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We explore the cosmological consequences of some possible big bang produced by a black-hole with
mass M in a 5D extended SdS. Under these particular circumstances, the effective 4D metric obtained
by the use of a constant foliation on the extra coordinate is comported as a false white hole (FWH),
which evaporates for all unstable modes that have wavelengths bigger than the size of the FWH. Outside
the white hole the repulsive gravitational field can be considered as weak, so that the dynamics for
fluctuations of the inflaton field and the scalar perturbations of the metric can be linearized.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction and motivation

In the last two decades, inflationary cosmology has become
the strongest candidate to explain the observed properties of the
universe on cosmological scales [1–6]. This fact is supported by
experimental evidence [7]. During this epoch the energy density
of the universe was dominated by some scalar field (the inflaton),
with negligible kinetic energy density, in such a way that its corre-
sponding vacuum energy density is responsible for the exponential
growth of the scale factor of the universe. Along this second order
phase transition a small and smooth region of the order of size of
the Hubble radius, grew so large that it easily encompassed the
comoving volume of the entire presently observed universe, and
consequently the observable universe became so spatially homo-
geneous and isotropic on scales today of the range [108–1010] ly.
There are plenty of inflationary models [8] the majority of them
in good concordance with observations, but none free of problems,
as for example the transplanckian problem, the hierarchy problem,
etc. [9]. This has led cosmologists to look for some new theoretical
alternatives [10].

Recently, we have suggested a new inflationary perspective [11]
from a 5D Extended Theory of General Relativity (ETGR) [12] in
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which we use the Ricci-flat metric [12] represented by a 5D line
element1

dS2
5 =

(
ψ

ψ0

)2[
c2 f (R)dT 2 − dR2

f (R)
− R2(dθ2 + sin2 θ dφ2)]

− dψ2. (1)

Here, f (R) = 1 − [(2Gζψ0)/(Rc2)] − (R/ψ0)
2 is a dimensionless

metric function, ψ is the space-like and non-compact fifth extra
coordinate.2 The metric (1) is Ricci flat. Furthermore, this is an ex-
tension to 5D spaces of the 4D SdS metric. The coordinate T is
a time-like, c is denoting the speed of light, R , θ , φ are the usual
spherical polar coordinates, ψ0 is an arbitrary constant with length
units and the constant parameter ζ has units of (mass)(length)−1.
As was shown in [12], for certain values of ζ and ψ0, the met-
ric in (1) has two natural horizons. The inner one is the analogous
to the Schwarzschild horizon and the external one is the analo-
gous to the Hubble horizon. A particular case of the metric (1) is
such that ζ = 1/(3

√
3G). For this case there is a unique horizon at

R∗ = ψ0/
√

3, which is false, because f (R) � 0 retains its sign for
R ≶ R∗ . However the metric (1) really fails at R = 0. It can be seen
more clear by writing f (R) in this special case as

f (R) =
(

− 1

ψ2
0 R

)[(
R + 2ψ0√

3

)(
R − ψ0√

3

)2]
. (2)

1 Some related metrics were studied in [13].
2 In our notation conventions henceforth, latin indices a,b = run from 0 to 4,

whereas the rest of latin indices i, j,n, l, . . . = run from 1 to 3.
ts reserved.
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Of course the physical domain of interest is R > 0. It is easy to
see that F (R∗) = 0, but however dS2

5 � 0 has the same signature
for R ≶ R∗ . As was demonstrated in [12], the Newtonian induced
acceleration in absence of angular moment reads

ac = − ψ0

3
√

3R2
+ Rc2

ψ2
0

. (3)

This means that, for the special case ζ = 1/(3
√

3G), the acceler-
ation (3) becomes zero at R = R∗ . Moreover, this acceleration is
negative for 0 < R < R∗ and positive for R > R∗ . In other words,
the metric (1) predicts that for ζ = 1/(3

√
3G), gravitation is repul-

sive for R > R∗ and attractive for R < R∗ . As we shall see, this has
important cosmological consequences. In physical terms, the case
we are dealing to study in this work is very important because
describes the greatest possible mass which can have a black-hole,
M = 1/(3

√
3G)ψ0, in a universe with cosmological constant 3/ψ2

0 .
The metric (1) is static, however, it can be written on a dynamical
coordinate chart {t, r, θ,φ,ψ} by implementing the planar coor-
dinate transformation [14]. For the case M = 1/(3

√
3G)ψ0, the

transformations are

R = ar

[
1 + ψ0

6
√

3ar

]2

,

T = t + H

r∫
dR

R

f (R)

(
1 − 2ψ0

3
√

3R

)−1/2

, (4)

a(t) = a0et/ψ0 being the scale factor. With this transformation the
line element (1) reads

dS2
5 =

(
ψ

ψ0

)2[
F (τ , r)dτ 2 − J (τ , r)

(
dr2 + r2(dθ2 + sin2 θ dφ2))]

− dψ2, (5)

where τ is the conformal time, dτ = a−1(τ )dt and a(τ ) = −ψ0/τ .
Furthermore, the metric functions F (τ , r) and J (τ , r) are given by

F (τ , r) = a2(τ )

[
1 − ψ0

6
√

3a(τ )r

]2[
1 + ψ0

6
√

3a(τ )r

]−2

,

J (τ , r) = a2(τ )

[
1 + ψ0

6
√

3a(τ )r

]4

. (6)

The constant Hubble parameter satisfies

H = 1

ψ0
= a−2 da

dτ
. (7)

The acceleration ac can be written in terms of the new coordinates
r and τ

ac(r, τ ) = 324
√

3r2τ − 1944r3 − 215
√

3τ 3 − 54rτ 2

6ψ0τ (
√

3τ − 18r)2
. (8)

The physical distance for which the acceleration (8) becomes null,
which provides us the size of the FWH in a comoving frame, is

Dwh = a(τwh)rwh = 5
√

3

18
ψ0, (9)

so that ac(Dwh) = 0. The wavenumber corresponding to the scales
Dwh is

kwh =
[

2π

Dwh

][
2Dwh

2Dwh + ψ0√

]2

, (10)
3 3
giving us the wavelength related to kwh

λwh = 2π

kwh
� 0.6928ψ0 > R∗ � 0.577ψ0. (11)

Notice that for the largest mass M the modes with wavelength
bigger than λwh are unstable and these modes are larger than the
horizon radius R∗ = ψ0/

√
3. However, R∗ is not a true causal hori-

zon [i.e., f (R ≶ R∗) < 0 has the same signature at both sizes of
this horizon R∗].

From the gravitational point of view we see that for physi-
cal wavelengths: λ > λwh the universe is repulsive and suffers an
accelerated expansion, but for λ < λwh it is collapsing. Physical dis-
tances with wavelengths in the range λwh < λ < ψ0 are commonly
known as cosmological scales and distances with wavelengths in
the range 0 < λ < λwh are known as astrophysical scales. These
scales we shall refer as the inner of the FWH.

In this work we shall study the cosmological consequences of
some possible big bang produced by a black-hole with mass M
in a 5D extended SdS metric (5). Under these particular circum-
stances, the effective 4D metric obtained by the use of a foliation
ψ = ψ0 = 1/H is comported as a false white hole, which is re-
pulsing all matter which is with λ > λwh and attract modes with
λ < λwh . The Letter is organized as follows: in Section 2 we de-
velop the 5D dynamics of the scalar field fluctuations of the metric
and the inflaton field in the weak-field approximation. In Section 3
we explore the effective 4D dynamics of these fields, by using a
semi-classical approximation for the inflaton field. Furthermore, we
calculate the squared field fluctuations for the quantum inflaton
fluctuations and metric fluctuations. These spectra are valid out-
side the FWH. Finally, in Section 4 we give some final comments.

2. 5D weak-field limit of the inflation and metric fluctuations

In order to consider a 5D vacuum on the 5D Ricci flat met-
ric (5), we shall consider a non-massive scalar field ϕ(xa) which
is free of interactions. Its dynamics can be derived from the ac-
tion [12]

(5)S =
∫ √

g5

[
(5)R

16πG
− 1

2
gabϕ,aϕ,b

]
d4x dψ, (12)

where (5)R is the Ricci scalar, g5 is the determinant of the met-
ric (5) and G is the gravitational constant. The energy–momentum
tensor: (5)Tab = 2 δL

δgab − gabL, derived from the action (12), reads

(5)Tab = ϕ,aϕ,b − 1

2
gabϕ,cϕ

,c, (13)

which is obviously symmetric. The dynamics of the scalar field ϕ
derived from the action (12).

We consider the scalar metric fluctuations Φ(τ , r, θ,φ,ψ). In
cartesian coordinates this perturbed line element in the weak-field
limit is

dS2
5

∣∣
pert =

(
ψ

ψ0

)2[
F (τ , x, y, z)[1 + 2Φ]dτ 2

− J (τ , x, y, z)[1 − 2Φ]δi j dxi dx j] − dψ2, (14)

being now Φ = Φ(τ , x, y, z,ψ). On sufficiently large scales the fol-
lowing condition is satisfied:

ψ0

6
√

3a(τ )r
� 1, (15)

where rH denotes the value of the radial coordinate at the horizon
entry and the conformal time τ is related to the scale factor by the
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expression a(τ ) = −ψ0/τ , so that the constant Hubble parameter
satisfies

H = 1

ψ0
= a−2 da

dτ
. (16)

On the other hand, one can define the function H = ȧ/a = −1/τ .
On very large scales, when the weak-field limit holds, the functions
F (τ , r) and J (τ , r) become independent of spatial coordinates [see
Eqs. (6)], so that

F (τ , r)
∣∣

ψ0
6
√

3a(τ )r
�1

→ a2(τ ), J (τ , r)
∣∣

ψ0
6
√

3a(τ )r
�1

→ a2(τ ), (17)

and the metric (5) describes a universe which is nearly 3D spa-
tially homogeneous and isotropic. In this limit case, the equation
of motion for ϕ can be linearized with respect to Φ

ϕ̈ − (2H− 4Φ̇)ϕ̇ − (1 + 4Φ)∇2ϕ

+
(

ψ

ψ0

)2

a2
[(

2
�

Φ − 4

ψ

)
�
ϕ − (1 + 2Φ)

��
ϕ − 8

ψ
Φ

�
ϕ

]
= 0. (18)

Since now we are dealing with lineal equations of motion for
Φ and ϕ one can use a semi-classical approximation for ϕ:
ϕ(τ , x, y, z,ψ) = ϕb(τ ,ψ)+δϕ(τ , x, y, z,ψ). From Eq. (18), we ob-
tain separately the dynamics for both, the background part of the
field ϕb and the quantum fluctuations δϕ

ϕ̈b + 2Hϕ̇b −
(

ψ

ψ0

)2

a2
[

4

ψ

�
ϕb + ��

ϕb

]
= 0, (19)

¨δϕ + 2H ˙δϕ − ∇2δϕ −
(

ψ

ψ0

)2

a2
[

4

ψ

�

δϕ + ��

δϕ

]

− 4ϕ̇bΦ̇ +
(

ψ

ψ0

)2

a2
[

2
�
ϕb

�

Φ −
(

8

ψ

�
ϕb + 2

��
ϕb

)
Φ

]
= 0. (20)

On the other hand, the background (diagonal) Einstein equations
are

3H2 − 3a2

ψ2
0

= κ5

2

[
ϕ̇2

b +
(

ψ

ψ0

)2

a2 �
ϕ

2

b

]
, (21)

−H2 − 2Ḣ+ 3a2

ψ2
0

= κ5

2

[
ϕ̇2

b −
(

ψ

ψ0

)2

a2 �
ϕ

2

b

]
, (22)

−3
(
H2 + Ḣ

) + 6a2

ψ2
0

= κ5

2

[
ϕ̇2

b +
(

ψ

ψ0

)2

a2 �
ϕ

2

b

]
, (23)

while that the linearized fluctuated diagonal Einstein equations are

−6HΦ̇ + 2∇2Φ + 3a2
[(

ψ

ψ0

)2
��

Φ + 4ψ

ψ2
0

�

Φ − 2

ψ2
0

Φ

]

= κ5

[
ϕ̇bδϕ̇ +

(
ψ

ψ0

)2

a2( �
ϕb

�

δϕ + �
ϕ

2

bΦ
)]

, (24)

2Φ̈ + 6HΦ̇ + a2
[

6

ψ2
0

Φ −
(

ψ

ψ0

)2
��

Φ − 4ψ

ψ2
0

�

Φ

]

= κ5

[
ϕ̇b ˙δϕ −

(
ψ

ψ0

)2

a2( �
ϕb

�

δϕ + �
ϕ

2

bΦ
)]

, (25)

3(Φ̈ + 4HΦ̇) − ∇2Φ + 6a2

ψ2
0

(2Φ − ψ
�

Φ)

= κ5

[
ϕ̇b ˙δϕ +

(
ψ

)2

a2( �
ϕb

�

δϕ + �
ϕ

2

bΦ
)]

. (26)

ψ0
On the other hand, linearizing the non-diagonal field Einstein
equations, we obtain

2(HΦ,i + Φ̇,i) = κ5ϕ̇bδϕ,i, (27)

6H
�

Φ + 3
·�
Φ = κ5(ϕ̇b

�

δϕ + ˙δϕ �
ϕb), (28)

�

Φ,i = κ5
�
ϕbδϕ,i . (29)

The dynamics of the field Φ can be described in terms of the scalar
field fluctuations δϕ using a linear combination of Eqs. (24)–(26)

Φ̈ + 9

2
HΦ̇ − 1

2
∇2Φ + a2

[
9

2ψ2
0

Φ + ψ

ψ2
0

�

Φ + 7

4

(
ψ

ψ0

)2
��

Φ

]

= κ5

4

[
ϕ̇b ˙δϕ + 9

(
ψ

ψ0

)2

a2( �
ϕb

�

δϕ + �
ϕ

2

bΦ
)]

. (30)

Notice that in general the quantum fluctuations δϕ act as a source
of scalar metric fluctuations Φ .

3. Induced 4D dynamics outside the FWH in the weak-field limit

In order to obtain the dynamics for both, Φ and ϕ on the ef-
fective 4D universe, we shall assume that the 5D spacetime can
be foliated by a family of hypersurfaces Σ : ψ = constant. Our
4D universe will be here represented by a generic hypersurface
Σ0 : ψ = ψ0. Thus, on every leaf member of the family, the line
element induced by (5) has the form

ds2
4 = F (τ , r)dτ 2 − J (τ , r)

[
dr2 + r2(dθ2 + sin2 θ dφ2)], (31)

with F (τ , r) and J (τ , r) given by (6).
In the weak-field limit, the 5D perturbed line element in carte-

sian coordinates (14), induces on the hypersurface Σ0 the effective
4D line element

ds2
4

∣∣
pert = F (τ , x̄)

[
1 + 2Ω(τ , x̄)

]
dτ 2

− J (τ , x̄)
[
1 − 2Ω(τ , x̄)

]
δi j dxi dx j, (32)

where Ω(τ , x̄) ≡ Φ(τ , x, y, z,ψ0) describes the 4D scalar metric
fluctuations induced on Σ0.

The 5D action (12) induces on our 4D spacetime the effective
action

(4)Seff =
∫

d4x
√

g4

[
(4)R

16πG
− 1

2
gμνϕ̄,μϕ̄,ν + V (ϕ̄)

]
, (33)

where g4 is the determinant of the 4D induced metric, which for
the background reads ḡ4 = −F J 3 while for the perturbed metric
g(p)

4 = −F J 3(1 + 2Ω)(1 − 2Ω)3. In the linear approximation, the
4D Ricci scalar curvature (4)R is given by

(4)R = 2

a2

[
3
(
H2 + Ḣ

) + ∇2Ω − 6Ω
(
H2 + Ḣ

)
− 3(4HΩ̇ + Ω̈)

]
, (34)

and the induced 4D effective potential V has the form

V (ϕ̄) = −1

2
gψψ

(
∂ϕ

∂ψ

)2∣∣∣∣
ψ=ψ0

. (35)

Thus, let us use the semi-classical approximation: ϕ̄(τ , 	x) =
ϕ̄b(τ ) + δϕ̄(τ , 	x), where ϕ̄b(τ ) ≡ ϕ̄b(τ ,ψ)|ψ=ψ0 is the background
4D inflaton field and δϕ̄(τ , 	x) ≡ δϕ̄(τ , 	x,ψ)|ψ=ψ0 stands for the
4D inflaton field quantum fluctuations. In our analysis the fields Ω

and ϕ̄ are semi-classical fields, so they are constituted by a classi-
cal part plus a quantum part. To study the dynamics of the former,



J.E. Madriz Aguilar et al. / Physics Letters B 728 (2014) 244–249 247
a standard quantization procedure will be implemented. To do it,
we shall impose the commutation relations
[
ϕ̄(τ , 	x),Π0

(ϕ̄)

(
τ , 	x′)] = iδ(3)

(	x − 	x′),[
Ω(τ , 	x),Π0

(Ω)

(
τ , 	x′)] = iδ(3)

(	x − 	x′), (36)

where 	x is denoting the 3D vector position in cartesian coordi-
nates. Due to the fact that the conjugate momenta to ϕ̄ and Ω

[calculated on the background metric with determinant ḡ4 =
−F J 3], are respectively given by Π0

(ϕ̄)
= √−ḡ4 F −1 ˙̄ϕ and Π0

(Ω)
=

[12/(16πG)]a−2(3Ω̇ − 2H)
√−ḡ4, the expressions (36) yield

[
ϕ̄(τ , 	x), ˙̄ϕ(

τ , 	x′)] = i F√−ḡ4
δ(3)

(	x − 	x′),
[
Ω(τ , 	x), Ω̇(

τ , 	x′)] = i
4πGa2

9
√−ḡ4

δ(3)
(	x − 	x′). (37)

3.1. 4D classical dynamics of the inflaton field

Taking this into account, the evaluation of Eq. (19) on Σ0 yields

¨̄ϕb + 2H ˙̄ϕb + a2m2ϕ̄b = 0, (38)

where we have used the relation: [(4/ψ)
�
ϕb + ��

ϕb]|ψ=ψ0 = −m2ϕ̄b ,
such that m is a separation constant. The background field ϕ̄ must
obey the Friedmann-like equation
(

∂ϕ̄b

∂τ

)2

+ a2
(

∂ϕb

∂ψ

)2

ψ=ψ0

= 0. (39)

A particular solution of (38), which also is satisfied when infla-
tion begins, are the slow rolling conditions: ∂ϕ̄b/∂τ = 0, where
necessarily m = 0. Using this solution in (39), it yields ϕ̄b = 0. It
means that all the energy density on the 4D hypersurface is in-
duced geometrically by the foliation ψ = ψ0 = 1/H , because the
background energy density related to the background inflaton field
is null. This is an important difference with respect to de Sitter
models in standard 4D inflationary models [6] in which the back-
ground energy density is given by the potential. In our case, as can
be seen from Eqs. (21), (22), (23), the right sides of these equations
are zero. Hence, the pressure and energy density being geometri-
cally induced by the foliation:

H2 = a2

ψ2
0

, (40)

H2 + 2Ḣ = 3a2

ψ2
0

, (41)

(
H2 + Ḣ

) = 2a2

ψ2
0

, (42)

from which we obtain(
H
a

)2

= 1

ψ2
0

= Ḣ
a

. (43)

Furthermore, the background induced 4D scalar curvature (4)R̄ is

(4)R̄ = 2

a2

[
3
(
H2 + Ḣ

)]
. (44)

Using Eq. (43) in (44), we obtain the background induced scalar
curvature

(4)R̄ = 12

ψ2
, (45)
0

which is the exact expression that can be obtained in STM [15]
theory for a de Sitter expansion from the expression

(4)R̄ = −1

4

[
ḡμν
,4 ḡμν,4 + (

ḡμν ḡμν,4
)2]

, (46)

where ḡμν denotes the background components of the tensor met-
ric.

3.2. 4D scalar metric fluctuations spectrum

After working with Eqs. (28), (29) and (30), we find that the
scalar metric fluctuations Ω on Σ0 obey the equation

Ω̈ + 9

2
HΩ̇ − 1

2
∇2Ω +

[
9

2
a2 H2 + λ2

]
Ω = 0. (47)

Here, we have used {(ψ/ψ2
0 − 9/ψ)

�

Φ + [(7/4)(ψ/ψ0)
2 − 9/

4]��

Φ}ψ=ψ0 = λ2Ω , where λ is a separation constant with mass
units. Now it can be shown that Eq. (27), evaluated on Σ0, leads
to the condition Ω̇ = −HΩ . Using this last condition in Eq. (47),
we obtain

Ω̈ + 2HΩ̇ − 1

2
∇2Ω + [

a2 H2 + λ2]Ω = 0. (48)

If we introduce the auxiliary field χ(τ , r̄), through the formula
Ω(τ , r̄) = e− ∫

H(τ ) dτ χ(τ , r̄), Eq. (48) becomes

χ̈ − 1

2
∇2χ + (

λ2 − Ḣ
)
χ = 0. (49)

The field χ can be expanded in terms of the Fourier modes

χ(τ , r̄) = 1

(2π)3/2

∫
d3k

[
akeik̄·r̄ξk(τ ) + a†

kξ
∗
k (τ )

]
, (50)

where the annihilation and creation operators ak and a†
k satisfy

[
ak,a†

k′
] = δ(3)

(
k̄ − k̄′), [ak,ak′ ] = [

a†
k,a†

k′
] = 0. (51)

Inserting (50) in (49) and using (51), we find

ξ̈k +
(

k2
eff − 2

τ 2
+ λ2

)
ξk = 0, (52)

where k2
eff = k2/2. If we require that the modes ξk to be normal-

ized, they must satisfy the following expression on the UV-sector:

ξk ξ̇
∗
k − ξ∗

k ξ̇k = i
4πG

9a2
0

. (53)

Thus, choosing the Bunch–Davies vacuum condition, the normal-
ized solution of (52) reads

ξk(τ ) � iπ

3a0

√
GH(2)

ν

[
z(τ )

]
, (54)

where H(2)
ν [z(τ )] is the second kind Hankel function, ν =

(1/2)
√

1 + 4β and z(τ ) = keff τ . Notice that β = 2 −λ2τ 2 > 0, such

that the conformal time at the beginning of inflation τ0 = −
√

2
λ

is defined such that β0 = 2 − λ2τ 2
0 = 0 and the conformal time

at the end of inflation complies with βe = 2 − λ2τ 2
e � 2. Us-

ing the definition of β , it is easy to show that the parameter
ν � 3/2 for τ 2

e � 2/λ2, which assures that the spectral index
1 > ns > 0.96 [16]. Using the fact that 1 − ns = 3 − 2ν , we ob-
tain for λ = 10−10G−1/2, that the range of acceptable values for τe
is

0 < (−τe) < 0.245 × 1010G1/2. (55)
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It is important to see how the universe becomes scale invariant
with the expansion of the universe because β(τ ) evolves from
β0 = 0 to βe � 2 along the inflationary expansion. The temporal
evolution of β , and hence of the spectral index ns , is due to the
existence of λ, which has a clear origin in the extra space-like co-
ordinate ψ [see Eqs. (47) and below]. This result cannot be found
in standard 4D inflationary models.

The amplitude of the 4D gauge-invariant metric fluctuations
〈Ω2〉IR on the IR-sector (keff τ � 1) is given by

〈
Ω2〉

IR = 1

2π2

(
a0

a

)2
ε1kwh∫

k=0

dk k2(ξkξ
∗
k

)∣∣
IR (56)

where ε1 = kI R
max/kp � 1 is a dimensionless parameter, being

kI R
max = kwh(τi) =

√
(4/τ 2

i ) − 2λ2 the wave number related to the

Hubble radius by the time when the modes re-enter to the
horizon τi . The Planckian wave number is here denoted by kp .
Now, considering the asymptotic expansion for the Hankel func-
tion H(2)

ν [x] � −(i/π)Γ (ν)(x/2)−ν in the expression (54), Eq. (56)
yields

〈
Ω2〉

IR = 21+3ν

32
Γ 2(ν)

(
Hτ

2π

)2( 1

aH

)2−2ν
ε1kwh∫
0

dk

k
k3−2ν . (57)

It can be easily seen from this equation that the corresponding
spectrum for scalar metric fluctuations reads

PΩ(k) = 21+3ν

32
Γ 2(ν)

(
Hτ

2π

)2( 1

aH

)2−2ν

k3−2ν . (58)

This spectrum results nearly scale invariant for ν � 3/2, value that
may be achieved when λ2τ 2 � 1. Performing the integration in
(57), the amplitude of the scalar metric fluctuations is given finally
by

〈
Ω2〉

IR = 21+3ν

32
Γ 2(ν)

(
Hτ

2π

)2( 1

aH

)2−2ν

ε3−2ν
1 k3−2ν

wh , (59)

which tends to zero as τ → 0.

3.3. 4D inflaton field fluctuations

Since the background inflaton field ϕb is a constant, the dynam-
ics of the inflaton field fluctuations δϕ are given by the first row
of the equation of motion (20) on the hypersurface ψ = ψ0. The
equation of motion for the time dependent modes ζk(τ ) is

ζ̈k + 2Hζ̇k + [
k2 − a2λ2]ζk(τ ) = 0, (60)

which has the general solution

ζk(τ ) = A1(−τ )3/2H(1)
μ [−kτ ] + A2(−τ )3/2H(2)

μ [−kτ ]. (61)

Here, H(1,2)
μ [−kτ ] are respectively the first and second kind Han-

kel functions, μ =
√

9 + 4λ2ψ2
0 /2. One can define ζk(τ ) = τσk(τ ),

such that σk(τ ) are the time dependent modes for the redefined
field fluctuations σ(	x, τ ), that can be expanded in terms of Fourier
modes

σ(τ , 	x) = 1

(2π)3/2

∫
d3k

[
Akei	k·	xσk(τ ) + A†

ke−i	k·	xσ ∗
k (τ )

]
, (62)

where the annihilation and creation operators Ak and A†
k satisfy

the commutation algebra
[
Ak, A†

k′
] = δ(3)

(	k − 	k′), [Ak, Ak′ ] = [
A†

k, A†
k′
] = 0, (63)

and to be fulfilled the algebra[
σ(τ , 	x), σ̇ (

τ , 	x′)] = iδ(3)
(	x − 	x′), (64)

must require the normalization condition σkσ̇
∗
k − σ̇kσ

∗ = i. There-
fore, the normalization constants are given by

A2 = −
√

π

2ψ0
e−iνπ/2, A1 = 0. (65)

The amplitude of the fluctuations of the inflaton field on large
scales (kτ � 1) is obtained by means of the formula

〈
δϕ2〉

IR = 1

2π2

(
a0

a

)2
ε2kwh∫

k=0

dk k2(σkσ
∗
k

)∣∣
IR, (66)

where ε2 = kI R
max/kp , being in this case kI R

max =
√

(2/τi) + a2
i λ

2,

with ai = a(τi). Thus, making use of the asymptotic expansion for
the Hankel function H(2)

μ [x] � −(i/π)Γ (μ)(x/2)−μ , the expression
(66) becomes

〈δϕ〉IR = a2
022μ−1

ψ2
0

Γ 2(μ)

π

(
H

2π

)2( 1

aH

)3−2μ

×
ε2kwh∫
0

dk

k
k3−2μ. (67)

After straightforward calculations, the mean squared fluctuations
for the inflaton field read

〈
δϕ2〉

IR = a2
022μ−1

ψ2
0

Γ 2(μ)

π

(
H

2π

)2

ε
3−2μ
2

(
kwh

aH

)3−2μ

. (68)

In this manner, the spectrum for the inflaton fluctuations on 4D is
given by

Pδϕ(k) = a2
022μ−1

ψ2
0

Γ 2(μ)

π

(
H

2π

)2( k

aH

)3−2μ

. (69)

This spectrum shows that its nearly scale invariance is achieved for
μ � 3/2, and in turn this value is obtained when λ2ψ2

0 � 1/4.

4. Final comments

We have studied an interesting case in which the universe ex-
pands on an effective 4D hypersurface obtained after take a con-
stant foliation on the extra space-like coordinate of an extended
SdS Ricci-flat metric. The 4D effective spacetime describes a uni-
verse that expands on cosmological scales but collapses on astro-
physical ones because it has a black-hole in its center with mass
M = ψ0/(3

√
3G). Under these circumstances, the universe behaves

as a white hole that evaporates on scales greater its radius. The
behavior of the universe on these large scales is similar to that of
white hole, so that we have called it a false white hole (FWH). We
have studied the large scales evolution of the scalar metric fluctua-
tions and the quantum fluctuations of the metric. In both cases the
amplitude of the fluctuations decreases during inflation for power
spectra that are nearly scale invariant on cosmological scales.

Acknowledgements

J.E. Madriz Aguilar, and C. Moreno acknowledge CONACYT
(Mexico) and Mathematics Department of CUCEI – UdG for fi-
nancial support. M. Bellini acknowledges CONICET (Argentina) and
UNMdP for financial support.



J.E. Madriz Aguilar et al. / Physics Letters B 728 (2014) 244–249 249
References

[1] A. Starobinsky, Phys. Lett. B 91 (1980) 99.
[2] A.H. Guth, Phys. Rev. D 23 (1981) 347.
[3] D.H. Lyth, A. Riotto, Phys. Rep. 314 (1999) 1.
[4] A.D. Linde, Physics and Inflationary Cosmology, Harwood, Chur, Switzerland,

1990.
[5] A.R. Liddle, D.H. Lyth, Cosmological Inflation and Large-Scale Structure, Cam-

bridge University Press, 2000.
[6] M. Bellini, et al., Phys. Rev. D 54 (1996) 7172.
[7] R.L. Smoot, et al., Astrophys. J. 396 (1992) L1.
[8] C. Ringeval, V. Vennin, J. Martin, Encyclopaedia Inflationaris, e-print: arXiv:

1303.3787.
[9] R.H. Brandenberger, Lect. Notes Phys. 738 (2008) 393.
[10] Kei-ichi Maeda, Nobuyoshi Ohta, Phys. Lett. B 597 (2004) 400.
[11] J.E. Madriz Aguilar, M. Bellini, J. Cosmol. Astropart. Phys. 1011 (2010) 020;

L.M. Reyes, J.E. Madriz Aguilar, M. Bellini, Eur. Phys. J. Plus 126 (2011) 56;
L.M. Reyes, C. Moreno, J.E. Madriz Aguilar, M. Bellini, Phys. Lett. B 717 (2012)
17;
J.E. Madriz Aguilar, L.M. Reyes, C. Moreno, M. Bellini, Eur. Phys. J. C 73 (2013)
2598.

[12] J.E. Madriz Aguilar, M. Bellini, Phys. Lett. B 679 (2009) 306.
[13] B. Mashhoon, H. Liu, P.S. Wesson, Phys. Lett. B 331 (1994) 305;

S. Rippl, C. Romero, R. Tavakol, Class. Quantum Gravity 12 (1995) 2411;
S.S. Seahra, P.S. Wesson, J. Math. Phys. 44 (2003) 5664.

[14] T. Shiromizu, D. Ida, T. Torii, J. High Energy Phys. 0111 (2001) 010.
[15] P.S. Wesson, J. Ponce de León, J. Math. Phys. 33 (1992) 3883.
[16] O. Lahav, A.R. Liddle, Phys. Rev. D 80 (2012) 280.

http://refhub.elsevier.com/S0370-2693(13)00980-5/bib30s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib31s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib32s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib33s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib33s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib34s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib34s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib35s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib736D6F6F74s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib656E6369636Cs1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib656E6369636Cs1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib6272616Es1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib6E7272s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib636F73s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib636F73s2
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib636F73s3
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib636F73s3
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib636F73s4
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib636F73s4
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib65746772s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib6574677231s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib6574677231s2
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib6574677231s3
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib7063s1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib7765706F6Es1
http://refhub.elsevier.com/S0370-2693(13)00980-5/bib727070s1

	The primordial explosion of a false white hole from a 5D vacuum
	1 Introduction and motivation
	2 5D weak-ﬁeld limit of the inﬂation and metric ﬂuctuations
	3 Induced 4D dynamics outside the FWH in the weak-ﬁeld limit
	3.1 4D classical dynamics of the inﬂaton ﬁeld
	3.2 4D scalar metric ﬂuctuations spectrum
	3.3 4D inﬂaton ﬁeld ﬂuctuations

	4 Final comments
	Acknowledgements
	References


