
VR + 45

)

E2

360V
3/2
R

(√
VR + 1

)3

+ . . . (13)

Figure 1 shows LL(0, E) and LR(0, E) when VL = 2 and VR = 1. These

curves intersect at the ground-state energy as argued above. For such values of

the potential parameters there is just one bound state. Table 2 shows the rate of

convergence of the estimated lowest eigenvalue obtained from the intersection of the

series (13) for increasing truncation order. In this case the radii of convergence of

each expansion is determined by ErL = 2.125364032 − 0.3468294596i and ErR =

1.222635745−0.5925040566i and the approach is successful because both series converge

at E = E0 < |ErR| < |ErL|.

5. Infinite wells

As an extension of the model with the linear symmetric potential V (x) = |x| discussed

by Bender and Jones we consider the non-symmetric version

V (x) =















−aLx, x < 0

aRx, x > 0
(14)
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where aL, aR > 0. In this case we have

LL(0, E) = −
a
1/3
L A′

i

(

−E/a2/3L

)

Ai

(

−E/a2/3L

)

LR(0, E) =
a
1/3
R A′

i

(

E/a
2/3
R

)

Ai

(

E/a
2/3
R

) (15)

where Ai(z) is one of the Airy functions [2].

In order to carry out a sample calculation we choose aR = 1 and aL = 2 and obtain

the series

LL(0) = 0.9184964715− 0.4218178838E − 0.05628088100E2

− 0.01242379097E3 − 0.003082268481E4 + . . .

LR(0) = − 0.7290111325 + 0.5314572310E + 0.1125617620E2

+ 0.03944307773E3 + 0.01553365974E4 + . . . (16)

The singularities of LL(0, E) and LR(0, E) for this particular choice of potential

parameters appear at E = 3.711514163 and E = 2.338107410, respectively. Since both

are larger than E0 the perturbation expansions (16) are suitable for the calculation of

this eigenvalue. Table 3 shows the rate of convergence of the approach for the lowest

eigenvalue E0.

As a non-symmetric extension of the harmonic oscillator discussed by Bender and

Jones we consider the potential

V (x) =















aLx
2, x < 0

aRx
2, x > 0

(17)

where aL, aR > 0. In this case we have

LL(0) =
√
2a

1/4
L

D(E+
√
aL)/(2

√
aL)(0)

D(E−
√
aL)/(2

√
aL)(0)

LR(0) = −
√
2a

1/4
R

D(E+
√
aR)/(2

√
aR)(0)

D(E−
√
aR)/(2

√
aR)(0)

(18)

where Dν(z) is the parabolic cylinder function [2].

For aL = 2 and aR = 1 we have the small-energy expansions

LL(0) = 0.8038781325− 0.4464420544E − 0.06011306588E2 − 0.01251356963E3
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− 0.002831976530E4 + . . .

LR(0) = − 0.6759782395 + 0.5309120676E + 0.1010977236E2 + 0.02976245185E3

+ 0.009525595408E4 + . . . (19)

for the left and right solutions, respectively. Table 4 shows the convergence of the

lowest eigenvalue of the non-symetric quadratic well (17) estimated from the truncated

small-energy series (19).

Finally, we consider the Schrödinger equation (1) with the non-symmetric

anharmonic potential

V (x) = x4 + λx3 (20)

that is not exactly solvable. Note that the minimum of the potential-energy function

Vmin = V (xmin) is not located at the origin but at xmin = −3λ/4 and that V (0) =

0 > Vmin = −27λ4/256 does not agree with the assumption made above. However, that

arbitrary assumption was made for simplicity and is unnecessary for the application of

the approach.

In this case we do not attempt to calculate the small-energy series for the left and

right logarithmic derivatives but we can obtain LL(0, E) and LR(0, E) quite accurately

by means of a variant of the Riccati-Padé method (RPM) [3].

The logarithmic derivative (3) can be expanded in a Taylor series about x = 0

L(x, E) =
∞
∑

j=0

gjx
j (21)

where the coefficients gj, j > 0, depend on both g0 and E. The Hankel determinants

Hd
D(E, g0) = |gi+j+d−1|Di,j=1, where D = 2, 3, . . . is the determinant dimension and

d = 0, 1, . . ., are polynomial functions of g0 and E. For a given value of E the RPM

condition Hd
D(E, g0) = 0 yields sequences of roots g

[D,d]
0 (E), D = 2, 3, . . . that converge

towards LL(0, E) and LR(0, E). Since the RPM takes into account the left and right

solutions simultaneously we cannot determine which sequence corresponds to either

LL(0, E) or LR(0, E). However, this is not a serious drawback as we will see in what

follows.
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For concreteness we restrict ourselves to λ = 0.1 that is small and we therefore

expect LL(0, E0) = LR(0, E0) = L(0, E0) to be close to zero. Figure 2 shows that the

left and right logarithmic derivatives approach each other as E increases from E = 0

and intersect at E0 as expected. In this straightforward application of the RPM we

simply chose d = 0 and 2 ≤ D ≤ 15.

We can also calculate the value of E0 quite accurately by means of the standard

RPM that is based on pairs of Hankel determinants Hd,e
D (E, g0) = |g2i+2j+2d−2|Di,j=1 and

Hd,o
D (E, g0) = |g2i+2j+2d−1|Di,j=1 [3]. In this case, sequences of roots of the set of nonlinear

equations Hd,e
D (E, g0) = 0 and Hd,o

D (E, g0) = 0 converge towards E0 and L(0, E0). For

λ = 0.1 we obtain

E0 = 1.0590028460380260258

LL(0, E0) = LR(0, E0) = −0.02652946094577843397 (22)

that agree with the intersection shown in Figure 2. Here we chose the same values of D

and d indicated previously.

6. Conclusions

In this paper we generalized the method of Bender and Jones so that it can be applied

to non-symmetric potentials. Present approach consists of matching the logarithmic

derivatives of the left and right solutions at the origin. The matching procedure itself

is well known but here it is combined with the original idea of the small-energy series

proposed by those authors. The series are convergent as in the case of the symmetric

potentials studied earlier. It is worth noting that the same procedure applies to

symmetric potentials but in this case it is not necessary to carry out both calculations

because the two curves LL(0, E) and LR(0, E) are symmetric with respect to the E axis.

As illustrative examples we explicitly considered three exactly solvable models and

a nontrivial anharmonic oscillator. In the latter case we did not derive the small-

energy series and restricted ourselves to the accurate calculation of the two logarithmic
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derivatives at origin by means of the RPM. In this way we showed that the two curves

intersect at the ground-state energy that we also calculated accurately by means of the

RPM. For the treatment of one-dimensional or separable problems the RPM is by far

preferable to the perturbation approach but the latter may hopefully be applied to non-

separable systems. For the time being we do not know how to apply this perturbation

approach to multidimensional problems, but it is likely that one should have to resort

to some kind of matching procedure like the one illustrated in this paper.
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Table 1. Eigenvalue of the symmetric well (8) of depth VR = 1 estimated by means

of the expansion (10) of order n. The exact result is E0 = 0.5462468341.

n E0

4 0.5855444198

8 0.5516251660

12 0.5472622152

16 0.5464638914

20 0.5462964250

24 0.5462586560

28 0.5462497386

32 0.5462475642

36 0.5462470210

40 0.5462468826

44 0.5462468468

48 0.5462468375

52 0.5462468350

56 0.5462468344

60 0.5462468343

64 0.5462468341



Small-energy series for non-symmetric potentials 12

Table 2. Eigenvalue of the non-symmetric well (11) with VL = 2 and VR = 1

estimated by means of the expansions of LR(0, E) and LL(0, E). The exact result

is E0 = 0.6446113612.

n E0

4 0.8367722372

8 0.6634864161

12 0.6487132635

16 0.6457463863

20 0.6449609259

24 0.6447254502

28 0.6446499927

32 0.6446247871

36 0.6446161202

40 0.6446130747

44 0.6446119860

48 0.6446115915

52 0.6446114469

56 0.6446113933

60 0.6446113734

64 0.6446113658

68 0.6446113630

72 0.6446113618

76 0.6446113615

80 0.6446113614

84 0.6446113614

88 0.6446113612
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Table 3. Eigenvalue of the non-symmetric linear well (14) with aL = 2 and aR = 1

estimated by means of the expansions of LR(0, E) and LL(0, E). The exact result is

E0 = 1.250207832.

n E0

2 1.387352237

4 1.275507151

6 1.256485215

8 1.251913598

10 1.250686548

12 1.250343776

14 1.250246604

16 1.250218907

18 1.250210997

20 1.250208737

22 1.250208091

24 1.250207905

26 1.250207854

28 1.250207837

30 1.250207833

32 1.250207832
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Table 4. Eigenvalue of the non-symmetric quadratic well (17) with aL = 2 and aR = 1

estimated by means of the expansions of LR(0, E) and LL(0, E). The exact result is

E0 = 1.176933152.

n E0

2 1.254541164

4 1.185370810

6 1.178091246

8 1.177102981

10 1.176958699

12 1.176937027

14 1.176933737

16 1.176933265

18 1.176933166

0.0 0.2 0.4 0.6 0.8 1.0
-1.0
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0.0

0.5

1.0

1.5

2.0

E

LR(0,E)

LL(0,E)

Figure 1. LR(E, 0) and LL(E, 0) for the non-symmetric well (11) with VL = 2 and

VR = 1
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 L
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(0
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Figure 2. LR(E, 0) and LL(E, 0) for the non-symmetric anharmonic oscillator (20)
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