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• We study pattern formation in cavities with elliptically polarized input field.
• The system is well described by two coupled Lugiato–Lefever equations.
• There cannot be more than 3 wavenumbers becoming simultaneously unstable.
• We show a method for finding parameters for codimension 2 and 3 situations.
• Some numerical integration results are shown.
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a b s t r a c t

We study pattern formation on the plane transverse to propagation direction, in a ring cavity filled with
a Kerr-like medium, subject to an elliptically polarized incoming field, by means of two coupled Lugiato–
Lefever equations. We consider a wide range of possible values for the coupling parameter between
different polarizations, B̄, as may happen in composite materials. Positive and also negative refraction
index materials are considered. Examples of marginal instability diagrams are shown. It is shown that,
within the model, instabilities cannot be of codimension higher than 3. A method for finding parameters
for which codimension 2 or 3 takes place is given. The method allows us to choose parameters for
which unstable wavenumbers fulfill different relations. Numerical integration results where different
instabilities coexist and compete are shown.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Spatiotemporal patterns in nonlinear optical systems, along the
plane transverse to light propagation, have been widely studied
both theoretically and experimentally [1,2]. Studies of optical pat-
terns have some common features with the analysis of pattern for-
mation in other physical systems, but there are also some specific
aspects, such as the role of diffraction and the vectorial degree of
freedom associated with light polarization.

Patterns taking into account the vectorial degree of freedom of
incident fields were analyzed in [3] for isotropic positive refractive

∗ Corresponding author at: Departamento de Física, Facultad de Ciencias Exactas
y Naturales, Universidad Nacional de Mar del Plata, Argentina. Tel.: +54 223 475
6951; fax: +54 223 475 3150.

E-mail addresses: danielalejandromartin@gmail.com (D.A. Mártin),
hoyuelos@mdp.edu.ar (M. Hoyuelos).

0167-2789/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physd.2013.05.008
index material (PRM) with third order nonlinearities, i.e., a Kerr
medium, and mainly for a specific value of the nonlinear parame-
ter (B̄ = 1.5). In compositematerials an enhancement of nonlinear
polarizability [4], and also a wider variety of nonlinear parameters
[5] may be expected.

An example of composite materials are negative refraction in-
dex materials (NRM); they are materials with periodic inclusions
which allow the experimental observation of novel optical prop-
erties, and for which several applications have been proposed [6].
For standard PRM, there are arguments to neglect magnetic re-
sponse, but these arguments do not hold for NRM [7]. It has also
been shown that an NRM can develop amacroscopic effective non-
linear magnetic response [8]. Negative diffraction is also expected
in NRM, but this property can also be obtained in regular, periodic
refractive index materials [9,10]. Soliton formation under zero or
negative diffraction has already been studied [11].

Here, we extend the study of pattern formation in a ring cavity
under arbitrary polarized fields, so that it is valid for composite
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Fig. 1. Scheme of possible ring cavities. In the first one, the nonlinear material has length L. In the other one, the material fills the cavity and L is the round trip length. Both
are described by the same equations.
materials, either PRM or NRM, where other values of the nonlinear
parameter (different from B̄ = 1.5) may be expected, and where a
nonlinear magnetic response may or may not be present.

We present a method for the analysis of eigenvalues that al-
lows the derivation of some exact and general results. The method
allows us to find parameters for codimension 2 Turing–Turing
(where two different transverse wavenumbers destabilize simul-
taneously), Turing–Hopf and codimension 3 Turing–Hopf–Turing
instability. Also, following our analysis, it can be shown that a codi-
mension higher than 3 is not possible within the model.

These results are then used in order to numerically integrate
equations, and some results that are not found in codimension 1
situations are found.

2. The system

The system under study is essentially the same as in [12] with
the addition of transverse spatial dependence. We consider a ring
cavity with plane mirrors filled by an isotropic material or meta-
material with a third-order Kerr-like nonlinear response. Two pos-
sible sketches of the system are shown in Fig. 1.

The field inside the cavity is described by a plane wave of ar-
bitrary polarization, modulated by a slowly varying envelope. We
assume that the electric and magnetic fields are in the x–y plane
and the wave propagates in the z axis. We study the cavity close to
resonance.

Based on the work by Zharov et al. [8], we allow the material to
have a nonlinear magnetization, which depends on the magnetic
field.

Light propagation in a Kerr-type PRM can be described by a
nonlinear Schrödinger equation, and the same equation can be ex-
tended to NRM [13]. This equation can be used to obtain the behav-
ior inside a cavity. Taking into account the magnetic response, and
applying the same process, we obtain four nonlinear Schrödinger
equations (two for the envelopes of electric fields and two for the
envelopes of magnetic fields, defined in the plane perpendicular
to the z axis). It can be shown that the magnetic field remains
proportional to the electric field. So, the system is well described
knowing only the electric field. The procedure is analogous to that
performed in [14].

3. Equations

After a change of variables, two coupled Lugiato–Lefever [15]
equations, describing the left and right circularly polarized field
amplitudes inside the cavity, can be obtained:
∂A±

∂t
= Ain± − (1 + iΘ)A± + ih∇2

⊥
A±

+ iα

|A±|

2

1 −

B̄
2


+ |A∓|

2

1 +

B̄
2


A±, (1)

where all quantities are adimensional, time and transverse coordi-
nates have been normalized; A± are the normalized amplitudes of
the electric field with circular polarization (see [12]), Θ is related
to the cavity detuning; α as the sign of χ (3)M η2 +χ

(3)
E , with χ (3)E/M be-

ing the transforms of the xxxx component of the third order nonlin-
ear electric andmagnetic tensors evaluated at (ω0, ω0,−ω0) and η
the inverse of the impedance. The transverse Laplacian, ∇2

⊥
, refers

to the second derivatives with respect to the adimensional coor-
dinates x′

= x/l and y′
= y/l, where l is a characteristic distance

(see [14]), h = ±1 is the sign of the diffraction effects, which, in
our model, is the same as the sign of the refractive index. Notice,
however, that negative refractive materials are not necessary for
negative diffraction: negative (and zero) diffraction resonators can
be obtained in negative (or zero) effective length cavities built by
means of curved mirrors, see [2, Chapter 6], or by means of a spa-
tially modulated refractive index material, see [10].

The nonlinear parameter B̄ is related to components of the po-
larization and magnetization tensors that measure the coupling
between orthogonal polarization (the nonlinear parameter for the
electric case is defined in [16], and the generalization for mag-
netic nonlinearities is explained in [12]). Theoretical models pre-
dict (see [16, p. 227]): B̄ = 3/2 in materials where nonlinearity
is due to molecular orientation effects; and B̄ = 2/3 for the elec-
tronic response far from resonance. However, in experiments with
SiO2 subject to relatively long pulses, a value of B̄ as low as 0.244
was measured [17], which was explained as the effect of the com-
petition between electronic and nuclear nonlinearities. Also, the
inclusion of small spherical particles inside a material, one or both
having third order nonlinear response, would result in a material
where nonlinear effectsmight be greatly enhanced, and B̄may take
a large range of values [5]. The inclusion of magnetic nonlinear ef-
fects in the analysis gives more flexibility to the possible values
for B̄.

In general, we have α = 1. The less frequent case of α = −1
is equivalent to α = 1, and Θ and h with reversed signs, as can
be seen by taking the complex conjugate of Eq. (1). When we have
only electric nonlinearities, the case α = −1 corresponds to a self-
defocusing material. In the following, we assume α = 1. We also
assume that |Θ| <

√
3; within this choice, bistable symmetric so-

lutions are not present and changes inΘ do not qualitatively mod-
ify the results.

In the rest of our work, we will limit our numerical results to
the case 0 ≤ B̄ ≤ 2, and where χ (3)M has the same sign as χ (3)E .

Eq. (1) is robust in the sense that not exactly matching
impedances can be allowed, and small dissipation can be taken into
account if the normalization is changed, see [12]. Also, it can be
seen that the equation may still be valid for greater values of the
detuning (new terms can be treated as losses), and diffraction in
the linear medium can be taken into account redefining the trans-
verse coordinates x and y.

4. Homogeneous solutions and stability analysis

Possible homogeneous solutions of Eq. (1) were analyzed in
[12], where a classification in terms of the number of saddle–node
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Fig. 2. Upper row: Homogeneous solutions, I+ (and I−) against Iin . Thin curves correspond to regions where solutions become unstable under homogeneous perturbations.
Thick curves correspond to solutions that are stable under homogeneous perturbations. Middle and lower row: marginal stability curves, Iin against hk2 for symmetric
(middle row) and asymmetric (lower row) solutions. Asymmetric solutions do not exist in the striped region. In all cases, φ = 1/2. Left column: B̄ = 0.9; Right column:
B̄ = 1.5.
and pitchfork bifurcations was presented. They can be found
solving

Iin =


1 +


αΘ −


1 −

B̄
2


I+ −


1 +

B̄
2


I−

2
I+

(1 − φ)Iin =


1 +


αΘ −


1 −

B̄
2


I− −


1 +

B̄
2


I+

2
I−. (2)

Where we have defined the homogeneous solution intensities of
the left and right circularly polarized components as I± = |As±|

2

(where As± are the stationary homogeneous solutions of Eq. (1)),
the input intensity as Iin = |Ain+|

2
+ |Ain−|

2, and the polarization
as φ = |Ain+|

2/Iin (the polarization φ is related to the ellipticity χ
by φ = cos2(χ/2)).

For linearly polarized input field (φ = 1/2), there is always a
symmetric linearly polarized solution, for which I+ = I−. Also, a
pitchfork bifurcation may take place at Iin = I ′ producing an ellip-
tically polarized asymmetric solution, where the upper and lower
branches correspond to either I+ or I−. This new solution may end
at Iin = I ′′ > I ′ (this happens if B̄Θ > 2


1 − B̄ and B̄ < 1 and
is exemplified in Fig. 2, upper row, for B̄ = 0.9) or may not end,
i.e. I ′′ = ∞ (this happens if B̄ > 1 and is exemplified in Fig. 2,
upper row, for B̄ = 1.5).

Instead of symmetric and asymmetric solutions, for elliptic po-
larization we have continuous and discontinuous solutions. A con-
tinuous solution is present for any value of Iin, and a discontinuous
solutionmay appear at a given value of the input intensity. A polar-
ization φ > 1/2 favors the right circular component for the con-
tinuous solution; but the discontinuous solution behaves against
intuition, since for φ > 1/2 we have that I− > I+. The discon-
tinuous solution suddenly starts at Iin = I ′, like in Fig. 3, upper
row. It may disappear at a second value Iin = I ′′. Depending on the
parameters, there are three possible situations: discontinuous so-
lution absent (for example, for I ′ → ∞), bounded (I ′ < I ′′, both
finite, like in Fig. 3, upper row for B̄ = 1.2), or left unbounded (I ′
finite and I ′′ → ∞, Fig. 3, upper row, B̄ = 1.5).

Some basic features of the homogeneous solutions can be ana-
lyzed by considering the evolution of the perturbationsψ± defined
as

A± = As± + ψ±. (3)
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Fig. 3. Homogeneous solutions, I+ and I− against Iin (upper row) and marginal stability curves, Iin against hk2 for continuous (middle row) and discontinuous (lower row)
solutions. Discontinuous solutions do not exist in the striped region. Labels ‘‘H’’ and ‘‘T’’ refer to Hopf or Turing instabilities. In all cases, φ = 0.6. Left column: B̄ = 1.2; Right
column: B̄ = 1.5.
Replacing in (1), linearizing and taking the Fourier transform (on
transverse coordinates), we get

∂

∂t

Re(ψ+ + ψ−)
Im(ψ+ + ψ−)
Re(ψ+ − ψ−)
Im(ψ+ − ψ−)

 = L

Re(ψ+ + ψ−)
Im(ψ+ + ψ−)
Re(ψ+ − ψ−)
Im(ψ+ − ψ−)

 (4)

with the linear matrix L given by

L =


−1 θk − αS 0 αDB̄/2

3αS − θk −1 αD(2 − B̄/2) 0
0 αDB̄/2 −1 θk − αS

−3αD 0 α(1 − B̄)− θk −1

 (5)

where S = I+ + I−, D = I+ − I−, θk = Θ + hk2 and k is the
wavenumber of the perturbation. Matrix L has a similar form to
the one derived in [3], Eq. (13); one difference is that here the sign
of the nonlinear term (called η in [3]) does not have to be equal to
the sign of the detuning.
The eigenvalues have the form

λ±± = −1 ±


F1 ±


F2 (6)

where F1 and F2 are real second order polynomials in θk:

F1 = −θ2k + b1θk + c1

F2 = a2θ2k + b2θk + c2 (7)

with

b1 = S (3 − B̄/2)
c1 = S2(B̄/2 − 2)+ D2B̄/2(1 − B̄)

a2 = S2(1 + B̄/2)2 − 4 B̄D2(1 − B̄/2) (8)
b2 = −2S3(1 + B̄/2)2 + 3B̄SD2(3 − 2B̄ + B̄2/4)

c2 =


S4 + D4 B̄

2

4


1 +

B̄
2

2

+ S2D2B̄

4B̄ − 5 − 5

B̄2

4


.

The homogeneous steady state solution becomes unstable
when the real part of one of the eigenvalues becomes positive.
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These instabilities are analyzed numerically in the next section,
for linear and elliptically polarized input fields. In Section 6 we
present an analytical approach to exactly determine the values of
the parameters for specific situations (codimension 2 and 3).

5. Overview of instability regions

In this section we present a general picture of possible patterns
and instabilities that can occur for different values of the parame-
ters. The parameters are α, the detuning Θ , the sign of the refrac-
tion index h = ±1, the nonlinear parameter B̄, and the polarization
φ. We take α = 1 and Θ = 1 (different values of Θ , in the range
|Θ| <

√
3 do not produce qualitatively different results). Both val-

ues of h can be represented in the samemarginal stability diagram
(note that the value of h is not relevant for the shape of the homo-
geneous solutions).

5.1. Linear polarization

From the stability analysis of the symmetric homogeneous so-
lution we obtain the marginal stability curves shown in Fig. 2 mid-
dle row. In each case two unstable tongues appear, both of them
are Turing type instabilities. The lowest value of Iin included in
the left tongue diminishes as B̄ increases, while the right tongue
does not depend on B̄ (see Fig. 2, middle row). The point where
the left tongue crosses the value k = 0 corresponds to Iin = I ′,
i.e., it is the point where the symmetric solution becomes unstable
under homogeneous perturbations, and the pitchfork bifurcation
takes place. It is known that, for h = 1, for values of Iin close and
above the instability threshold of the right tongue, a hexagonal pat-
tern appears [18,3]. A further increase of the input intensity gives
place to oscillating hexagons, quasiperiodicity and optical turbu-
lence [19].

For an NRM (h = −1), close to the instability threshold of the
left tongue, a labyrinthic pattern is formed at short times when
starting from random initial conditions (see [3]). For large times,
the system evolves to the homogeneous asymmetric solution. A
competition between two regions takes place, one with I+ > I−
and the other with I− > I+ (this case is illustrated in Fig. 4 of
Ref. [3]). The marginal stability curves for the asymmetric solution
are shown in Fig. 2 lower row. The asymmetric solution is always
unstable for h = 1. For h = −1, there is a range of values of Iin for
which it can be stable.

5.2. Elliptic polarization

As the ellipticity is increased, starting fromφ = 1/2, for h = −1
the left tongue of Fig. 2 middle row is transformed into a closed
bounded region whose size decreases until disappearing. For φ =

0.6, the continuous solution is always stable for h = −1 and for any
value of B̄, as can be seen in the marginal stability curves of Fig. 3
middle row. It can be shown that, as B̄ is increased, the right tongue
changes its shape and is transformed into three tongues. Two of
them correspond to Turing type instabilities and the central tongue
is related to an oscillatory in time and usually periodic in space
Hopf instability (also known as an I0 type in the notation of Cross
and Hohenberg [20]).

The stability analysis of the discontinuous solution shows that,
again, for h = −1 and φ = 0.6, it is always stable. For h = 1, this
solution is always unstable for some k. See Fig. 3 lower row.

In general, similar plots are obtained for other values of φ. Nev-
ertheless, a more detailed analysis of the eigenvalues in the plane
determined by F1–F2 in Eq. (7) allows the derivation of more gen-
eral results and the identification of some special cases, as ex-
plained in the next sections.
Fig. 4. Unstable regions in the F1–F2 plane.

6. Determination of instability tongues

Since F1 and F2 in (6) are real quantities, it can be shown that,
if one eigenvalue becomes positive, then λ++ should be positive.
Therefore, in order to study stability, it is enough to analyze
the sign of λ++. The analysis is simpler if, instead of describing
the unstable zones in θk–Iin or hk2–Iin diagrams, we first look at
unstable zones in the F1–F2 plane.

Using that λ++ = −1+


F1 +

√
F2, we can see that, for F2 < 0,

points (F1, F2) that are to the right of the line F2 = 4F1 − 4 have
Re(λ++) > 0 and Im(λ++) ≠ 0, therefore, it is an oscillatory
unstable region. For F2 > 0, points to the right of the parabola
F2 = (1− F1)2 with F1 < 1 (that is, the left branch of the parabola)
have Re(λ++) > 0 and Im(λ++) = 0, so this region is stationary
unstable. The rest of the plane is stable, see Fig. 4.

We are interested in the possible values (F1, F2) as θk changes
and other parameters are fixed. In a marginal instability diagram,
changing θk represents moving through a horizontal line. So, if
there is a value of θk for which (F1, F2) falls in an unstable region of
Fig. 4, then, for that value of θk, in the marginal instability diagram
we will be inside an unstable tongue. Since F1 and F2 are second
order polynomials in θk (6), the relation can be inverted and F2
can be written as two functions of F1: F2u,l(F1), which are properly
defined in Appendix A.

An example of the relationship between marginal instability
diagrams and F1–F2 plots is graphically presented in Fig. 5. In the
figure, the values of the parameters were chosen in order to get
the maximum number of intersections. The left window shows
values of F1 and F2 calculated with (7) as θk changes and all other
values remain fixed. The right window shows the related points in
the marginal instability diagram. The figure shows three unstable
ranges of θk, the middle one is oscillatory unstable and the other
two are stationary unstable. This means that the middle tongue
in the marginal stability diagram corresponds to a Hopf instability
and the others to Turing instabilities. This is a general behavior: it
can be shown that there cannot be more than two tongues related
to a Turing instability and one Hopf instability tongue. Also, if
there are three tongues, the middle one is the one related to Hopf
instabilities.

The intersection points of, for example, the first tongue and a
horizontal line (which represents a constant value of Iin), identified
by ‘a’ and ‘b’ in the rightwindowof Fig. 5, get closer as Iin decreases,
until they merge in one point at the instability threshold. When
we are at an instability threshold, the curve F2u,l(F1) is tangent to
the border of an unstable region. The derivation of all these results
is mathematically involved and is sketched in Appendix A, where
other results (most of them intermediate results) are also derived.
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Fig. 5. Left: F1–F2 plane with the unstable regions and the curves F2u,l(F1); arrows indicate the direction of growing θk , in a situation where the maximum number of
intersections is obtained. Right: corresponding marginal stability diagram Iin against hk2 , points indicated by a, b, c, d, e and f correspond to the intersection points of the left
plot. Parameters are:Θ = 1, B̄ = 1, Iin = 7 and φ = 0.8.
7. Codimension 2 and 3

From the previous analysis we know that we can have, at most,
codimension 3 (Turing–Hopf–Turing), i.e., threemodeswith differ-
ent wavenumbers that become unstable for the same value of Iin.
We can also have Turing–Turing codimension 2 and Turing–Hopf
codimension 2. Fig. 6 shows examples of all possible cases of codi-
mension 2 and 3 in a F1–F2 plot and in its corresponding marginal
stability diagram.

Having in mind quite general mathematical properties and
constraints given by the physical system, we are able to derive pa-
rameters for codimension 2 and 3. The values of S, D and B̄ (that
determine the coefficients of F1 and F2 in (7)), for which a codi-
mension 2 or 3 occurs, do not depend onΘ . Since θk = Θ + hk2, a
change inΘ produces a shift in the marginal stability diagram.We
can, in principle, take a value ofΘ for which instability thresholds
under consideration are to the left (h = −1) or to the right (h = 1)
of k = 0.

Conditions that parameters should meet in order to have
codimension 2 and 3 are derived in Appendix B. We summarize
the main results here.

We call DTT and STT the values of S and D for a Turing–Turing
codimension 2: a similar notation is used for the other cases. For
0.848 < B̄ < B̄c ≃ 1.028, we have the case of Turing–Turing
codimension 2. The values of S and D can be found analytically:

STT =
2

B̄(3 B̄/2 − 1)
B̄ (1 − B̄/2)

(9)

DTT = ±
(1 + B̄/2) S
−B̄2/2 + 3B̄

. (10)

For B̄ = B̄c , we have codimension 3. STHT and DTHT are given by
STHT = STT (B̄c); DTHT = DTT (B̄c).

Parameters for Turing–Hopf codimension 2 situations are
harder to determine, see the second part of Appendix B. After some
algebra,we find that conditions for codimension 2 Turing–Hopf sit-
uations are met only if the roots of a given polynomial P(r), which,
once S and B̄ are fixed, is fourth degree in an auxiliary variable r (re-
lated to the difference between F1 and its maximum value), has a
double real and two complex conjugate roots (or two double roots;
which only happens for B̄ = B̄c , and corresponds to the codimen-
sion 3 situation previously described). For every value of S and for
B̄ > B̄c , we can numerically compute the roots of that polynomial.
Fig. 7 shows the number of roots in the plane S–B̄. The thick line
represents the set of points for which codimension 2 Turing–Hopf
situations take place. It is worthmentioning that for every allowed
B̄ there are two possible values of S: the one to the left (right) of
the vertex has a value of Θ + h k2H greater (lower) than Θ + h k2T
(where kH is the expected wavenumber for one of the Hopf insta-
bilities, and similarly for kT ), so, for h = 1 the wavevector related
to the Turing instability is smaller (greater) than the one related to
Hopf instability. Finally, taking a point of this curve the values of S,
B̄ and D can be determined, see Appendix B.

In all cases, following the derivations shown in the appendices,
and choosing a value of Θ we get the unstable wavenumbers, for
instance kT1 and kT2 for the Turing–Turing codimension 2 situa-
tion. Conversely, we can choose the unstablewavenumbers (for in-
stance we can make them fulfill a given relationship) and use that
information to properly chooseΘ .

Once we find B̄, S and D, having in mind that I± =
S±D
2 and

choosing a value for Θ , we can find the input intensity Iin and po-
larization φ for which codimension 2 or 3 takes place in a straight-
forward way (just replacing all known values in Eq. (1) and solving
two coupled linear equations).

8. Numerical integration results

Numerical integrations of Lugiato–Lefever equations have been
extensively performed in previous reports. The novelty here is that
we will exploit the results from previous sections in order to find
parameters for codimension 2 and 3 in a straightforward way. The
purpose of this section is to have a quick look at possible situations
that may occur when patterns tend to emerge in codimension
2 or 3.

In [3] codimension 2 Turing–Hopf situations were analyzed for
the special case B̄ = 1.5. They found out that a hexagon related
to a Turing instability dominated at long times, although the Hopf
instability dominated at short times. Also, in [21] they analyzed a
Turing–Turing codimension 2 instability and found that different
patterns related to competition of unstable wavenumbers might
take place.

A similar research, for a different system, was performed in
[22], where pattern formation situations are analyzed in a Be-
lousov–Zhabotinsky reaction, and codimension 2 Turing–Hopf
may occur. They found out that in codimension 2 situations, pat-
terns related to both instabilities coexist for quite long times, but
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Fig. 6. Curve F2 against F1 (left) andmarginal stability plot (right). From top to bottom: Turing–Turing codimension 2, Turing–Hopf–Turing codimension 3, and Turing–Hopf
codimension 2.
eventually one dominates. The exception occurs in one dimension
when destabilizing modes are resonant (for instance, the wave-
length of one instability is an integer times the wavelength of the
other instability), in that case, both unstable modes may coexist.
Similar results where found in [23] for a reaction–diffusion model
where also chaotic situations are allowed.

In optics, two coupled Kerr-like systems (specifically, two liq-
uid crystal light valves) where analyzed both theoretically and ex-
perimentally [24–26]. Turing–Hopf codimension 2 situations were
reported. For some parameters, unstable wavevectors where res-
onant, and a far field composed of two octagons (whose radius
were the wavevector modules of the unstable modes), one of them
rotated π/8 degrees with respect to the other, was found [25].
Turing–Turing codimension 2 or a higher codimension was not
allowed since a linearly polarized system was studied (and, from
the dynamical point of view, the system was two-dimensional,
i.e. instead of the matrix in (5), they had a two by two matrix).

Here, we are interested in situations where the sum of unstable
modes related to one instability may contribute to a mode related
to another instability. For instance, if one instability is related to
hexagonal patterns with some orientation and the second one
has a wavelength
√
3 times greater, we expect the second one to

form an hexagon
√
3 times larger, and rotated π/6 degrees with

respect to the first one (so that the sum of wavevectors of the first
instability should contribute to the other instability). Notice that
parameters for which wavenumbers of the different instabilities
fulfill desired relations can be found taking into account the
calculations performed in previous sections.

Results of our numerical integrations [27], are the following:
At short times, all unstable wavevectors coexist (so that |A±|

2 is
composed of two or three rings in the far field), then rings of
unstable wavevectors become thinner and the intensity of one of
them becomes much greater than the others. After that, different
situations may occur.

In some nonresonant codimension 2 Turing–Turing situations,
we found that at long times a ring of unstable modes (of radio
kU in the far field) with wavevectors different but among the val-
ues of the unstable modes dominated (kT1 < kU < kT2), and the
near fieldwas composed of domains of ordered hexagonal patterns
(for example, A+ with up hexagons, and A− with down hexagons).
For some parameters, instead of a ring of modes, in the far field
a hexagon (with kT1 < kU < kT2) was formed, and a hexagonal
pattern arose, with a unique orientation, in the whole near field.
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Fig. 7. Number of real roots from of P(r). Regions where there are no possible
codimension 2 situations (if there is no value for D, or if it is greater than S) are
also shown. Curves in the F1–F2 diagram become tangent and thus, Turing–Hopf
codimension 2 takes place for parameters given by the thick line of this figure.
Notice that no codimension 2 Turing–Hopf can occur for B̄ < B̄c .

Taking an adequate value of Θ , it is possible to make unstable
wavenumbers fulfill the desired ratio. Simulations with kT1 =

kT2/
√
3were performed. For some parameters, kT2 dominated and

a regular dodecagon took place in the far field. Finally, putting
an initial condition that was the steady solution plus a hexagonal
pattern related to the smallest wavenumber, it could be seen
that both unstable wavenumbers grew, forming an organized
hexagonal structure in the near and in the far field. The same result
was found even when the input intensity was slightly lower than
critical intensity. See Fig. 8, where, for |A+|

2, the coexistence of two
unstable wavenumbers can be found even in the near field. The
stability analysis for this case is shown in Fig. 9: it can be seen that
there are 2 unstable wavenumbers, i.e. two values of k for which
Re(λ++) is not negative.

Codimension 3 situations were also analyzed. Parameters were
chosen so that the ratio between the greatest Turing wavelength
and the smallest one was

√
3 (kT1 < kH < kT2 =

√
3kT1). At the

initial stage, we found that all unstable wavenumbers where acti-
vated (see the left plot on Fig. 10), forming three concentric circum-
ferences in the far field. The smallest Turing wavenumber grew
faster, and turned into a hexagon. After that, another hexagon, re-
lated to the greatest Turing wavenumber also appeared, see Fig. 10
middle plot. At odds with Fig. 8, regions where instabilities with
different wavenumbers dominate are spatially separate in the near
field. Finally, a crown of modes got destabilized (right plot on
Fig. 10). The stability analysis for this case is shown in Fig. 11. No-
tice that the intermediate unstable wavenumber is related to Hopf
instability, i.e. it has Im(λ++) ≠ 0.

In another example of resonant Turing–Hopf–Turing Codimen-
sion 3, in which kT2 = 2kT1, a similar final situation was observed.
For nonresonant cases, there were found steady situations similar
to Fig. 10,middle graph, butwhere one Turingwavevector (making
an hexagon or a ring in the far field) prevailed for A+ but the other
prevailed for A−.

For Turing–Hopf codimension 2, situations similar to Turing–
Turing codimension 2 were found, both in resonant and nonreso-
nant situations. Also, square patterns took place in some numerical
integrations.
Fig. 8. Left column: |A+|
2 , right column: |A−|

2 , up: near field, down: far field, at
t = 220, for the case of a resonant Turing–Turing codimension 2 where initial
conditions have an hexagonal modulation. The same results are found at larger
times. Parameters: h = 1, B̄ = 0.94, Θ = 1.499, φ = 0.886 and Iin = 2.799,
t = 220.

Fig. 9. Real (solid line) and imaginary (dotted line) parts of λ++ as a function
of k, for the parameters of the previous figure. Vertical lines show unstable
wavenumbers (kT1 and kT2), related to steady perturbations. The ratio among them
is

√
3. They closely match the numerical integration results of previous figure.

9. Conclusions

Taking into account the polarization degree of freedom of light,
and having in mind that B̄, which measures the nonlinear coupling
between different polarizations, could take a broad range of values,
we presented a study of instabilities and patterns that might
show up in a cavity filled with a Kerr-like nonlinear material with
positive or negative refractive index.

A method for finding codimension 2 and 3 situations (where
wavenumbers of different modulus might destabilize) was shown.
It can be found that for 0.848 < B̄ < B̄c Turing–Turing codi-
mension 2 may occur; for B = B̄c , Turing–Hopf–Turing codimen-
sion 3 may take place, and for B̄ > B̄c there may be situations for
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Fig. 10. |A+|
2 in the near (up) and far field (down) at different times for the case of resonant codimension 3. From left to right, t = 333 (all unstable wavenumbers are

enabled), t = 482 (an hexagonal structure in the far field) and t = 570. The A− component has a similar behavior. Parameters for this numerical integration are: h = 1,
B̄ = B̄c ,Θ = 1.15, φ = 0.78 and Iin = 4.26.
Fig. 11. Real (solid line) and imaginary (dotted line) parts of λ++ as a function
of k, for the parameters of the previous figure. Vertical lines show the values
of the unstable wavenumbers. Two of them (kT1 and kT2) are related to steady
perturbations, and the ratio among them is

√
3. The other one (kH ) is intermediate

between them and is related to oscillatory instabilities (Im(λ++) ≠ 0). kT1 , kH and
kT2 closely match the unstable wavenumbers in the previous figure.

Turing–Hopf codimension 2. Fixing only the value of B̄, themethod
allows us to find all other values of the parameters for codimension
2 or 3. It also allows us to see that, for a given intensity, there can-
not be more that three instability regions in a marginal instability
plot (one of which has to be related to a Hopf instability), and that
codimension higher than 3 cannot occur.

Since the method allows us to know some parameters with
any degree of precision (instead of performing a numerical search
and changing the parameters until such situation shows up), and
choose others at will, it is a useful tool in the study of codimension
2 or 3 on the model. Specifically, resonant situations, where the
ratios between unstable wavevectors are chosen, can be found.
Also, it might be useful for the understanding of pattern formation
in other systems as long as the linear stability analysis presents
eigenvalues with the form of Eqs. (6) and (7).

Numerical integration results show some new situations of
pattern coexistence and competition.
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Appendix A. Properties of instability tongues

We consider that the possible values (F1, F2) are those given by
these polynomials with the free parameter θk, and with fixed co-
efficients, i.e., we consider fixed values of S and D, that correspond
to a fixed value of the input intensity Iin for a determined homo-
geneous solution. From (7) we see that F1 takes a maximum value
given by F1M = b21/4 + c1. By definition, S ≥ D, so it can be shown
that a2 ≥ 0, and that F1 +

√
F2 → −∞ for |θk| → ∞. This means

that, for large |θk|, Re(λ++) = −1. Therefore, the range of unstable
wavenumbers is bounded. The case a2 = 0 occurs only if S = D,
that is, for pure circular polarization, but this case can be related
to the pure linear polarization case, as has been done, for instance
in [3].

From (7), we can obtain two solutions for θk as a function of F1.
Using these solutions in the equation for F2, we obtain:

F2u,l(F1) = (a2 b21/2 + b2 b1/2 + c2 + a2 c1)− a2 F1 ± |X | r, (A.1)

where X = a2b1 + b2 and r =
√
F1M − F1 ≥ 0; indices ‘u’ and ‘l’

stand for upper and lower curves respectively.
The difference between the upper and lower curves is F2u(F1)−

F2l(F1) = |X |r . So, we have two values of F2 for each F1 as long
as F1 < F1M and X ≠ 0. For X = 0, the curves are two overlap-

ping rays that start from F1 = F1M . We can also see that ∂
2F2u,l
∂F21

=

∓2|X |/r , so F2u (F2l) has negative (positive) curvature.
To obtain the instability points, we have to look at the

intersection of F2u,l(F1)with the unstable regions of Fig. 4. Eq. (A.1)
can be rewritten as:

(F2 − d + a2F1)2 = X2(F1M − F1), (A.2)

where d = a2 b21/2 + b2 b1/2 + c2 + a2 c1 (the same equation
holds for F2u and F2l). To obtain the intersectionwith the stationary
unstable region, we replace F2 by (1 − F1)2 in (A.2). We get a
4th order polynomial, so there are at most 4 solutions for F1.
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The intersection with the oscillatory unstable region is obtained
replacing F2 by 4F1 − 4 in (A.2); this gives two solutions for F1.
To obtain the maximum number of unstable ranges of values of
θk we assume that half of the previously mentioned solutions of
F1 correspond to a cross from a stable to an unstable region (as θk
is increased) and the other half to a cross from an unstable to a
stable region. So, we have, at most, three unstable ranges of θk that
correspond to three tongues in the marginal stability diagrams.

Appendix B. Derivation of parameters valid for codimension 2
and 3

For Turing–Turing codimension 2, we need both F2u and F2l to
be tangent to the border of the stationary unstable region, and this
happens only if X = 0; in this case F2u and F2l are straight lines
that overlap. To have codimension 3 (Turing–Hopf–Turing) there
is a further condition: the end point of the rays, (F1M , F2(F1M)),
must be on the border of the oscillatory unstable region given by
F2 = 4F1 −4. The case of Turing–Hopf codimension 2 occurs when
F2 against F1 is tangent to the borders of the stationary and oscilla-
tory unstable regions, and X ≠ 0. See Fig. 6.

Turing–Turing codimension 2 and Turing–Hopf–Turing codimension 3

From the condition X = a2b1 + b2 = 0 it is straightforward
to obtain an expression for DTT (B̄), (10). From Eq. (A.2) we have
that F2 = d − a2F1, and the intersection with the border of the
stationary unstable region, given by F2 = (1− F1)2, gives a 2nd or-
der polynomial in F1. To have the line tangent to the parabola, the
discriminant of the polynomial should be zero. From these condi-
tions we get the critical value F1c = 1 − a2/2 from which, using
Eq. (7), we get the two critical values of θk. From the zero discrim-
inant and Eq. (10), we get an expression for STT (B̄), (9).

Then, for a given value of B̄, there is a unique value of STT and
|DTT | where we can find Turing–Turing codimension 2. There are
some restrictions on the possible values of B̄. First, in order to have
STT real, we have that B̄ ≥ 2/3, but there is a more restrictive
condition. We need that F1c ≤ F1M in order to have a solution
tangent to the unstable border that actually touches it. It can be
shown that the condition B̄ > 0.848 should be satisfied. Second,
the Hopf instability should appear for greater values of Iin than the
Turing–Turing instability.

We define the distance between F2(F1M) and the border of the
oscillatory unstable region as Z = F2(F1M)−(4 F1M−4). For Turing–
Turing codimension 2 we need Z > 0, and for codimension 3, we
have that Z = 0 since the point (F1M , F2(F1M)) should be on the
oscillatory unstable border. Since STT and DTT are functions of B̄
(see Eqs. (9) and (10)), we can obtain Z as a function of B̄ only. It can
be shown that the only zero of Z occurs for B̄c = 1.028. Then, using
the value B̄ = B̄c , we can obtain the parameters STHT = STT (B̄c) and
DTHT = DTT (B̄c) for codimension 3. For B̄ < B̄c , Z > 0, so that Tur-
ing–Turing codimension 2 is allowed. For B̄ > B̄c, Z < 0: we still
have the two stationary instabilities that occur simultaneously for
a given value of Iin, but this is not a Turing–Turing codimension 2
since the oscillatory instability appears for a smaller value of Iin (As
we will see below, in that region there are Turing–Hopf instabili-
ties).

Expressions forΘ+hk2T1 andΘ+hk2T2 can be found solving F1 =

1−a2/2, and replacing S by STT andD byDTT . If there is codimension
3, the value ofΘ + hk2H can be found fromΘ + hk2H = b1/2. It can
be shown that 2hk2H = hk2T1 + hk2T2. Once the value ofΘ is chosen,
kH , kT1 and kT2 are fixed. Conversely, once two wavenumbers are
chosen,Θ is fixed (and so is the third wavenumber, if it exists).
Turing–Hopf codimension 2

For a Turing–Hopf codimension 2 we require the curve F2(F1)
to be tangent to both borders of the unstable regions, as shown in
the lower row of Fig. 6.

Let us first consider the contact point with the border of the
oscillatory unstable region, i.e., between F2l(r) (A.1) and the line
F2 = 4F1−4 = 4(F1M−r2)−4. The intersections are given by a sec-
ond order polynomial in r . We require the intersection to be only
in one point, so that the polynomial discriminant should be zero.
From this condition, it is possible to obtain three possible expres-
sions for D as a function of S and B̄. We will call them D1,2,3(S, B̄).

Now, we consider the intersection with the stationary unstable
region, i.e., between F2u(r) and F2 = (1 − F1)2 = (1 − F1M + r2)2.
We get a fourth order polynomial in r , which will be called P(r).
We can have 0, 2 or 4 real roots, and we are interested in the cases
of a fourfold real root, or double real and two complex conjugate
roots, in order to have the function F2u tangent to the unstable
border. It can be shown that the kind of roots that we are looking
for are possible only for one of the expressions of D mentioned in
the previous paragraph, say D1(S, B̄). In Fig. 7 we plot the roots of
P(r). Its coefficients are calculated for S, B̄ and D = D1(S, B̄).

The value ofΘ+ hk2T can be found solving F1|θk=Θ+hk2T
= F1M −

r20 , where r0 is the double root of P(r). The value ofΘ+ hk2H can be
found in a similar way.
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