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Abstract. In this paper we discuss, in terms of quiver with relations,
sufficient and necessary conditions for an algebra to be a quasitilted
algebra. We start with an algebra with global dimension at most two
and we give a sufficient condition to be a quasitilted algebra. We show
that this condition is not necessary. In the case of a strongly simply con-
nected schurian algebra, we discuss necessary conditions, and combining
both type of conditions, we are able to analyze if some given algebra is
quasitilted. As an application we obtain the quiver with relations of all
the tilted and cluster tilted algebras of Dynkin type Ep.

1. Introduction

An interesting problem in the theory of representation of algebras is to know
if an algebra given by a quiver with relations is a tilted algebra. This problem
was study for several authors and has been solved in particular cases, see [1],
[10], [11], [12], [20], [21], [22], [17]. In this work, we consider a bigger class
of algebras, that is, the quasitilted algebras introduced by Happel, Reiten
and Smalo, see [18].

We introduced a notion of bound consecutive relations inspired by the one
given by Assem and Redondo in [3]. Our first result states that, an algebra
with global dimension at most two having non bound consecutive relations,
is a quasitilted algebra. In general, we show that the converse of this result
does not hold. On the other hand, if a quasitilted algebra has bound con-
secutive relations, we give a necessary condition over this kind of relations.

Finally, we obtain a sufficient condition for a strongly simply connected
schurian algebra to be a quasitilted algebra. We arrive to this result combin-
ing the criterion for global dimension two developed in [6] with the previous
results.

As applications of our main result, and using the results given in [13], we
are able to give the quivers with relations of all the tilted and cluster tilted
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algebras of Dynkin type. In this work we consider tilted an cluster tilted
algebras of type Ep.

2. Preliminaries

In this paper, by an algebra, we always mean a basic and connected finite
dimensional algebra over an algebraically closed field k. Given a quiver Q,
we denote by Q0 its set of vertices and by Q1 its set of arrows. A relation
in Q from a vertex x to a vertex y is a linear combination ρ =

∑m
i=1 λiwi

where, for each i, λi ∈ k is non-zero and wi is a path of length at least two
from x to y. A relation ρ is called minimal if whenever ρ =

∑
i βiρiγi where

ρi is a relation for every i, then βi and γi are scalars for some index i (see
[8]). In this work, the term relation means minimal relation in this sense.
For each ralation ρ, we denote by s(ρ) ∈ Q0 its souce and t(ρ) ∈ Q0 its
target.

We denote by kQ the path algebra of Q and by kQ(x, y) the k-vector space
generated by all paths in Q from x to y. For an algebra A, we denote by
QA its ordinary quiver. For every algebra A, there exists an ideal I in kQA,
generated by a set of relations, such that A ≃ kQA/I. The pair (QA, I) is
called a presentation of A and A is said to be given by the bound quiver
(QA, I).

An algebra A is called triangular if QA has no oriented cycles, and it is
called schurian if, for all x, y ∈ A0, we have dimkA(x, y) ≤ 1. A triangular
algebra A is called simply connected if, for any presentation (QA, I) of A,
the group π1(QA, I) is trivial, see [5]. It is called strongly simply connected
if every full convex subcategory of A is simply connected, [26].

In this work, we always deal with schurian triangular algebras. For a vertex
x in the quiver QA, we denote by ex the corsponding primitive idempotent,
Sx the corresponding simple A-module, and by Px and Ix the corresponding
indecomposable projective and injective A-module, respectively.

Let A be an algebra. A module TA is called a tilting module [17] if pdTA ≤ 1;
Ext1A(T ;T ) = 0 and the number of isomorphism classes of indecomposable
summands of T equals the rank of the Grothendieck group K0(A). An
algebra A is called tilted of type Q if it is the endomorphism algebra of a
tilting kQ-module.

An algebra A is called quasitilted if gl.dim. A ≤ 2 and, for each indecom-
posable module MA, we have pd M ≤ 1 or id M ≤ 1 (see [18]). It follows
from [18], that tilted algebras are a subclass of quasitilted algebras, and if
a representation finite algebra is quasitilted then it is tilted.
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3. On the relations of a quasitilted algebra

The main objective of this section is the interaction between the relations
of a quasitilted algebra. More precisely, for this class of algebras we going
to study how the relations can interact.

We begin by introducing the concept of bound consecutive relations inspired
by the ones introduced in [3]. Observe that pair of relations defined in [3]
are a subclass of the bound consecutive relations defined in the following.

Definition 3.1. Two relations ρ1 and ρ2 are called bound consecutive re-
lations if there is a walk ϖ between t(ρ1) and s(ρ2) such that ϖ does not
contain zero subpaths.

Example 3.2. If A = kQ/I is the algebra given by quiver

Q
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bound by α5α1α3 = 0 y α5α1α6 = 0. These relations are bound consecutive
for the walk ϖ = α4α2α5:q q q q q q q q q q-
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The following is the main theorem in this section.

Theorem 3.3. Let A be an algebra with global dimension at most two. If
there are no bound consecutive relations in A, then A is quasitilted.

Proof. Suppose A is not quasitilted algebra. Then, there is a indecomposable
A-module M such that pdM = id M = 2.

Let

0 P2 P1 P0 M 0- - - - -f2 f1 f0

and

0 M I0 I1 I2 0- - - - -

be the minimal projective and injective resolutions of M , respectively.

Any indecomposable sum P2(Sb) of P2 gives rise to a diagram
P2(Sb) −→ P1 −→ P0 with zero composition. Then there is a
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sum P0(Sj) of P0 and a relation P2(Sb) −→ P1 −→ P0(Sj). Con-
sequently, there is a relation ρ2 : j  b starting at the vertex j, where
Sj ∈ TopM .

Dually, using the minimal injective resolution ofM , there is Si ∈ SocM and
a relation ρ1 ending at the vertex i,

Let Sk ∈ TopM such that Si ∈ f0(P0(Sk)). Then there exists a nonzero
morphism h : P0(Si) −→ f0(P0(Sk)) and an epimorphism g : P0(Sk) −→
f0(P0(Sk)), i.e. the situation is as follows:

P0(Sk)

P0(Si) f0(P0(Sk))
-h

6g

jf

Then there is a nonzero morphism f : P0(Si) −→ P0(Sk) such that gf = h.
Therefore, there is a nonzero path γ : k  i.

SinceM is an indecomposable module, then sopM is connected. We consider
Q′

0 = (sopM)0 and Q′
1 = {α ∈ Q1 such thate M(α) ̸= 0}. Consequently,

Q′ = (Q′
0, Q

′
1) is a connected quiver and the vertices associated with the

simple A-modules of TopM are sources of Q′. Given two sources j and k,
there is a walk of nonzero paths that unites them, ([4], pp. 45). Therefore,
ρ1 y ρ2 are bound consecutive relations �

We remark that the algebra A, given in the Example 3.2, is not quasitilted.

Now, we give an example of an algebra which is not tilted and satisfies the
conditions of Theorem 3.3 .

Example 3.4. Let A be an algebra given by quiver

q q q qqq

q q
q

@@R
α1

@@R
α2

���γ1

���γ2

���γ3

-β1 -β2 -δ

bound by α1α2δ = 0, β1β2δ = 0, γ1γ2γ3δ = 0. The algebra A has gl.dim.A =
2 and A does not contain bound consecutive relations, then, by Theorem
3.3, A is quasitilted.

Furthermore A is not tilted. In fact A = S+
i B where S+

i is the usual
reflection, at the sink i, due to Hughes and Waschbüsch , see [23], B is the
algebra given by the quiver
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q q qqq
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bound by αα2 = ββ2 = γγ2γ3. From ([24], pp. 464), this algebra B is
concealed canonical type (3 3 4). We observe that, for [23], the repetitive
categories coincide. Then, from ([16], Theorem 4.9) it follows that A and
B are derived equivalent. Therefore, A is quasitilted of type (3 3 4). We
recall that a tilted algebra is of canonical type if and only if it is derived
equivalent to a hereditary algebra of Euclidean type. Then we get that A is
not tilted.

We illustrated with the following example that the converse of Theorem 3.3
is in general not true.

Example 3.5. The algebra B given by the following quiver with relations:

1 2

4

5

3

6� - -
?

6

is a tilted algebra with bound consecutive relations. The given relations are
bound consecutive relations, where ϖ is given by the path 1←− 2←− 4.

4. Strongly simply connected schurian algebras

Combining the previous result with some results from [6] we are able to state
a sufficient condition for a strongly simply connected schurian algebra to be
quasitilted. We have shown with examples that a quasitilted algebra can
have bound consecutive relations. In the case of strongly simply connected
quasitilted algebras with bound consecutive relations we give a necessary
condition over these relations. None of this conditions is a necessary and
sufficient condition.

In [6] we gave the notion of critical algebra and we gave a list of these
algebras.

Let Γ be a strongly simply connected schurian algebra, then Γ is a critical
algebra if either Γ or Γop is one of the following algebras.
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Critical algebras are useful to decide when the global dimension of a given
algebra is at most two. Next, we quote the result from [6] we need.

Theorem 4.1. [6] Let A = kQ/I be a strongly simply connected schurian
algebra with global dimension at least three. Then there exists a full subcat-
egory B of A such that B is critical.

Then, we have the following corollary.

Corollary 4.2. Let A be a strongly simply connected schurian algebra. If
the following conditions hold:

a) A does not contain a proper full subcategory B such that B is a
critical algebra.

b) A has not bounded consecutive relations.

Then A is a quasitilted algebra.

Proof. It follows from a) and Theorem 4.1 that global dimension of A is
at most two. From b) and appling Theorem 3.3 we get A is quasitilted
algebra. �

Next, we give necessary conditions for an algebra of global dimension two
to be quasitilted. To this end, we introduce the following notations.

Let A = kQ/I be an algebra and ρ =
∑m

i=1 λiαi1αi2 . . . αiri be a relation
of A, with αij ∈ Q1. We will note with Qρ the subquiver of Q induced
by the arrows of ρ, i.e. (Qρ)1 = {αij : 1 ≤ i ≤ m, 1 ≤ j ≤ ri} and
(Qρ)0 = {s(αij ) : αij ∈ (Qρ)1} ∪ {t(αij ) : αij ∈ (Qρ)1}.
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If A = kQ/I is a schurian strongly simply connected algebra and ρ1, ρ2 are
bound consecutive relations for the walk

ϖ = γ1γ2 · · · γr : t(ρ1) = i s(ρ2) = j

with nonzero maximal paths γh and long(γh) ̸= 0, for h = 2, . . . , r−1., then
we note with sopϖ the support of the union of all the parallel paths of γh
(which are all equal and nonzero in A).

The following result has a strong relation with the Lemma 2.1 given by
I. Assem and M. J. Redondo in [3]. They proved that a schurian tilted
algebra A have not contain a certain class of bound consecutive relations.
In the case of schurian strongly simply connected quasitilted algebras, we
show that these algebras do not have the bounded consecutive relations
defined in this work.

Proposition 4.3. Let A = kQ/I be a schurian strongly simply connected
algebra with global dimension at most two. If A is quasitilted, then there is
no bound consecutive relations ρ1 y ρ2 with walk ϖ such that sop ϖ ∩ Qρ1 =
{t(ρ1) = i} and sop ϖ ∩ Qρ2 = {s(ρ2) = j}.

Proof. Since A is schurian strongly simply connected, we can define a rep-
resentation M whose support is sop ϖ and such that M(x) = k, for all
x ∈ (sopM)0 and M(ε) = Idk, for all ε ∈ (sopM)1. We will show that the
projective dimension of M is 2.

Consider

P1(M)
f1−→ P0(M)

f0−→M −→ 0.

The module M so defined is not projective because Pj ∈ add P0(M) and
sop Pj * sopM .

If ρ2 = βδ2, where β ∈ Q1 and δ2 is a nonzero path in A, then f0(β) = 0
because sop ϖ ∩ Qρ2 = {s(ρ2) = j}. Then, Pt(β) is a direct summand

of P1(M) because the composition Pt(β)
β·−→ Pj

f0−→ M is zero. Therefore,
Im β· ⊆ Ker f0.

As β /∈ rad Ker f0, we have that Im β· * rad Ker f0. This proves that

Pt(β)
β·−→ Pj is a sum of the projective presentation of M .

Finally, as 0 = ρ2 = βδ2 = β · (δ2), it follows that 0 ̸= δ2 ∈ Ker β·.
Consequently, P2(M) ̸= 0.

If ρ2 = βδ2+β
′δ′2, where β, β

′ ∈ Q1 and δ2, δ
′
2 are nonzero paths in A. Then,

analogously to the previous case proof that Pt(β)⊕Pt(β′)
(β·,β′·)−→ Pj) is a sum

of projective presentation ofM . Then, 0 = ρ2 = βδ2+β
′δ′2 = (β·, β′·)

(
δ2
δ′2

)
.

Therefore, P2(M) ̸= 0.

By duality, considering the minimal injective co-resolution of M , it follows
that id M = 2. �
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The next question is to study what happens when a quasitilted algebra has a
bound consecutive relation by a walkϖ such that sop ϖ intersects the quiver
of one of relations in at least one arrow. In the next theorem we answer the
question posed above, to schurian strongly simply connected algebras.

Theorem 4.4. Let A = kQ/I be a schurian strongly simply connected alge-
bra and quasitilted such that there are ρ1 and ρ2 bound consecutive relations
by the walk ϖ. Then, either sop ϖ ∩ Qρ1 or sop ϖ ∩ Qρ2 is a maximal
subpath of ρ1 or ρ2, respectively.

Proof. Suppose that for l = 1, 2, sop ϖ and Qρl do not intersect in a
maximal subpath of ρl. Let M the representation whose support is sop ϖ
and such that M(x) = k, for all x ∈ (sop M)0 and M(ε) = Idk, for all
ε ∈ (sopM)1. If we prove that the projective dimension of M is 2, then by
duality result that di M = 2.

As M is not a projective module, we can consider

0 ̸= P1(M)
f1−→ P0(M)

f0−→M −→ 0.

For ρ2 = δ2β, where β ∈ Q1 and δ2 is a nonzero path in A, must be
f0(δ2) = 0. Writing δ2 = ψ2φ2, with ψ2 minimal path in δ2 such that

f0(ψ2) = 0, results that the composition Pt(ψ2)
ψ2·−→ Pj

f0−→ M is zero.
Therefore, Im ψ2· ⊆ Ker f0.

Suppose that ψ2 ∈ rad Kerf0. Then there exist non-trivial paths λl such that
ψ2 =

∑
µlλl, with µl ∈ Ker f0. As A schurian strongly simply connected,

ψ2 = aλ1µ1, with a scalar. But f0(µ1) = 0 and l(µ1) < l(ψ2), which
contradicts the minimality of ψ2. Then, Imψ2· * rad Kerf0. Consequently,

Pt(ψ2)
ψ2·−→ Pj is a sum of projective presentation of M .

Since 0 = ρ2 = ψ2φ2β = ψ2 · (φ2β), Then 0 ̸= φ2β ∈ Ker ψ2·. Therefore,
P2(M) ̸= 0.

For ρ2 = δ2+δ
′
2, where δ2, δ

′
2 are nonzero paths in A, it follows that f0(δ2) =

f0(δ
′
2) = 0. If we write δh = ψhφh, with ψh minimal path in δh such

that f0(ψh) = 0, for h = 1, 2, is proved similarly to the previous case that

Pt(ψ2) ⊕ Pt(ψ′
2)

(ψ2·,ψ′
2·)−→ Pj is a sum of projective presentation of M .

Finally, since 0 = ρ2 = δ2 + δ′2 = ψ2φ2 + ψ′
2φ

′
2 = (ψ2·, ψ′

2·)
(

φ2

φ′
2

)
we have

that P2(M) ̸= 0. �

Note that the Theoren 4.4 implies the Proposition 4.3.

Example 4.5. Let A = kQ/I be the tilted algebra given by the following
quiver with relations:
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6 5 4 2 1

3

- - �
?

-

Note that the two monomial relations having A are bound consecutive by
the path ϖ : 4←− 2←− 3, that is:

6 5 4 2 3 2 1- - � � - -

However, sopϖ intersects the relation ρ : 3 −→ 2 −→ 1 in the path 3 −→ 2,
which is maximal in ρ.

The condition of Theorem 4.4 is not a sufficient condition to ensure that an
algebra is quasitilted algebra.

Example 4.6. Let A be the algebra given by the following quiver with
relations:

3 2 4

1

5

6 7

- � -

�

6

6 6

and we will consider the following monomial relations: ρ1 = 7 −→ 4 −→ 5
and ρ2 = 3 −→ 2 −→ 1. Then, ρ1 and ρ2 are bound consecutive relations
by the walk ϖ : 5←− 4 −→ 2←− 3:

7 4 5 4 2 3 2 1- - � - � - -

It is clear that sopϖ intersects Qρ1 and Qρ2 in maximal subpaths of ρ1 and
ρ2, respectively.

However, the A-module M given by the following representation

k k k

0

k

0 0

- � -

�

6

6 6

0

0 0

0

Id Id Id

is indecomposable and pd M = id M = 2. Therefore, A is not quasitilted
algebra.
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5. Applications

5.1. Tilted algebras of Dynkin type. In this section we provide a
method to obtain a complete classification of tilted algebras of Dynkin type.
In particular we give the classification of tilted algebras of type E6.

The combinatorial description of how all the iterated tilted algebras of
Dynkin type Q can be obtained from trivial extensions of finite representa-
tion type of Cartan class Q was studied in [13]. One of the essential tools
in this description is the notion of admissible cuts of trivial extensions (see
[13] and [14]). Given a quiver Q, a subset ∆ of the set of arrows is called an
admissible cut if ∆ contains exactly one arrow of each chordless cycle in Q
which is oriented.

The next step is to select the iterated tilted algebras with global dimension
at most two, using [6]. Finally we use the Theorems 3.3, Proposition 4.3
and Theorem 4.4 to select the tilted algebras and discard the iterated tilted
algebras not tilted. Recall that for algebras of finite representation type, the
concepts of tilted and quasitilted are coincident.

We illustrate this procedure in the following example.

Example 5.1. Let A = kQ/I be the algebra given by the quiver

1 2 3

4

5

6

R
ε2

I
ε1

-λ J
JJ]α1




�
α2





�β1J

JJ]
β2

I
δ1

R
δ2

bound by α1α2 = β1β2, β2λα1 = 0, α2λβ1 = 0, ε2λ = 0, α2ε1 = 0, β2ε1 = 0,
δ2α2 = 0 and α1δ1 = 0. Then the algebra A is a trivial extensions of finite
representation type of class E6. The algebra A has 14 possible admissible
cuts, we look at some of them.

The admissible cuts ∆1 = {α1, β1.δ2, ε2} and ∆2 = {α2, β2.δ2, ε1} provides
the iterated tilted algebras B1 = kQ/⟨I ∪ ∆1⟩ and B2 = kQ/⟨I ∪ ∆2⟩
respectively, given by the following quivers with relations
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B1

1 2 3

4

5

6

I
ε1

-λ





�
α2

J
JJ]
β2

I
δ1

B2

1 2 3

4

5

6

R
ε2

-λ J
JJ]α1





�β1

I
δ1

The algebra B1 does not contain a critical algebra as a proper full subcat-
egory, and has no bound consecutive relations. For Corollary 4.2, B1 is a
tilted algebra.

The relations of the algebra B2 are bound consecutive whose walk ϖ is the
stationary path in the vertex 3, and sop ϖ ∩ Qε2λ=0 = sop ϖ ∩ Qα1δ1=0 =
{3}. For the Proposition 4.3, it follows that B2 is not tilted.

In this way, we could obtain a classification of all tilted algebras of Dynkin
type. We now give the classification of Dynkin type E6.

In the following, we will consider figures obtained from a quiver consider-
ing some arrows without orientation. Moreover, it is said that a quiver is
associated with a figure if it is obtained by given an orientation to these
arcs.

Theorem 5.2. Let B be an algebra. Then B is tilted of Dynkin type E6 if
and only if

i. B is hereditary, or
ii. B or Bop is isomorphic to one of the following:

qq q qqq- - - q qq qqq6- - qq q qqq -�� qq q qqq�� - -
6

qq q qqq ��- -
6

qq qq qq�� ?-
6

qq qq qq- -?-
6

q q q q qqJĴ� 

�-
6

qq q qqq- - -
6

q qq qqq 6- -
6

qq q qqq- - -
6

- qq q qq q- �� �

qq q qqq- - -
?

� q qq qqq 6- -
?

� qq q qqq� - -
6

- qq q qq q� �� ��

qq q qq q- - - �- qq q qqq- - -
6
- qq q qqq - - -- -
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This classification is obtained from the combinatorial description illustrated
in the Example 5.1.

The characterization of tilted algebras of type An in terms of their quiver
with relations has been done by I. Assem in [1]. F. Huard in [19], has
characterized the tilted algebras kQ/I where the underlying graph of Q
is Dn. An alternative proof of this result can be made using the method
described in this work. A complete classification of tilted algebras of type
Ep, p = 7, 8, was done in [7].

5.2. Cluster tilted algebras of finite representation type. The re-
lationship between tilted algebras and cluster-tilted algebras was given in
[2]. For this, the authors introduced the concept of relation extension
R(B) of an algebra B with gl.dim.B = 2. We recall that the algebra
R(B) = B ∝ Ext2B(DB,B), where DB = Homk(B, k). In case the quiver
of B has no oriented cycles, a construction of the quiver of the relation ex-
tension algebra is given in [2]. As an example, the quiver of the relation
extension of tilted algebra B1 given in Example 5.1, is

QR(B1)

1 2 3

4

5

6

I
ε1

-λ





�
α2

J
JJ]
β2

I
δ1

-

-

The main result in [2] characterizes the cluster tilted algebras as the rela-
tion extension of tilted algebras. More precisely, the authors prove that an
algebra C is cluster tilted if and only if there exists a tilted algebra B such
that C is isomorphic to the relation extension of B. Therefore if we make
the relation extension of all algebras given in Theorem 5.2 and we analyze
the non-isomorphic quivers, we obtain all cluster tilted algebras of Dynkin
type E6.

On the other hand, A. Buan, R. Marsh and I.Reiten in [8] proved that any
cluster tilted algebra of finite representation type is uniquely determined by
its ordinary quiver (up to isomorphism).

Using Theorem 5.2 and the two previous results, we deduce the following
Theorem.

Theorem 5.3. Let C be an algebra. Them C is cluster tilted of Dynkin
type E6 if and only if

i. C is an hereditary algebra of Dynkin type E6, or
ii. the quiver QC or QCop is isomorphic to one of the following:
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It is interesting to point out that, the classification of the cluster tilted al-
gebras of the remaining Dynkin types, can be done in a similar way. Since
the cluster tilted algebras of type An and Dn were studied in [9] and [25]
respectively, by geometric methods, and in [15] was showed that it is not
possible to obtain the Ep type using geometric methods, we are mainly in-
terested in the cluster tilted algebras of type Ep, p = 7, 8. Fort classification
of these two classes of algebras see [7].
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