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Abstract 

 

Kerr lens mode locked Ti:Sapphire lasers can operate in at least two pulsed modes. Several 

models were developed with the aim to describe the characteristics of these modes. Those based 

on iterative maps, can reproduce the structurally stable properties of each mode but are unable 

to describe the interaction between modes. In this paper, we present a numerical simulation 

based on a complete map equation that makes possible to accurately describe the bistability 

experimentally observed in the laser. With  the numerical time series we determine that the 

bistable behavior corresponds to low dimensional deterministic chaos and calculate that the 

embedding dimension of the attractor is three.  

 

1. Introduction 

 

The phenomenon of optical bistability, in which certain parameters of a nonlinear system have 

two stable states, was first reported by Gibbs et al. in 1976.[1] Since then a large number of 

studies on optical bistability have been published (see, for example, the review in Ref. 2). The 

prior research includes bistability in a CO2 laser with an intracavity saturable absorber [3] and 

systems with temperature-induced bistability, where the absorption coefficient or the index of 

refraction is temperature dependent.[4–6]. In Ti:Sapphire lasers bistability between pulsed 

modes of operation has been theoretically predicted and experimentally observed [7].   

 

Beyond of its many application in almost any field of science and technology, the  KLM 

Ti:Sapphire laser is, by itself,  a very intricate dynamical system. This  complexity arises 

primarily because of the nonlinear interlacing among the pulse variables that appears in the Kerr 

medium. There are two main nonlinear factors. One of them is the formation of an intensity-

dependent lens. The other factor is an intensity-dependent frequency sweep (or chirp), known as 

self-phase modulation (SPM). 

 



A standard approach to a complex nonlinear system reduces the study of the continuous time 

dynamics to the study of an associated discrete time system, the iterative, stroboscopic or 

Poincaré map [8]. A map is a sequence of values of the variables taken at discrete times. The 

description with maps is an alternative to that with a differential equation, and no information is 

gained or lost. There are, however, some immediate advantages: the dimensionality of the 

problem is reduced in (at least) one and the numerical simulations are easier and faster. 

However, most of the times, writing the map equation can be as difficult as solving the partial 

differential equation, unless the physical system has some “internal clock” that determines the 

position of the adequate discrete times. In the case of passive mode-locked lasers, that clock is 

provided by the cavity round trip time and, in fact, it is easy to obtain recursive equations 

linking the pulse variables in the (n-1) round trip with the values taken at the n-round trip [9]. 

The stability of periodical solutions (as the mode-locking pulse train) is determined easily. 

There are additional advantages when studying unstable behaviors: there is no theoretical 

limitation on the acceptable pulse variation from one round trip to the next, and the observed 

period doubled solutions [10-12] are trivially described with maps. However, in order to obtain 

semi analytical expressions of the pulse variables it is necessary to make some assumptions 

about the strength of the nonlinearities [13]. The main consequence of this approach is that we 

loss the ability to simultaneously describe the several pulsed modes of operation of the laser. In 

this paper, on the contrary, we make no assumptions on the nonlinearities. As a result we can 

reproduce the bistable behavior between transform limited pulses and chirped pulses observed 

experimentally as well as accurately describe, through numerical simulation with the complete 

map and time series analysis, the caracteristics of the attractor of this kind of bistability. 

 

  

 

2 Map model 

 

We start by supposing that the electric field inside the mode-locking pulse, as a function of the 

distance to the optical axis r and the time t, is given by: 

(1) E(t) = E0 exp(-i kr2/2q) exp(-i kt2/2p)
 

where p, q: 
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are functions of the pulse variables: the spot radius σ, the beam curvature radius R, the pulse 

duration τ and the chirp Q (this is the second derivative of the phase with respect to the time). 

There is a fifth pulse variable, the energy U. As the pulse propagates through an optical element 

or distance, the p and q parameters change according to: 

 

 qout = (A.qin + B)/(C.qin + D) (4) 
 

 

where {A . . .D} are the elements of a 2 x 2 matrix . The same holds for p [14,15]. The matrix 

describing the whole laser cavity is obtained by multiplying the matrix describing each optical 

component . In general, the propagation is fully described by 4 x 4 matrices. In this way, it is 

easy to obtain the matrix that describes the effect of a round trip inside the laser cavity (Fig. 1). 

In the case of Ti:sapphire lasers, the Gaussian approximation (1) is valid for pulses longer than 

10 fs [15], and, under appropriate design conditions [14] (which usually hold for Ti:sapphire 

laser cavities) the general 4 x 4 round trip matrix can be split into two diagonal blocks of 2 x 2. 

Therefore, the effect of a round trip on the parameters p, q can be described with a matrix of the 

form: 
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The nonlinearity arises from the fact that the matrix elements include terms (due to the self-

focusing and SPM in the laser rod) which are functions of the pulse variables. These terms, 

named here nonlinearities have the general form: 

 

 γ = cγ  
U 

τ σ4 (6) 

 

for the matrix elements ABCD and: 

 



 
 = cβ  

U 

σ2 τ3 (7)  
β

 

 

for the matrix elements KIJL. The constants cg, cb are proportional to the nonlinear index of 

refraction of the Ti:sapphire. The complete expression of the nonlinearities as functions of the 

pulse’s parameters is not trivial [16].  Its distinctive feature is that the nonlinearity is assumed to 

be effective over the Rayleigh length, rather than the entire Ti:Sapphire rod’s length, and that 

the value of the Rayleigh’s length is calculated for the continuous wave (zero nonlinearity) case.  

It is convenient to define new variables: S = s -2; T =  t -2 ; R = r -1. The expressions that link the 

variable values at the (n -1)-round trip with the ones at the n-round trip are then: 
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The equation for the energy U is found by expansion of the usual equation of gain saturation 



for the mean values S* and U*  

 * * Sn + Un S
 n+

 

 

where m is the product of the small signal gain and the single passage feedback factor due to 

linear or passive losses (mirror’s reflectivities, scattering, etc.), and Ds ≈ 1.2 mJ / cm -2 is the 

saturation energy flux (i.e., the saturation energy multiplied by the cavity round trip) for 

Ti:sapphire. 

The matrix elements in Eqs. (8)-(11) include the nonlinearities. It is convenient to express them 

as a series expansion: 

 

 

 

the same for B, C, D, and: 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 2d is the value (negative) of the group velocity dispersion (GVD)  per round trip, We 

employ the net GVD inside the cavity as the main control parameter. The coefficients of the 

expansions (13) are functions of the geometrical parameters only. The factors g and b are the 

nonlinearities, as defined by Eqs. (5) and (6), when the pulse crosses the rod from M3 to M2 

(i.e., towards the output mirror). The factors g’ and b’  are the nonlinearities when the pulse 

crosses the rod from M2 to M3. The recursive relations (8)-(11) and (14)-(17) are the iterative 

map describing the laser dynamics. The fixed points of the map of the laser are obtained by 

imposing that the variables at the (n -1)-round trip are equal to the ones at the n-round trip. The 

{A . . . L} elements include the nonlinearities which, in turn, are functions of the pulse 
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variables. The general problem is intractable analytically. It can be solved in a closed form by 

assuming that only the first order in the nonlinearities is relevant. This is a good approximation 

for pulses longer than 10 fs, a limit we are anyway restricted because of the Gaussian pulse 

approximation (1). 

 

 

3 Bistability between laser modes 

 

The KLM Ti:Sapphire laser is experimentally known to display three modes of operation: 

continuous wave (named P0), mode locking of transform limited pulses (named P1) and mode 

loking of (positive) chirped pulses ( named P2). These three modes of operation correspond to 

three fixed points of the map equation. A fourth mode, named P3, (negative chirped pulse) is 

predicted from the map equation but not observed in the real laser. In the figure 2 we plot the 

calculated regions of stability of the three predicted mode locked solutions as a function of two 

parameters: the position of the output mirror (x) and the net intracavity GVD.  

One of the main advantages of the maps approach is that the stability of the solutions against 

perturbations can be easily computed, by solving the eigenvalue equation of the linearized map 

evaluated at the fixed point. Where the moduli of one or more eigenvalues becomes larger than 

1, the corresponding fixed point becomes unstable.  

From the stability regions plot one can see the coexistence of the three modes, as well as the 

bistability between P1 and P2 and P2 and P3. Also the graphics shows a broad area of bistability 

and even multistability in the phase space. However the experimental evidence as well the map 

model presented in this paper show no multistability nor bistability between P2 and P3. The 

reason lies in the numerical magnitude of the eigenvalues of each pulsed mode. In figure 3 the 

eigenvalue´s modulus is depicted as a function of the net intracavity GVD for the three pulsed 

modes. The moduli of the eigenvalues are a measure of the actual ability of the fixed point to 

retain the system. In this way the system is never attracted to P3 because the eigenvalues moduli 

of P3 are very close to 1 and always remain larger than those of P1 and P2 and only the 

bistability between P1 and P2 is possible.  

 

We use the complete map in order to determine the actual extension of the bistable region. For a 

given laser geometry, we scan the net intracavity GVD and determine that the system displays 

bistability from -39fs2 to -46fs2. On the other hand, for a fixed value of GVD, in our simulation 

-42fs2, the bistable region using the distance M1 – M2 as a parameter, is 3 centimeters wide, that 

is the distance M1 – M2 can be modified between 57.4cm and 60.4cm. 

We run the map equations (8)-(11) with  initial values for the pulse variables close to the fixed 

point P2 and a value of net intracavity GVD of  -42fs2. The figure 4 displays the simulated time 



series of the pulse duration.  Bistable behavior is revealed  immediately. It is clear that the pulse 

duration switches spontaneously between two well defined regions and roughly, the pulse 

duration of P2 is twice the duration of P1 , as it is predicted by the map model of the reference 

[7]. Another remarkable improvement that introduces this map is the accurate measurement of 

the wide (in the control parameter d)   of the full transition from stable mode locked pulses to 

full developed chaos. As the map model of reference [7] is unable to take into account the 

interaction between modes, the region of transition from stable mode locking to full developed 

chaos predicted by that model is much larger that the actual one. The complete map equation of 

this paper overcomes this problem and predicts a whole transition width of 39fs2 in excellent 

agreement with the 40fs2 measured in the experiment [17].  

 

 

4 Description of the attractor  

 

As a first approximation to the behavior of the attractor we study the statistics of the bistable 

time series. From the histogram (figure 5) it is clear that two different regimes are present. We 

also see that the number of occurrences of each mode are quite distinct. In the bistable region, 

P1 appears more often that P2 with a variable ratio that depends of the GVD parameter. Is 

noteworthy, as we can see in table 1,  how the number of P2 hits disminishs as we change the net 

intracavity GVD, that is as we move to the region where the P2 is more unstable and  P1 is still  

stable. Of course, once we reach the limit value of GVD for the bistable operation only P1 is 

present.  

To give an insight into the way bistability actually works, we start with the reconstruction of a 

pseudo phase space from the one dimensional time series of the physical variables of the laser. 

This procedure gives the same result that the delay – coordinate technique as guarantees the 

embedding theorem [18]. We then use a combination of Grassberger – Procaccia (GPA) 

analysis and false nearest neighbors (FNN) analysis to obtain the correlation and embedding 

dimensions for the data. These two analyses distinguish clearly between random noise (which is 

high dimensional) and low- dimensional, deterministic chaos. In the GPA the correlation 

dimension D2 is calculated as a function of the embedding dimension E. It is expected that, for 

white noise D2 increases linearly with unity slope. In our case D2 clearly converges, indicating 

that the data are not generated by noise. As a further confirmation we calculate the Lyapunov 

exponents finding that as we decrease the net GVD - that is, as we move into the unstable zone - 

in all the cases there is one positive Lyapunov exponent ( see table 2). In this way we confirm 

that data are indeed generated by a nonlinear, low dimensional, deterministic chaos. The 

embedding dimension of the attractor can be estimated using the FNN technique, in which the 

number of neighbors in an E-dimensional reconstructed phase space is compared with that in 



E+1 dimensions. For low dimensional, deterministic chaos, the number of false neighbors 

should fall to zero at a relatively small value of E. For high dimensional chaos and for random 

signal, on the contrary, the FNN will level off at a nonzero value, and may even rise again as E 

is increased. As we can see in the figure 6 the FNN analysis of our chaotic data set in the 

bistable region between P1 and P2 gives an embedding dimension of three.  

The figure 7 shows the correlation dimension of the attractor in the bistable region. From the 

graphics we can estimate that D2 dimension has a value between 1 and 2. As the embedding 

dimension is three it is possible to plot the attractor in phase space. The shape of the attractor 

can be seen in the figure 8 where the bistable nature is once again revealed . 

 

Summary 

 

In conclusion we develop a map model that is capable to explain not only the pulsed mode 

locked modes of operation of a Kerr lens mode locked Ti: Sapphire laser, but also describes 

accurately the bistable behavior observed in the experiments. With the help of the simulated 

time series we determine that the bistability between transform limited pulses and chirped 

pulses responds to low dimensional deterministic chaos. In particular the attractor of the system 

is a strange attractor because we measure a non integer D2 dimension and the embedding 

dimension is three which makes possible to plot the whole attractor in the phase space. 
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Figure 8  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Tables  
 
Table 1 
 

d C 
-40 0.285 
-41 0.213 
-42 0.203 
-43 0.039 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 2 
 

d l1 l2 l3
-40 0.03743 -0.03943 -0.88609 
-41 0.05683 -0.09577 -1.21351 
-42 0.07663 -0.16451 -1.18888 
-43 0.02804 -0.23133 -1.09102 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure Captions 
 
 
Figure 1: Scheme of the laser cavity. M1: exit mirror;  M2, M3: focusing mirrors; R: 

Ti:Sapphire rod; P: pair of prisms for GVD compensation; M4: end mirror. The arrows 

indicates the direction of the nonlinearities in the map equation, blue: primed 

nonlinearities, green: non primed nonlinearities. 

 

Figure 2 : Stability regions of the three pulsed modes of operation of the KLM 

Ti:Sapphire laser. Horizontal axis: negative net intracavity GVD. The lines indicate the 

border of each stability zone. The confined region is the stable one. 

 

Figure 3 :  Numerical magnitude of the sum of the eigenvalues in function of the 

(negative) net intracavity GVD . As the number of variable’s system is five, the 

corresponding fixed point will we stable if the eigenvalue modulus remains under 5. 

 

Figure 4 : Time series of the pulse duration variable of the complete map with a value 

of intracavity GVD of -42fs2. In the horizontal axis we plot the iteration of the map 

equation that represents a round trip in the laser cavity. 

 

Figure 5 : Histogram of a time of the complete map equation. The net GVD value used 

was -43fs2. Note that the two sets of data shows a completely different statistical 

distribution, indicating the different behavior of the two pulsed modes. 

 

Figure 6 : Graphics of the percentage  of the false nearest neighbors as a function of the 

embedding dimension. From the plot we see that the embedding dimension is three. In 

dimension two the percentage of FNN is  0.9% and fall to zero in dimension 3. 

 

Figure 7 : Fractal dimension, D2, as a function of the embedding dimension . The time 

series employed in this plot was run with a value of net GVD of -43 fs2 that corresponds 

to the bistable region. From the graphics the fractal dimension is approximately 1.7. 

 



Figure 8 : Representation of the whole attractor of the bistable region. In the plot we the 

physical meaning variables X axis(T): pulse duration normalized to the mean value of 

the time series; Y axis (S): spot sizeof the pulse; Z axis (U): energy of the pulse, all 

variables are normalized to the mean value and hence are adimensional.  

 

Table 1 : In this table can be seen the evolution of C, the ratio of P2 / P1 occurrences in 

the bistable zone as a function of  d, the net intracavity GVD ( in fs2). Observe the 

sudden change in C when d is very close to the bistable border.  

 

Table 2 : Lyapunov exponents (l, in s-1) of the time series in the bistable zone. Note that in all 

cases there is one positive exponent, revealing the chaotic nature of the system.  

 

 

 

 

 


