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Summary

New tools for the design of metamaterials with periodic microarchitectures are
presented. Initially, a two-scale material design approach is adopted. At the
structure scale, the material effective properties and their spatial distribution are
obtained through a Free Material Optimization technique. At the microstruc-
ture scale, the material microarchitecture is designed by appealing to a Topology
Optimization Problem (TOP). The TOP is based on the topological derivative and
the level set function. The new proposed tools are used to facilitate the search
of the optimal microarchitecture configuration. They consist of the following:
(i) a procedure to choose an adequate shape of the unit cell domain where the
TOP is formulated and shapes of Voronoi cells associated with Bravais lattices
are adopted and (ii) a procedure to choose an initial material distribution within
the Voronoi cell being utilized as the initial configuration for the iterative TOP.
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1 INTRODUCTION

In the early 1990s, after the seminal papers of Bendsøe and coauthors,1,2 the contribution of Ringertz,3 and the book of
Bendsøe,4 the Free Material Optimization (FMO) methodology has become a well-established technique in the mechan-
ical structural optimization community. This methodology seeks, in a given spatial domain, the optimal distribution of
material and its effective properties using the objective of minimum material resource or minimum compliance.

The most specific aspect of this structural optimization methodology is that the minimum of the objective function is
sought by assuming a free parameterization of the material elasticity tensor. Hence, it is sometimes called design by the

Symbols for elasticity tensors: C, generic effective fourth-order symmetric elasticity tensor expressed in Cartesian coordinates; CN, generic effective
elasticity tensor expressed in normal form (see Section 2.2.2 and Appendix B); Ĉ, effective elasticity tensor solution of the FMO problems expressed
in Cartesian coordinates (Section 3); ĈN , effective elasticity tensor solution of the FMO problems expressed in normal form (Section 3.3); C∗, effective
elasticity tensor being the average of ĈN in a given body sector (Section 3.3); Ch, homogenized elasticity tensor evaluated with a microcell (using a
computational homogenization technique, Section 4) expressed in Cartesian coordinates; Ch

N , tensor Ch expressed in normal form; Ch
db, homogenized

tensor constituting the database (Section 5.2) expressed in normal form; C𝜇 , microscale elasticity tensor (Section 4).
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free parameterization of material. Such as mentioned in section 3.4 in the book of Bendsøe and Sigmund,5 the formulated
optimization problem is general enough and “… encompasses the design of structural materials in a broad sense, predicting
optimal structural topologies and shapes associated with the optimum distribution of the optimized material.”

In the following years, the mathematical basis and new numerical algorithms for the FMO technique have been
developed. In fact, some formulations of FMO can be written as convex optimization problems, which satisfy the cri-
terion for guaranteeing the uniqueness of the solution, as shown by Zowe et al6 and Kočvara et al.7 Additionally,
Kočvara and coauthors have developed optimized algorithms mainly based on nonlinear semidefinite programming
procedures for solving very large FMO problems, see the works of Kočvara et al7 and Stingl et al.8 Furthermore, effi-
cient primal-dual interior point methods for large-scale problems have been proposed and studied more recently by
Weldeyesus and Stolpe.9

Intrinsically associated with the FMO methodology is the inverse problem of the material microarchitecture design.
In this case, the goal is to find a heterogeneous composite whose effective properties are similar to those required by the
FMO solution. Important contributions to reach this objective have also been proposed in the 1990s, particularly in the
works of Sigmund,10,11 who has solved the inverse material design problem using a topology optimization procedure. In
this sense, the density-based SIMP (Solid Isotropic Material with Penalization) method has proved to be a very effective
tool for solving this kind of inverse homogenization problem.

An FMO technique, jointly with the inverse homogenization problem, as a global two-scale material design method-
ology, can be utilized as a weakly coupled procedure between the involved scales. First, an FMO technique is employed
to compute the effective material properties at large scale, ie, at the structure length scale identified as the macroscale,
followed by a technique for designing the microstructure of the heterogeneous composite. Such two-scale technique and
variants were worked out by several authors and particularly utilized by Schury et al.12 Interestingly, this type of two-scale
technique does not only provide an optimal material distribution at the macroscale, but also, the requested computational
cost is accessible even for attacking 3D problems.

There is, however, an inherent difficulty associated with this two-scale methodology, which is caused by the one-way
coupling between scales. In fact, it is not possible to add well-founded mathematical constraints to the FMO formulation
to guarantee the microstructure attainability. Such as mentioned by Allaire in his book,13 from the mechanical point of
view, this issue is similar to answer the question on how to characterize the range of the effective properties obtained
from a two-phase composite by varying its microstructure. In this context, the microstructure variation is understood
as changing either the void fractions, the distributions of the constituent phases, or their elastic properties. From the
mathematical point of view, this issue corresponds to finding the G-closure of the set of effective elastic properties obtained
from composites with all possible microstructures, see also the work of Cherkaev.14 Milton and Cherkaev15 have studied
this problem and have determined that any positive definite tensor may be attained using sequential laminates under the
condition that a stiff enough material exists. However, positive definite tensor bounds guaranteeing this property with less
stringent conditions to that required by the Cherkaev and Milton analysis do not exist, for example, when the stiffness of
the composite phases have an upper finite limit. Therefore, this problem is an open issue at the present time.

More recently, there have been intents of including additional manufacture constraints to the FMO problem such as
described in the work of Schury.16 These constraints not only force a gradual spatial change of the effective material
properties, but also, they restrict the set of FMO solutions by avoiding the use of extreme materials at the cost of obtaining
suboptimal solutions.

From this perspective, additional contributions could be expected by developing new procedures that help in designing
microarchitectures with a wide spectrum of attainable effective elasticity tensors. In this paper, we emphasize this specific
issue of the problem.

On the one hand, we adopt an FMO technique at the macroscale to determine the material distribution and its effective
elastic properties. On the other hand, we employ a topology optimization technique to solve the inverse microstruc-
ture design problem. The technique adopted at the microscale is similar to the procedure explained in the works of
Amstutz et al and uses the concepts of topological derivative and level set function.17,18 These two techniques are now
well established in the literature, and therefore, no new contributions on these procedures are revealed in this paper.

Instead, the essential contribution here aims to describe two new tools that aid to explore and design a range of periodic
material microarchitectures. The principal ideas supporting these contributions are summarized as follows:

1. The first tool is addressed to define the shape of the unit cell domain where the microstructure material inverse homog-
enization problem is posed. Our numerical experience shows that adequate cell shapes increase the range of elasticity
tensors that can be attained through simple microarchitecture topologies. In this sense, it should be noted that certain
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topologies may be hidden when only conventional square or rectangular cells subjected to periodic boundary
conditions are taken.

The objective that we pursue here is to use a cell shape matching a unit cell shape of the designed periodic material.
Thus, by using the symmetry of the effective material properties, we conjecture that the stiff material of the composite
is periodically distributed by following a pattern, which can be assimilated to a Bravais lattice having the same class of
symmetry as that of the target elasticity tensor. Then, the adopted cell for the topological design problem is a Voronoi
cell of this Bravais lattice.

Although the use of polygonal cells for the material inverse design was analyzed in the past by Diaz and Bénard,19

to the best of our knowledge, the use of Voronoi cells applied to topological design has not been previously considered
in the literature.

2. The second of these tools provides a procedure to choose an adequate stiff phase distribution within the Voronoi cell.
This configuration is then utilized as the starting point for the topology optimization algorithm determining the final
cell configuration.

A brief description of this paper is as follows. The two-scale approach for the material microarchitecture design is briefly
revisited in Section 2. Then, the taxonomy of the elastic materials obtained with the structural optimization technique is
explored. This classification is utilized for the posterior development of the relevant topics in this paper.

Section 3 gives an overview of two FMO problems that are sequentially solved. The results in terms of extreme materials
are analyzed in the same Section.

In Section 4, the adopted methodology for the microstructure design is first presented. Then, Section 5 describes the
new tools aforementioned.

In the last section of this paper, we expose the conclusions. Two appendices are finally added. The first appendix
describes the FMO discrete formulation and the algorithm to solve this problem. The second appendix deals with issues
related to symmetry properties of elastic materials. Moreover, the algorithm to compute the symmetry class and the
normal form of an arbitrary elasticity tensor is briefly exposed there.

2 OVERVIEW OF THE TWO-SCALE–BASED APPROACH

In this work, the approach taken for the optimal material design of a plane elastic structure involves two length scales. The
macroscale length 𝓁 is of the same order of magnitude as that of the structure size, as shown in Figure 1. The microscale
length 𝓁𝜇 is of the same order of magnitude as that of the material microarchitecture characteristic length. We assume
that 𝓁𝜇 ≪ 𝓁.

The macroscale spatial domain is denoted by Ω. It identifies the region where the structure is analyzed and where the
optimal distribution of the graduated homogenized material is sought. The material at this scale is characterized by its
effective properties, and its optimal distribution is sought by means of an FMO technique.

The material microarchitecture design is defined as an inverse homogenization problem after the optimal elastic effec-
tive properties at the macroscale point are known. This inverse problem is solved with a topology optimization technique.
The domain Ω𝜇 denotes the cell where the material is designed. The goal is to find the material distribution within this
cell such that the homogenized elasticity tensor, Ch, matches a target effective elasticity tensor provided by the FMO
technique.

Scale of the material 
structure

Macro-structure scale

2
Phase M2

(domain      )

Phase M1
(domain      )1

External
boundary
of

FIGURE 1 Two-scale material design. Notation and entities involved in the analysis. Macroscale domain Ω and microcell Ω𝜇 [Colour
figure can be viewed at wileyonlinelibrary.com]
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Vector x, as shown in Figure 1, denotes the spatial position of a point at the macroscale. Moreover, vector y identifies
the spatial position of a point at the microscale.

Macrostress and macrostrain are denoted by 𝝈 and 𝜺, respectively. The same entities at the microscale are denoted by 𝝈𝜇
and 𝜺𝜇. The key material property in this work is the homogenized elasticity tensor Ch at every point x in Ω. This tensor
is computed through a conventional homogenization technique. The elasticity tensors of the component phases at the
microscale are identified with the symbol C𝜇.

It is convenient to remind the standard concepts of unit cell and Representative Volume Element (RVE) utilized for
computing effective elastic properties of periodic materials. A unit cell in 2D problems is the smallest area representing
the overall behavior of the heterogeneous material, which, with all possible translations along the primitive vectors, fills
the full plane without overlapping. Unit cells do not have arbitrary shapes, but they should be adapted in accordance with
the periodic material microstructure. Then, conventional periodic boundary conditions are a good choice for computing
the homogenized properties utilizing these cells.

Arbitrary cell shapes, not matching unit cell shapes, only represent the overall behavior of the material if they satisfy
the condition of being RVEs. This situation occurs, even forcing periodic boundary conditions. In this sense, for a given
microstructure, the RVE size should be much larger than the unit cell size; its domain should comprise several unit cells.

An additional important point to be also reminded here refers to Voronoi cells. Periodically structured materials such as
crystals with their atomic arrangement represented through Bravais lattices have one particular unit cell, whose geometry
preserves the symmetry of the underlying lattice. This unit cell is identified as the Voronoi cell of the Bravais lattice.

2.1 Sequence of optimization problems
The two-scale material design procedure is performed in three successive stages.

1. Initially, the FMO problem discussed in Section 3 is solved in the spatial region Ω. This domain is chosen with a
predefined geometry. The problem solution provides a graded distribution of effective properties given by the effective
elasticity tensor Ĉ ∈ S+ in Ω, where S+ is the symmetric positive definite fourth-order tensor set. Then, considering
that tr(Ĉ) in the FMO formulation represents the pointwise material resource, the subdomains of Ω satisfying the
condition

tr(Ĉ) < 𝜖E0 (1)

are removed, and the original domain results in a smaller domain Ωred. The parameter 𝜖 is a small value (𝜖 ≪ 1),
empirically adopted. The parameter E0 is a reference Young's modulus, typically the modulus of the stiff phase of the
designed composite.
Therefore, after the graded material has been defined in the complete domain through the FMO methodology, the
heuristic condition (1) removes the subdomains, where the demanded material resource is low. A similar result can
also be obtained using a more formal mathematical technique, for example that based on the topology optimization
algorithm described in the work of Giusti et al.20 Note that the topologies of Ωred and Ω may be different.

2. A second FMO problem is solved in the domain Ωred by imposing the additional constraint

(Ĉ − 𝛿1) ∈ S
+. (2)

The scalar 𝛿 > 0 is a small parameter ensuring that all the elasticity tensor eigenvalues are non-null. This constraint
has been proposed by Schury16 as a manufacture restriction.

Even when constraint (2) generates suboptimal solutions, it facilitates the microstructure design because it fixes
lower bounds to the material properties. The effects of this constraint on the material design process are additionally
discussed in Section 3.2.

The solution of the second FMO problem provides the graded distribution of elasticity tensors, Ĉ, in Ωred. Then, a
target elasticity tensor, C∗, representative of Ĉ in a given sector of Ωred is defined. The tensor C∗ is utilized to design the
material microstructure in that sector. Section 3.3 describes the criteria defining these sectors and how C∗ is computed.

3. Finally, in a third stage, the microstructure is designed using a topology optimization technique explained in Section 4.
The design of the microstructure is performed with C∗ as the target tensor.

The new tools for material design proposed in this paper are utilized in the third stage.
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2.2 Characterization of linear elastic materials for optimal structures
Two remarkable features of linear elastic materials arising as the FMO problem solution are their symmetry and stability
properties. In this section, we revisit both concepts because they are utilized to predict the shape and orientation of the
cell Ω𝜇.

2.2.1 Bimode and unimode unstable materials
Bimode and unimode materials are special subclasses of materials that frequently appear as solutions of optimal struc-
tural problems with design criterion related to minimal compliance or minimal material volume. In particular, bimode
materials always arise as the optimal FMO solutions of structures subjected to a unique load system, see the work of
Bendsøe et al.1 However, even considering problems with multiple independent load systems,2 it is possible that optimal
solutions would require bimode or unimode materials in some restricted regions of the structure. Both kinds of materials
are particularly relevant in this work and analyzed in this Section.

Bimode materials are unstable materials having two easy (compliant) modes of deformation in a 2D space and only
one noneasy (hard) mode of deformation. Alternatively, unimode materials have one easy (compliant) mode of deforma-
tion and two non-easy (hard) modes of deformation. The elasticity tensors of bimode and unimode materials have two
and one null eigenvalues, respectively. Hence, the names bimode or unimode are given to these classes of materials.

Milton and Cherkaev15 have coined these names in the context of linear elasticity, see also the work of Milton,21 where
additional properties of these materials are analyzed.

Bimode and unimode materials are special classes of linear anisotropic elastic solids. They are characterized by elasticity
tensors*

C =
nm∑
i=1

Si ⊗ Si, (3)

where Si are symmetric second-order tensors, nm = 1 for bimode and nm = 2 for unimode materials, respectively. For
unimode materials, S1 and S2 are orthogonal tensors. As usual, the symbol ⊗ denotes the tensorial product. In the plane
(x1, x2), the eigenvector associated with the non-null eigenvalue in bimode materials is S1∕||S1||.

Considering (3), for any strain 𝜺, stress 𝝈 results in

𝝈 = C ∶ 𝜺 = (S1 ∶ 𝜺)S1 = −𝑝S1 , (4)

where
𝑝 = −(S1 ∶ 𝜺) (5)

is a pseudopressure scalar term. In (4), the trace of the tensorial product is denoted by the symbol (∶).
In accordance with (4), bimode materials can only support stresses proportional to S1, with the proportionality factor

given by pseudopressures. Therefore, this material collapses when subjected to a different stress state.

2.2.2 Material symmetry
Symmetry classes of elastic materials are well established in the literature; see, for example, the work of Ting.22 In
Appendix B, we define the four symmetry classes for plane elasticity tensors and summarize the algorithm to compute
them. The same algorithm also computes the rotation angle transforming an arbitrary elasticity tensor C, expressed in
the Cartesian coordinate system, to its normal form CN.†

Figure 2 sketches the diagram of set inclusions for the four symmetry classes. Elements of these sets are elasticity
tensors. We denote O(2) for isotropic, D4 for tetragonal, D2 for orthotropic, and Z2 for anisotropic symmetries, respec-
tively. From higher to lower symmetry classes, they are: O(2) ⊂ D4 ⊂ D2 ⊂ Z2. In the figure, the number of coefficients
characterizing a generic elasticity tensor of the corresponding symmetry class is depicted in parenthesis.

Bimode and unimode material sets are also included in the diagram, as well as the relationship between the stability
properties of these materials and the symmetry class to which they could belong to. It is remarked that bimode or unimode

*Fourth-order tensors are represented by matrices R3×3 using the conventional Kelvin's notation. Consistent with this notation, symmetric second-order
tensors are represented by 𝜺 = [𝜀11, 𝜀22,

√
2𝜀12]T for strains and 𝝈 = [𝜎11, 𝜎22,

√
2𝜎12]T for stresses. From now on, we will indistinctly identify a

fourth-order tensor by its matrix representation.
†Elasticity tensors in normal axis are denoted with subindex N. The directions of the normal axes for a generic elasticity tensor C are computed with
the algorithm of Auffray et al described in Appendix B.



6 PODESTÁ ET AL.

D

O

Z2

D2
4

2 (2)

(4)

(5)

(6)

Unimode

Bimode

 1  -1   0
-1   1   0
  0   0   0

 C             C  C        0
  C  C           C           0
     0              0         0

1 1 2

1 2 2

 1   1   0
 1   1   0
  0   0   0

 1  -1   0
-1   1   0
  0   0   2

C0

 C0

 C0

FIGURE 2 Diagram of symmetry class sets for plane elasticity tensors. Symmetry classes are denoted O(2) for isotropic, D4 for tetragonal,
D2 for orthotropic, and Z2 for fully anisotropic materials. The number of elastic coefficients defining the elasticity tensors in each class is
shown in parentheses. Bimode and unimode material sets are also depicted. C0, C1, and C2 are material parameters

materials with isotropic symmetry, O(2) and bimode materials with tetragonal symmetry, D4 have elasticity tensors CN
being proportional to those displayed in the Figure 2. They are characterized by only one parameter C0. Optimal structure
solutions demanding bimode materials have been reported by Bendsøe et al1; see also the work of Pedersen.23

Orthotropic bimode materials have elasticity tensors with the normal form also shown in Figure 2. They are character-
ized by only two parameters. It is important to remark that a bimode isotropic material has an in-plane Poisson ratio of
𝜈 = (CN)1122∕(CN)1111 = 1. On the other hand, a tetragonal bimode material has a ratio of (CN)1122∕(CN)1111 = −1.

Important additional observations about this topic are as follows.

1. Bimode materials cannot be fully anisotropic (Z2).
2. Bimode and unimode materials are characterized with fewer parameters than those required by generic tensors in the

corresponding symmetry class.

3 FREE MATERIAL OPTIMIZATION AT THE MACROSCALE

Free Material Optimization is a useful technique for obtaining the optimal distribution of the material and effective elastic
properties in a given spatial domain such that this material configuration satisfies a determined structural requirement.
In the present context, the optimization criterion refers to minimum material resource, and the structural requirement
refers to the attainment of a limit compliance for a given external force.

3.1 Problem setting
Let us consider the equilibrium problem of an elastic body in Ω subjected to an external load f. The space of displacement
fields u in equilibrium with the external forces, eq, is

eq ∶=
{

u
|||| ∫Ω

∇sv ∶ Ĉ ∶ ∇su dV − ⟨ f , v⟩ = 0, ∀v ∈ 
}
, (6)

where the equilibrium condition is expressed through the conventional virtual work equation, with  being the space of
admissible virtual displacements and Ĉ being the elasticity tensor.

In the present FMO formulation, the optimization problem consists in minimizing the structural material resource

min
Ĉ∈S+;u∈eq ∫Ω

tr(Ĉ) dV (7a)

such that ⟨ f ,u⟩ ≤ 𝑓u , (7b)

𝜌 ≤ tr(Ĉ) ≤ 𝜌̄ , (7c)

where the term tr(Ĉ) represents the pointwise material resource and the design variables are the displacement field u and
the elasticity tensor Ĉ. Moreover, S+ is the space of symmetric positive semidefinite fourth-order tensors, and 𝜌 and 𝜌̄ are
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the lower and upper bounds imposed to the material resource, respectively. The lower bound 𝜌 is a solvability condition
imposed to avoid singularities in the structural equilibrium solution. In addition, the upper bound 𝜌̄ is a manufacturability
condition that is chosen by considering the higher eigenvalue of the matrix representing the isotropic elasticity tensor of
the stiff phase. This eigenvalue is proportional to the Young's modulus, E0, of the composite stiff phase. Then, we take

𝜌̄ = 𝛽E0 , (8)

with 𝛽 < 3 being an adimensional factor related to the volume fraction of the stiff phase. An empirical rule in material
design indicates that the lower the parameter 𝛽, the easier it is to find extreme materials with complex mechanism-like
microstructures. In (7b), the upper bound for the structural compliance, 𝑓u, is taken as the compliance computed with the
structure constituted by a homogeneously distributed elastic material in Ω, with an elasticity tensor given by (𝛽∕3)E01,
where 1 is the identity fourth-order tensor.

The optimal solution of problem (7) gives: (i) the spatial distribution of Ĉ; (ii) the symmetry class to which the material
belongs to; and (iii) the magnitude of the elastic coefficients.

In structural optimization problems involving several independent load systems, the constraint (7b) is replaced by

nload∑
k=1

wk⟨ f k,uk⟩ ≤ 𝑓u, (9)

where nload is the number of load cases. The k-th load system is defined by the external force fk, and uk is the associated
displacement of the equilibrium solution. wk (with wk ≥ 0 and

∑nload
k=1 wk = 1) is a factor weighting each load system. In

this case, 𝑓u is an upper limit for the weighted average of the compliance.
In Appendix A, we summarize the discretization technique utilized to solve the present FMO formulation and give

some details about the algorithm utilized to solve it.

3.2 Discussion of results obtained with the FMO technique
Discussions of the results obtained with the FMO technique are mainly addressed to analyze the stability, symmetry
classes, and additional features of the optimal material properties. This analysis provides basic guidelines for taking
adequate decisions in the posterior stage of the microstructure inverse design.

As an empirical rule in the present discussion, we keep in mind that materials demanding high effective shear stiffness
jointly with effective in-plane Poisson ratio tending to -1 require the design of complex microstructures.

3.2.1 First FMO problem
Four conventional structural optimization tests reported in the literature are presented. They are sketched in the first
column of Figure 3 and are: (i) L-shaped plate; (ii) cantilever beam; (iii) plate subjected to bending loads, all of them
subjected to only 1 load system, f1. Test (iv) is a plate subjected to three independent load systems, f1, f2, and f3.

The second to fourth columns of Figure 3, as well as Figure 4, display the results of the four tests obtained with the FMO
methodology, and 𝛽 = 0.1 in Equation (8). These figures show the color maps of the optimal distribution of the following
fields.

• Trace of the normalized elasticity tensors, tr(Ĉ∕E0), ranging from 0.1 to 6× 10−5. The material in regions with low
values of this field can be removed.

• Material symmetry classes. In the tests subjected to only one load system ((i) to (iii)), the optimal materials deter-
mined with the FMO problem are bimode materials with symmetries D4 or D2. In general, materials with isotropic
symmetry O(2) are not observed.
For the plate subjected to three independent load systems, the optimal solution gives materials with three non-null
eigenvalues; compare Figures 3 and 4. In this case, it is also interesting to observe large regions displaying unimode
materials with full anisotropy (Z2) as well as extended regions with bimode materials.

• Ratio (ĈN )1122∕(ĈN)1111. The material symmetry classes of optimum solutions computed in tests (i) to (iii) display rather
extended regions with tetragonal (D4) symmetry, meaning that (ĈN)1111 = (ĈN)2222. Therefore, in accordance with
the comments remarked in Section 2.2.2, the bimode materials in these regions should necessarily have an in-plane
Poisson ratio of value (ĈN)1122∕(ĈN)1111 = −1.
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f1
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Color bar
scales 5-e6 1-e1 D4 1-e9- 9e-10+e0D2 Z2

f1
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Test ii

Test i

f1
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FIGURE 3 Free material optimization results. First column: test description; Second column: elastic tensor trace; Third column: symmetry
classes; Fourth column: ratio (ĈN )1122∕(ĈN )1111. The condition (ĈN )1122∕(ĈN )1111 < 0 defines the regions where the optimal solution requires
auxetic materials (zones in blue) [Colour figure can be viewed at wileyonlinelibrary.com]

0e+0 1.9e-2 0e+0 2-e7.3 5-e9.4 1-e1

FIGURE 4 Eigenvalues of the elastic tensors for the plate with three independent load systems. Left to right: from smallest to largest
eigenvalues [Colour figure can be viewed at wileyonlinelibrary.com]

A further analysis of the ratio (ĈN)1122∕(ĈN)1111 in tests ((i) to (iii)) shows that the optimal solutions in a large part of the
structures demand auxetic materials. Roughly speaking, auxetic materials with ratios close to (ĈN)1122∕(ĈN)1111 ≈ −1
require the design of more complex microstructures with mechanism-like topologies.

• Smallest non-null eigenvalues of Ĉ∕E0. Solutions corresponding to only one load system (tests (i) to (iii)) display
two eigenvalues equal to zero in the complete structural domain, indicating that a bimodal material is the optimal
solution such as reported in the work of Bendsøe et al.1 Then, the map of the only one non-null eigenvalue is identical
to the map of tr(Ĉ∕E0). We recall from Equation (3) that bimode material properties have symmetry axes aligned with
the principal stress and strain directions.
In Figure 4, we show the distribution of the three eigenvalues of the elasticity tensors obtained as result of the test (iv).
Zones with three non-null eigenvalues can be observed. However, there still exist regions with one and two close to
zero eigenvalues.

3.2.2 Second FMO problem
Next, we analyze the results obtained with the second FMO problem with the addition of constraint (2) for the L-plate
test. This problem is solved in the reduced domain Ωred that results after adopting a tolerance 𝜖 = 0.015 in expression (1).
The reduced domain Ωred is depicted in Figure 5A.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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1.2e-2 1e-1 O(2) D4 D2 -5.2e-1 6.9e-10e+0

f1

(A) (B) (C) (D)

red

FIGURE 5 L-plate test solved with the second free material optimization problem. A, Reduced domain Ωred after adopting 𝛿 = E0∕25;
B, Trace of the elasticity tensor (tr(Ĉ∕E0)); C, Material symmetry classes; D, Ratio (ĈN )1122∕(ĈN )1111 [Colour figure can be viewed at
wileyonlinelibrary.com]

We start the analysis by studying first the sensitivity of results with respect to the parameters 𝛿 and 𝛽 introduced in
expressions (2) and (8), respectively. Let us consider the role played by parameter 𝛿.

• On the one hand, 𝛿 is utilized to suppress solutions yielding extreme materials. This effect is notoriously shown in the
FMO solutions for problems with only one load system. In these cases, we have already seen that the resulting elasticity
tensors of the first FMO problem corresponds to bimode materials with symmetries D2 or D4. Then, the addition of
constraint (2) fixes a lower bound for the shear modulus since (ĈN)1212 ≥ 𝛿∕2. Moreover, it fixes an upper bound for
the ratio |(ĈN)1122∕(ĈN)1111|. In fact, being (ĈN)1111 ≥ (ĈN)2222 ≥ 𝛿, it results to

||||| (ĈN)1122

(ĈN)1111

||||| ≤
√(

(ĈN)2222

(ĈN)1111
− 𝛿

(ĈN)1111

)(
1 − 𝛿

(ĈN)1111

)
≤ 1. (10)

• On the other hand, by comparing with the original FMO problem, the constraint (2) produces suboptimal solutions.
The larger the value of 𝛿, the higher the optimal cost function value is.

Both effects are confirmed by analyzing the results shown in Table 1. This table displays the optimal cost functions
obtained with different values of 𝛿. In the same table, we also show the corresponding lower and upper values of
(ĈN)1122∕(ĈN)1111 in Ωred. We can see that, as 𝛿 gets larger, the optimal cost function increases and the extremal values of
the field |(ĈN)1122∕(ĈN)1111| are closer to zero.

In addition, to understand the connection between the parameters 𝛽 and 𝛿, it should be kept in mind that designing
complex materials could be facilitated by taking smaller volume fractions of the stiff phase or, similarly, smaller values
of 𝛽, see the discussion about this issue in the work of Sigmund.24 Thus, parameters 𝛿 and 𝛽 have to be adjusted after an
adequate trade-off between optimality and manufacturability requirements.

Finally, the parameter 𝜖, defining the size of the domain Ωred, is related to 𝛿 in the sense that it should be taken as
𝜖 < 𝛿∕E0. However, this parameter plays a less important role in the second FMO problem.

3.2.3 Result obtained with the second FMO problem
Figure 5B displays the field tr(Ĉ∕E0) on the domain Ωred of the L-plate problem, only one load system, obtained with
𝛿 = E0∕25 and 𝛽 = 0.1.

TABLE 1 L-plate test solved with the second FMO problem,
𝛽 = 0.1, and different values of parameter 𝛿

𝜹∕E0 min∫ 𝛀red tr(Ĉ∕E𝟎)dV min
(

(ĈN )𝟏𝟏𝟐𝟐
(ĈN )𝟏𝟏𝟏𝟏

)
max

(
(ĈN )𝟏𝟏𝟐𝟐
(ĈN )𝟏𝟏𝟏𝟏

)
0 1.89e2 -1.00 1.00
0.020 2.27e2 -0.76 0.95
0.025 2.37e2 -0.71 0.93
0.033 2.52e2 -0.64 0.92
0.040 2.62e2 -0.52 0.65

http://wileyonlinelibrary.com
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FIGURE 6 Domain partition criterion for the material microstructure design, Ntr = Npoi = 13, Nsym = 3, and ns = 91. Only a small number
of sectors Ωred

i (with i = 1, 6, 13, 24, 70, 84, 85, 91), defined by similar effective elastic properties, are identified in colors [Colour figure can be
viewed at wileyonlinelibrary.com]

Figures 5C and 5D show the color maps of the optimum material symmetry classes and their ratio (ĈN)1122∕(ĈN)1111.
The distribution as well as the maximum and minimum values are slightly different from those obtained with the original
FMO problem on Ω depicted in Figure 3. Notably, in this case, the range of values (ĈN)1122∕(ĈN)1111 are limited to −0.52 <
(ĈN)1122∕(ĈN)1111 < 0.65, which is a much narrow interval to that displayed by the original FMO solution ranging between
−1 ≤ (ĈN)1122∕(ĈN)1111 ≤ 1, see Figure 3. Moreover, in accordance with the constraint (2), the smallest eigenvalue of the
elasticity tensor is 𝛿.

3.3 Domain partition criterion for material design
Once the second FMO problem is solved, the structure domainΩred is partitioned into disjoint sectors with similar effective
material properties. The criterion to define this partition is discussed next.

Given the fields tr(Ĉ∕E0) and (ĈN)1122∕(ĈN)1111, we take the following intervals defined by their extreme values:

1. tr ∶= [min(tr(Ĉ∕E0));max(tr(Ĉ∕E0))]

2. poi ∶=
[
min

(
(ĈN )1122

(ĈN )1111)

)
;max

(
(ĈN )1122

(ĈN )1111)

)]
and divide them in Ntr and Npoi proportional subintervals, respectively. In addition, we take the Nsym different symmetry
classes of the elasticity tensors found in the FMO solution. With these subintervals and classes of symmetries, we can
define Ntr ×Npoi ×Nsym sets of elastic properties sharing similar values. Then, it can be defined a natural map relating the
Ntr ×Npoi ×Nsym sets of elastic properties to sectors in Ωred, whose points have effective elastic properties lying within the
range of the associated sets, with similar elastic properties tr(Ĉ∕E0), (ĈN)1122∕(ĈN)1111 and symmetry class. Then, these
sectors are denoted Ωred

i with i = 1, … ,ns and ns is the number of sectors satisfying ns ≤ Ntr × Npoi × Nsym.
For the L-plate test and taking Ntr = Npoi = 13 and Nsym = 3, it results in ns = 91 sectors. Some of these sectors are

identified in Figure 6.
Finally, for every sector, a representative elasticity tensor C∗

i can be computed as the average

C∗
i = 1|||Ωred

i
|||∫Ωred

i

ĈN dV ; ∀i = 1, … ,ns, (11)

where |||Ωred
i
||| is the area of the corresponding ith sector.

The tensor‡ C ∗ is taken as the target tensor to design the microstructure using the algorithm described in the following
section.

4 MICROARCHITECTURE DESIGN

Let us consider a two-phase composite constituted by a periodic distribution of a stiff phase M1 and a soft phase M2.
Figure 7 represents the microcell of the periodic composite. We seek the distribution of phases M1 and M2 within the

‡In the following development, subindex i identifying the sector of Ωred
i is dropped out of the notation.
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Microcell

M1

M2

2
M2

1

2

FIGURE 7 Original microcell problem with a material distribution perturbation consisting of introducing a ball Ω𝜉 of soft phase within
the stiff phase. The radius of the infinitesimal ball is 𝜉

microcell such that the homogenized elasticity tensor, Ch
N ,§ of this composite material is identical to the target elasticity

tensor C ∗ derived from the treatment given to the FMO problem solution in the previous section.
This goal is reached by using an inverse homogenization approach that is formulated as a Topology Optimization

Problem (TOP). The TOP is solved in a predefined microdomain Ω𝜇 with the algorithm proposed by Amstutz and Andrä17

and Amstutz et al,18 see also the works of Lopes et al25 and Méndez et al.26

The TOP uses a computational technique for evaluating the homogenized elasticity tensor Ch
N , the topological derivative

concept of the homogenized elasticity tensor, and a function describing the distribution of phases in the microcell. The
zero-level set of this function represents the interfaces within the cell.

In this work, we only remark some aspects of the TOP, which have been particularly adapted for solving the
present inverse homogenization problem. They are the TOP cost function, the imposed constraints, and the augmented
Lagrangian technique. Other more conventional aspects of the topology optimization algorithm such as the topological
derivative expression are not addressed here because they have been extensively treated in the aforementioned literature.

4.1 Inverse material design as a TOP
Let us consider a microcell, Ω𝜇, of the periodic composite constituted by isotropic elastic phases M1 and M2 occupying
the domains Ω1

𝜇 and Ω2
𝜇, respectively, see Figure 7. The corresponding elastic tensors of both phases are C2

𝜇 = 𝛾C1
𝜇 with 𝛾

being a contrast factor. The characteristic and contrast functions in Ω𝜇 are defined by

𝜒(y) =

{
0, ∀y ∈ Ω2

𝜇

1, ∀y ∈ Ω1
𝜇

; 𝜌(y) =

{
𝛾, if ∶ 𝜒 = 0
1, if ∶ 𝜒 = 1,

(12)

respectively. Evidently, the homogenized elasticity tensor Ch of the composite depends on the way in which phases M1
and M2 are distributed in Ω𝜇. This dependence is made explicit by introducing the notation Ch(𝜒).

Next, we redefine the microarchitecture inverse design problem as a topology optimization problem expressed as
follows. Given the target effective elasticity tensor C ∗, find the characteristic function 𝜒 satisfying

min
𝜒 ∫Ω𝜇

𝜒 dΩ

such that ‖‖‖Ch
N(𝜒) − C∗‖‖‖ = 0 .

(13)

The cost function represents the stiff phase volume fraction. In particular, considering that the soft phase is void, problem
(13) identifies a minimum weight problem.

4.2 Algorithm for solving the TOP
The TOP (13) can be solved by introducing a level set function 𝜓 ∈ C 0(Ω𝜇) defined by

𝜓(y) =
⎧⎪⎨⎪⎩
< 0, ∀y ∈ Ω2

𝜇

> 0, ∀y ∈ Ω1
𝜇

0, in the interfaces
(14)

§The microstructure design is performed on the normal basis.
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jointly with an augmented Lagrangian technique. In this case, the problem is rewritten as follows:

max
𝜆

min
𝜓

 (𝜓, 𝜆), (15)

with
 (𝜓, 𝜆) = ∫Ω𝜇

𝜒(𝜓) dΩ + 𝜆
(‖‖‖Ch

N(𝜓) − C∗‖‖‖) + 𝛼

2

(‖‖‖Ch
N(𝜓) − C∗‖‖‖)2

, (16)

where 𝜆 is the constraint Lagrange multiplier and 𝛼 is a penalty parameter.
The algorithm for solving problem (15) utilizes two nested loops. In an internal loop, the objective function  is min-

imized by holding fixed 𝜆 and 𝛼. This loop, with index denoted k, consists of a level set function–based iteration. While
an external loop, with index denoted l, modifies iteratively 𝜆.

The minimum of  in the internal loop is searched with a descent direction algorithm. For problem (15), the topological
derivative is given by

D𝜓 (𝜓, 𝜆) = 1 −
⎛⎜⎜⎝
(
𝜆 − 𝛼 ‖‖‖Ch

N − C∗‖‖‖)
(

Ch
N − C∗) ∶ D𝜓Ch‖‖‖Ch

N − C∗‖‖‖
⎞⎟⎟⎠ , (17)

where D𝜓Ch is the topological derivative of the homogenized elasticity tensor, see the work of Amstutz et al18 for an
additional description of this term. Then, we define the function

g(y) =

{
−(D𝜓 ), if ∶ 𝜓 < 0
+(D𝜓 ), if ∶ 𝜓 > 0.

(18)

The updating formula for 𝜓 , at the (k + 1)-th internal loop, is defined by

𝜓k+1 = 𝜓k + 𝜏g, (19)

with the scaling factor 𝜏 being determined by means of a line search technique.
In the (l + 1)-th external loop, the Lagrange multiplier 𝜆 is updated using the Uzawa algorithm

𝜆l+1 = max
(

0, 𝜆l + 𝛼 ‖‖‖Ch
N − C∗‖‖‖) . (20)

The penalty parameter 𝛼 is held fixed during the full process.
A local optimality criterion of problem (15), see the work of Amstutz,27 is given by the condition

D𝜓 > 0 ; ∀y ∈ Ω𝜇, (21)

which can be implemented by verifying the equality

arccos

[ ∫Ω𝜇
g𝜓 dV||g||L2 ||𝜓||L2

]
= 0. (22)

5 METHODOLOGY FOR SEARCHING THE OPTIMAL MICROSTRUCTURE

Leaving aside the issue related to existence of solutions,¶ finding one solution of problem (15) may be difficult, especially
when extreme materials are designed. The search of a solution with the algorithm described in Section 4.2 is facilitated
by following two procedures that are summarized in Sections 5.1 and 5.2.

5.1 Selection of the microcell shape Ω𝜇

The shape of the domain Ω𝜇 is an implicit variable utilized in the inverse homogenization problem (13) that should be
defined in advance. Considering that problem (13) searches for an optimal periodic microstructure, this variable plays a
major role to find an adequate material microarchitecture adjusting the target elasticity.

A good decision is to choose Ω𝜇 coinciding with the shape of a microstructure unit cell. However, in view that the
periodic microstructure is unknown at the moment of solving the inverse homogenization problem, we conjecture that

¶As aforementioned, this issue can be mitigated through the handling of parameter 𝛿 in Equation (2).
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FIGURE 8 Bravais lattices and Voronoi cells (Wigner-Seitz cells) for the material symmetry classes in plane problems. There are only
five Bravais lattices in two-dimensions; see the work of Kittel29 [Colour figure can be viewed at wileyonlinelibrary.com]

the periodic microcell Ω𝜇 coincides with the shape of the Voronoi cell of a Bravais lattice related to a crystal, which has
the elasticity tensor with the same symmetry as that displayed by the target tensor C ∗.

In Figure 8, we show the only five different Bravais lattices in 2D and their associated symmetry classes. A Bravais lattice
is fully described with the primitive vectors a1 and a2. Therefore, Bravais lattices could be described with two parameters,
the ratio 𝜔 = ||a2||∕||a1|| and the angle ς = arccos[(a2 · a1)∕(||a2||||a1||)]. Additional information about this topic can be
found in the work of Ashcroft and Mermin.28

Moreover, in the same figure, it can be observed that several unit cells are associated with a given Bravais lattice; see,
for instance, the unit cells of the lattice with D4 symmetry.

From all possible unit cells, our interest lies in the Voronoi cells (Weigner-Seitz cells) also depicted in the figure. Voronoi
cell shapes preserve the symmetry of the underlying lattice. Observing the lattice with D4 symmetry, horizontal and verti-
cal directions are axes of symmetry for the lattice; however, they are not symmetry axes for all the unit cells. Instead, the
Voronoi cell is symmetric respect to both axes as well as to rotations of ±90 degrees.

What is more important for the topology optimization problem is that distributing the material within a Voronoi cell
with certain spatial symmetry prescribed according to each type of lattice, it can be guaranteed that the symmetry of the
underlying lattice is preserved for the homogenized elasticity tensor. Thus, following this criterion, we force the material
distribution defined by the level set function in the iterative algorithm of Section 4.2 to satisfy the rotational or reflection
symmetries displayed in Figure 9.

Figure 10A displays the plane 𝜔, ς in R2, where each pair 𝜔, ς defines a Bravais lattice. In gray, we show a bounded
space of points with coordinates (𝜔, ς) defining the full set of all possible Bravais lattices. This reduced space is found by
applying symmetry conditions to Bravais lattices. Notice, for example, that the lattice represented in Figure 10B by the
point denoted by W', with coordinates (0.967, 75 degrees), is the same lattice as that represented by the point denoted by
W with coordinates (0.5, 30 degrees).

O(2) D4 D2 Z2

60
deg

90
deg

180deg 081 ged

D2

180 ged

(a) (b)

Ω μ

Phase M1

Phase M2

FIGURE 9 Voronoi cell of a 2-phase composite material. Planes and angles of symmetry utilized in the topology optimization algorithm
for material distribution. The central symbol indicates the rotation angle preserving the symmetry. Reflection planes are symbolized with
double segments [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 Space of parameters 𝜔 and ς and microcell shapes. A, Bounded space of parameters 𝜔 and ς identifying the complete set of
Bravais lattices; B, a Bravais lattice can be represented by two different points, W' and W, in the space 𝜔, ς; C, Voronoi cells and symmetry
classes; D and E, Material distribution of Patterns A and B for determining the map Ch

db(𝜔, ς, 𝑓 ,P) [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 10C shows, in the same bounded space, the Voronoi cells associated with different points and the corresponding
symmetry classes of these lattices. Thus, in the case that the target elasticity tensor C ∗ has symmetry D2 or D4, as it
generally happens in FMO problem solutions with only one load system, it should be sufficient to restrict the search
of the Ω𝜇 shape to some of the Voronoi cells represented by the set of parameter 𝜔, ς lying along the boundary of the
gray region.

An additional criterion to determine which point (𝜔, ς) of this set is the most convenient one for choosing the Voronoi
cell used in the TOP is described in the following section.

5.2 Additional criteria to choose the microcell shape and the initial material
configuration in 𝛀𝝁

The criteria for choosing a particular Voronoi cell of the space (𝜔, ς) as well as an adequate distribution of material within
this cell, which can be taken as the initial configuration for the iterative algorithm solving the problem (13), are summarily
explained here. A full description of this procedure is given in the work of Méndez et al.30

Initially, an off-line computation of several homogenized elasticity tensors is performed. These results are used to build
a database of homogenized elastic tensors.

The homogenized elastic tensors stored in the data base are the results of several microcell computations with varying
shapes and material configurations such as described in the following items:

• Voronoi cells with lattice parameters 𝜔 and ς sweeping the entire range of values depicted in gray in Figure 10A;
• Two material configurations denoted Patterns A and B in Figures 10D and 10E. The material configuration of Pat-

tern A corresponds to equal thickness bars of solid material placed on the boundaries of the cells. The Pattern B also
corresponds to equal thickness bars placed on the boundaries of the cells but with a re-entrant configuration.

• Several volume fractions f of solid material. This parameter f determines the bar thickness in each case.

http://wileyonlinelibrary.com
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FIGURE 11 Maps of the homogenized elastic properties of Voronoi cells parameterized with 𝜔 and ς; the stiff material is distributed
according to Patterns A and B and the volume fraction of the stiff phase is f = 0.05 [Colour figure can be viewed at wileyonlinelibrary.com]

Therefore, all computed homogenized elasticity tensors in the database can be characterized by four parameters: 𝜔 and
ς, defining the Voronoi cell shape, and the solid volume fraction f and P, defining the Pattern A or B. We identify each
database entry with the notation Ch

db(𝜔, ς, 𝑓 ,P).
We recall that auxetic materials can be built with re-entrant configurations of bars, see the work of Kolken and

Zadpoor.31 A profuse literature about honeycomb re-entrant auxetic materials exists; see, for example, the work of
Fu et al32 and the references cited therein. The fact of capturing materials with negative ratios (Ch

db)1122∕(Ch
db)1111 is the

reason why we include Pattern B in the database.
The database is built with a bar material having a normalized Young's modulus# E = 1 and Poisson ratio 𝜈 = 0.3. Several

values of f are used. We take approximately 6e3 points to sweep the reduced domain in the plane (𝜔, ς). Therefore, the
database stores more than 1e5 homogenized elasticity tensors.

Partial results of this database corresponding to the Patterns A and B and f = 0.05 are depicted in Figure 11.
These colored maps show in column: (i) the maximum eigenvalue of the homogenized elasticity tensors; (ii) the ratios
(Ch

db)1122∕(Ch
db)1111; and (iii) the normalized shear stiffness (Ch

db)1212∕(Ch
db)1111. As expected, the ratio (Ch

db)1122∕(Ch
db)1111 of

Pattern B shows a large region of parameters 𝜔, ς defining auxetic microarchitectures. The maximum eigenvalue gives
an idea of the maximum stiffness displayed by the respective configuration. Moreover, note the connection between the
ratio (Ch

db)1122∕(Ch
db)1111 and the shear stiffness for different configurations.

With this database, the most adequate microcell shape and material distribution are adopted by using the criterion

𝜁 = arg

{
min
Ch

db

‖‖‖Ch
db(𝜁 ) − C∗‖‖‖

}
, where 𝜁 ∶= {𝜔, ς, 𝑓 ,P}, (23)

which defines the instance of the database that is closer to the target elasticity tensor. The search of the minimum in (23)
is restricted to the set of parameters (𝜔, ς) whose lattices have the same symmetry as C ∗.

# For all configurations displayed in this study, where the soft phase is void, the homogenized elasticity tensor is proportional to Young's modulus of
the stiff phase.

http://wileyonlinelibrary.com
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5.3 Results
5.3.1 L-panel with one load system
Figure 12 shows the microstructures computed with the explained design methodology. The results correspond to nine
sectors of the L-panel denoted by 1, 13, 24, 70, 72, 80, 84, 85, and 91, respectively. The unit cells computed for these sectors
are depicted such that the horizontal direction coincides with one of the homogenized tensor normal bases. In the same
figure, an assembly of several cells is also shown but rotated to the global Cartesian directions. The angle −𝜃 transforms
the normal basis direction to the global Cartesian one. Therefore, 𝜃 transforms Ĉ into ĈN , recalling that ĈN is used to
compute Equation (11). This angle 𝜃 is determined for every point of the L-panel.

Figure 13 compares the microcells gathered from the database and those obtained as solution of the TOP. The micro-
cells depicted in the figure correspond to the sectors 1, 13, 24, 80, and 85. Microcells gathered from the database, using the
procedure (23), are adopted as the initial configuration for the iterative topology optimization algorithm. Their homoge-
nized elasticity tensor are denoted by Ch

db. Alternatively, the homogenized elasticity tensor computed with the microcells
being the solution of the TOP are denoted by Ch

N .
Note that the microarchitecture configurations remain rather simple and almost similar to the initial configurations

gathered from the database. In addition, observe that the microarchitectures in all sectors are honeycomb-like structures,
but the cell shapes change notably in different sectors.

Even when a given sector of the L-panel has similar elastic properties, in accordance with the criterion adopted to define
them, explained in the previous section, sectors have nonuniform distribution of the normal basis directions. Therefore,
the designed representative microcell for one sector has to be rotated to the physical directions with the angle −𝜃 at every
point of the structure. We evidence this result in Figure 14. There, we depict the designed microstructure for this sector
in the physical directions for an identical sector that has been designed with a unique microcell.

84

0.43deg

54.43deg

1

13

0. deg

70

87.99deg

91

54.97deg

80

89.29deg

85

-89.34deg

72

26.36deg

-35deg 24

FIGURE 12 Computed microcells for several sectors of the L-panel test. The Cartesian basis of the microcells coincides with the normal
basis. Assembled microcells are rotated to the physical directions in each sector [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 L-panel test, microstructure design with the topology optimization problem. The first column reveals the symmetry class of
the target elastic tensor. The second column denotes the designed sector. The third column depicts the Voronoi-cell taken from the database
as initial configurations for the topology optimization algorithm. The fourth column depicts the Voronoi-cell obtained as solutions of the
topology optimization algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Resulting microstructure of Sector 6 rotated to the physical directions. The rotation angle −𝜃 is shown in accordance with the
color scale [Colour figure can be viewed at wileyonlinelibrary.com]

Table 2 displays the components of the target elasticity tensor C ∗, Ch
db, and Ch

N in the mentioned sectors, respectively.
Note that, even when the initial configuration value Ch

db is close to the target one, the optimization algorithm notably
improves the results even without substantially changing the material distribution of the initial configuration. The last
column in this table identifies the volume fraction of the gathered and solved microcells.

Note also that from Figure 12 and Table 2, Sector 13 requires a material with isotropic symmetry O(2) as well as an
elasticity tensor with zero Poisson ratio and low stiffness. In this case, the re-entrant microstructure designed with the
present procedure facilitates the attainment of effective properties with almost zero Poisson ratio.

5.3.2 Plate subjected to three load systems
Figure 15 shows the microstructures computed for two sectors of the plate subjected to three independent load systems.

The optimal structural result is taken from the first FMO problem solution, see Figure 3, test (iv). In this case, the
material with symmetry Z2 is found in the solution of the FMO problem even without including constraint (2). As the
most challenging cases, we design the microstructures of 2 points where the ratio |C∗

1112∕C∗
1111| is maximum. One case

corresponds to a tensor with 1 null eigenvalue. The other case corresponds to a tensor with three non-null eigenvalues.

http://wileyonlinelibrary.com
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TABLE 2 L-panel test. Topology optimization algorithm results. C∗ is the
target elasticity tensor, Ch

db is the homogenized elastic tensor of the initial
configuration (taken from the database), and Ch

N is the homogenized elastic
tensor of the converged configuration. Values are multiplied by the factor 1000
(E0 = 1 MPa). The last column displays the volume fraction of the stiff phase

Sector C1111 C2222 C1212 C2212 C1112 C1122 Vol. Frac.

1 Ch
db 7.93 7.93 0.94 0 0 -1.79 0.30

1 Ch
N 7.19 7.19 1.85 0 0 -3.12 0.17

1 C∗ 7.07 7.07 2.00 0 0 -3.07 -
6 Ch

db 7.54 4.91 0.65 0 0 -1.61 0.28
6 Ch

N 7.93 5.41 1.14 0 0 -2.28 0.21
6 C∗ 7.96 5.37 2.00 0 0 -2.27 -
13 Ch

db 4.04 4.04 1.90 0 0 0.24 0.35
13 Ch

N 4.04 4.04 2.01 0 0 0.02 0.14
13 C∗ 4.04 4.03 2.00 0 0 0.01 -
24 Ch

db 13.73 3.09 1.94 0 0 -0.96 0.40
24 Ch

N 13.22 4.29 1.57 0 0 -1.80 0.15
24 C∗ 14.03 4.35 2.00 0 0 -1.85 -
70 Ch

db 64.21 6.72 0.09 0 0 13.79 0.12
70 Ch

N 60.99 5.93 0.08 0 0 10.16 0.11
70 C∗ 60.75 5.90 2.00 0 0 10.14 -
72 Ch

db 48.11 15.27 0.12 0 0 18.55 0.12
72 Ch

N 47.35 13.73 0.07 0 0 20.79 0.10
72 C∗ 48.38 14.03 2.00 0 0 21.09 -
80 Ch

db 82.81 2.08 2.37 0 0 -2.21 0.40
80 Ch

N 80.15 3.43 0.02 0 0 -0.46 0.12
80 C∗ 82.43 4.00 2.00 0 0 -0.37 -
84 Ch

db 91.52 1.64 2.20 0 0 -2.29 0.40
84 Ch

N 89.69 3.19 0.02 0 0 -0.18 0.12
84 C∗ 91.79 4.00 2.00 0 0 -0.14 -
85 Ch

db 93.28 5.66 0.83 0 0 2.04 0.23
85 Ch

N 91.05 3.24 0.22 0 0 1.37 0.13
85 C∗ 91.91 4.02 2.00 0 0 0.37 -
91 Ch

db 57.25 50.52 0.86 0 0 38.57 0.18
91 Ch

N 60.84 36.03 0.76 0 0 40.68 0.17
91 C∗ 60.39 35.61 2.00 0 0 42.16 -

Z2 with one null eigenvalue

Z2 with three non-null eigenvalues

D 4 D 2 Z 2

-20deg

76deg

FIGURE 15 Computed microcells for two sectors of the plate subjected to three load systems. The right picture depicts the distribution of
symmetry classes. Two microcells are shown. The sectors with these microcells correspond to Z2 symmetries with 1 null eigenvalue and
three non-null eigenvalues, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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Z2

Three
nonnull

 eigenvalues

Z2
One null

 eigenvalue

FIGURE 16 Plate subjected to three load systems. Voronoi cell configurations taken for initializing the topology optimization algorithm
and the obtained solutions [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Plate subjected to three load systems. Topology optimization
algorithm results for two cases, one of them displays full anisotropic elasticity Z2.
C∗ is the target elasticity tensor, Ch

db is the homogenized elastic tensor of the initial
configuration, gathered from the database, and Ch

N is the homogenized elastic
tensor of the topology optimization algorithm converged configuration. Values are
multiplied by the factor 1000 (E0 = 1 MPa). The last column displays the volume
fraction of the stiff phase

Sector C1111 C2222 C1212 C2212 C1112 C1122 Vol. Frac.

With 1 Ch
db 13.00 5.69 4.68 1.62 -1.62 -0.25 0.45

Null Ch
N 15.52 3.56 6.72 4.13 -4.60 -2.58 0.29

eigenvalue C∗ 15.63 3.18 6.79 4.63 -4.63 -2.56 -
With 3 Ch

db 8.83 8.24 5.35 -2.17 2.17 1.94 0.35
Nonnull Ch

N 14.41 2.94 6.65 -3.46 3.68 -0.57 0.17
Eigenvalues C∗ 14.38 2.61 6.66 -3.65 3.65 -0.63 -

Figure 16 compares the microcells taken as initial configurations of the topology optimization algorithm with those
obtained as solutions of the TOP. Sectors shown in this figure are the same as those depicted in Figure 15.

Table 3 displays the components of the target elasticity tensor C ∗ in the mentioned sectors. They are also compared
with the homogenized elasticity tensors gathered from the database, Ch

db, and with the homogenized elasticity tensors
computed with the topology optimization algorithm Ch

N .

6 CONCLUSIONS

In this paper, a two-scale material design approach, coupled in one direction, has been explored. The effective elasticity
tensors at the macroscale are computed via a methodology based on a free parameterization of materials. Then, these
effective elasticity tensors are used as target tensors for the inverse design of the microarchitectures.

This weakly coupled two-scale approach has been previously reported in the literature. However, the discussions of
results obtained with it and presented in Section 3.2 provide the necessary ingredients to state the main contributions of
this paper.

These contributions focus on studying two new tools for the inverse design of material microarchitectures in
optimal structural problems. They are useful procedures for attaining periodic material configurations with simple
honeycomb-like microarchitectures whose effective elasticity tensors cover a wide range. The main characteristics of both
tools are summarily described as follows.

1. The first tool defines a rule for the cell shape selection. Then, the TOP is solved in the spatial domain limited by
the chosen cell. These cells are the Voronoi cells of Bravais lattices having the same kind of symmetry than the one
displayed by the target effective elasticity tensors.

2. The other tool defines an adequate material distribution in the adopted cell. This material distribution is taken as the
initial configuration for the iterative topology optimization algorithm.

http://wileyonlinelibrary.com
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An additional rule proposed in this paper is the alignment of the Voronoi cell periodicity directions with the natural
coordinate system directions of the target elasticity tensor. This rule simplifies the material distribution configurations
within the Voronoi cells. In this case, it is necessary to compute the natural coordinate system of every target elasticity
tensor.

Both tools, when combined with the aforementioned rule, mitigate the most significant limitation of the two-scale
material design methodology described in this paper. This is a remarkable result that is useful for the development of
realizable optimal structures using this methodology.

Finally, it is emphasized that the new proposed tools are not only limited to the inverse design of microarchitectures in
the context of structural optimization problems, but they also can be applied to other more general types of metamaterial
inverse homogenization problems.
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APPENDIX A: DISCRETIZATION OF THE FMO FORMULATION

The finite element method is used to compute the structural response solution and evaluate u ∈  eq as a function of
Ĉ(x) and f . Conventional bilinear quadrilateral finite elements are used. The elasticity tensor Ĉi is taken to be constant
within every i-th finite element, with the indices i = 1, … ,nel, and nel is the number of finite elements in the mesh.
The symmetry of each tensor Ĉi is enforced by defining only the six independent components, Ĉi1111, Ĉi1122, Ĉi1112, Ĉi2222,
Ĉi2212, and Ĉi1212, as design variables for the i-th finite element.

Utilizing this approach, the FMO problem can be rewritten as follows‖:

min(
Ĉ1,… ,Ĉnel

,u1,… ,unload

)
nel∑
i=1

tr(Ĉi)Ωe
i (A1a)

such that Kuk − f k = 𝟎;
(
K =

nel⋀
𝑗=1∫Ωe

𝑗

(B𝑗)TĈ𝑗B𝑗 dV

)
; (k = 1, ..,nload) (A1b)

nload∑
k=1

wk⟨ f k · uk⟩ ≤ 𝑓 ; (A1c)

𝜌 ≤ tr(Ĉi) ≤ 𝜌̄; (i = 1, … ,nel) (A1d)

Ĉi ≽ 0; (i = 1, … ,nel), (A1e)

‖Introducing an abuse of notation, discrete and continuous fields in this section are identified with the same symbols.

https://doi.org/10.1002/nme.5804


22 PODESTÁ ET AL.

where Ωe
i is the area of the i-th finite element. Expressions (A1b) are the nload equilibrium equations, one for each inde-

pendent load system. The stiffness matrix of the discrete equilibrium equations is denoted by K and is computed with a
conventional numerical integration. B denotes the conventional strain-displacement matrix. Expression (A1e) imposes
the positive semidefinite character on Ĉi.

This FMO problem has (6 × nel + nload × ndof) design variables, where ndof is the number of degrees of freedom of the
finite element mesh (dimension of the interpolated displacement field).

We solve the semidefinite optimization problem (A1) using the IPOPT (Interior Point OPTimizer) primal-dual
algorithm, see the work of Wächter and Biegler,33 with a second-order method. The Hessian matrix is simple to evaluate,
but it requires enormous resources of memory. In general, problems presented in this work, up to 10 000 quadrilateral
finite elements, need 50 to 70 iterations. Here, we do not pursue the objective of evaluating the computational performance
of IPOPT for solving very large-scale problems. For computational benchmarks of structural optimization problems using
the IPOPT algorithm, see the work of Rojas-Labanda and Stolpe.34 Additional information about specific algorithms
designed for solving FMO problems can be found in the work of Weldeyesus and Stolpe9 and references cited therein.

APPENDIX B: SYMMETRIES OF THE ELASTICITY TENSOR IN PLANE PROBLEMS

Let us consider a generic plane elasticity tensor C. In the Cartesian coordinate system, its components are denoted by
Cijkl, with i, j, k, l = 1, 2.

Following the Kelvin's notation, this tensor can be written in the matrix format

C =
⎡⎢⎢⎢⎣

C1111 C1122
√

2C1112

C2211 C2222
√

2C2212√
2C1211

√
2C1222 2C1212

⎤⎥⎥⎥⎦ . (B1)

In addition, C can be expressed in the normal coordinate system (normal basis), see the works of Auffray and Ropars35

and Cowin and Mehrabadi.36 The normal coordinate system is rotated an angle 𝜃 with respect to the Cartesian coordinate
system.

In normal coordinates, the tensor (B1) is represented by the matrix

CN =
⎡⎢⎢⎢⎣

K + G + a1 + d1 K − G − d1
√

2d2

K − G − d1 K + G − a1 + d1 −
√

2d2√
2d2 −

√
2d2 2G − 2d1

⎤⎥⎥⎥⎦ (B2)

called the normal form of C. In this expression, K, G, a1, d1, and d2 are material parameters. The angle 𝜃 should also be
considered as an additional material parameter. Note that 𝜃 is the rotation angle taking the matrix (B1) and transforming
it to expression (B2).

According to the symmetry group qualifying CN, these material parameters K, G, a1, d1, and d2 are described as follows.

• Symmetry Z2 (anisotropic) has six independent elastic coefficients: K, G, a1, d1, and d2 plus the angle 𝜃. The normal
form of CN results with the components (CN)1112 = −(CN)2212.

• Symmetry D2 (orthotropic) has five independent elastic coefficients: K, G, a1, and d1 plus the angle 𝜃. The normal form
of CN results with the components (CN)1112 = (CN)2212 = 0 (d2 = 0).

• Symmetry D4 (tetragonal) has four independent elastic coefficients: K, G, and d1 plus the angle 𝜃 that should be defined
such that a1 = d2 = 0. The normal form of CN results with the components (CN)1111 = (CN)2222 and (CN)1112 =
(CN)2212 = 0.

• Symmetry O(2) (isotropic), has two independent elastic coefficients: K and G. The angle 𝜃 is arbitrary. Then, the normal
form of CN results with the components (CN)1111 = (CN)2222, (CN)1212 = (CN)1111 −(CN)1122, and (CN)1112 = (CN)2212 = 0.
In this particular case, we identify

𝜅 = K − G
3
, (B3)

where, 𝜅 is the 3D bulk modulus and G is the shear modulus.

In all cases, except for isotropic symmetry, the angle 𝜃 is an additional parameter of the elasticity tensor.
We recall that the normal format (B2) of C is not preserved in arbitrary Cartesian bases.
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B.1 Reorientation of the elasticity tensor to the normal basis
The rotation angle 𝜃 transforming C to the normal axis is found with the algorithm proposed by Auffray and Ropars,35

see also the work of Vianello.37

Auffray et al introduced the fourth- and second-order tensors denoted by D, a and the coefficients 𝜆 and 𝜇. All these
terms are defined as follows:

Di𝑗kl = Ci𝑗kl−

− 1
6
(𝛿i𝑗Ck𝑝l𝑝 + 𝛿klCi𝑝𝑗𝑝 + 𝛿ikCl𝑝𝑗𝑝 + 𝛿l𝑗Ci𝑝k𝑝 + 𝛿ilC𝑗𝑝k𝑝 + 𝛿𝑗kCi𝑝l𝑝)

+
Cpqpq

12
(5𝛿i𝑗𝛿kl − 𝛿ik𝛿𝑗l − 𝛿il𝛿𝑗k) −

Cppqq

8
(3𝛿i𝑗𝛿kl − 𝛿ik𝛿𝑗l − 𝛿il𝛿𝑗k) , (B4)

ai𝑗 =
1

12
(2Ci𝑝𝑗𝑝 − Cpqpq𝛿i𝑗) ,

𝜆 = 1
8
(3Cppqq − 2Cpqpq) ,

𝜇 = 1
8
(2Cpqpq − Cppqq) .

With these expressions, the invariants of C are calculated

I1 = 𝜆 + 𝜇, J1 = 𝜇, I2 = apqapq, (B5)
J2 = DpqrsDpqrs, I3 = apqDpqrsars, J3 = RpqaqrDprstast,

where the tensor

R =
(

0 1
−1 0

)
,

FIGURE B1 Classification of C-symmetry and angle 𝜃 between the normal basis and the Cartesian basis35 [Colour figure can be viewed at
wileyonlinelibrary.com]
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These invariants define the symmetry class of C. The procedure is described in Figure B1. Moreover, the normal form
coefficients of C, are determined with expressions (B4) as follows:

K = I1;
G = J1;

a1 = 1
2
(a11 − a22)

a2 = 1
2
(a12 + a21),

d1 =
√

8
8

(D1111 + D2222 − D1122 − D1212 − D2112 − D2121 − D1221 − D2211) ,

d2 =
√

8
8

(D1112 + D1121 + D1211 + D2111 − D2221 − D2212 − D2122 − D1222) .

In addition, defining the angles

𝜃𝛼 =
1
2

tan−1
(

a2

a1

)
; 𝜃𝛽 =

1
4

tan−1
(

d2

d1

)
,

the angle 𝜃 is determined with the rule 𝜃 = 𝜃𝛼 for the classes Z2 or D2 and 𝜃 = 𝜃𝛽 for the class D4.
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