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Abstract. We considerer that a population of individuals governed by the Nagumo model is subjected to
a crisis that stimulates a predisposition towards aggregation. We assume that this trend is based on the
physical mechanisms of attraction between individuals. Then we describe the post-crisis dynamics and find
possible states of survival (stationary solutions). We see a dynamic rich in options with several possible
survival responses.

1 Introduction

Under circumstances perceived as “normal”, a population
of “identical” individuals (disregarding hierarchical struc-
tures like families, tribes or others arising out of relation-
ships of power) tends to distribute themselves homoge-
neously over the available portion of space (also assumed
to provide homogeneous resource distribution). A one-
dimensional, single component reaction-diffusion model
with excitable kinetics, the reduced Nagumo equation [1]

∂tu = A (u − u1)(u2 − u)(u − u3) + D ∂xxu (1)

with A, D > 0 and 0 ≤ u1 < u2 < u3, yields analyti-
cal front solutions that evolve toward homogeneous states
with population densities u3 or u1, according to the sign of
u2 − (u3 + u1)/2. The case u1 = 0 means extinction. If we
express the Nagumo model non-linearity as a cubic poly-
nomial, the linear term is negative and represents the de-
crease in the population by deaths. The quadratic term is
positive and represents the sexual reproduction while the
cubic term represents competition for the resource (Allee
effect [2–4]). This model however, overlooks important ev-
idence: under a crisis or threat, individuals of a given pop-
ulation tend to aggregate [5]. With this collective response
they seek to increase the likelihood of survival against the
unknown risk.

A clear example is provided by laboratory experi-
ments on Chlorella vulgaris, eukaryotic unicellular green
algae osmotrophs [6]. Once the flagellate protozoan
phagotroph Ochromonas vallescia introduced into the
biosystem, Chlorella vulgaris found to subsist after 10
to 20 generations, though predominantly in the form of
stable colonies, constituted by eight of the original cells.
When comparing to life as an individual, colonies have lost
effectiveness regarding the processes of osmosis; hence ac-
cess to resources has decreased as a price for minimizing
risk to predation through increased size.

The aggregation can also arise from the adaptation
to other conditionalites: metabolic cooperation among

a e-mail: smangio@mdp.edu.ar

cluster-forming yeast allows them to grow at low densi-
ties prohibitive to growth of single-celled yeast [7]. Sim-
ilar situations also occur in larger scales. For example,
if the distribution of the resource and the environment
in general is homogeneous and sufficient, in the perma-
nent absence of a predator, it is expected that insects,
mammals or fish also tend to a homogeneous distribution.
The Nagumo model [1] offers an appropriate description
for this purpose. However, when subject to the possible
presence of a coexisting predator or the scarcity of the
resource (adverse biotic factors), individuals tend to form
stable clusters that seek to minimize the exposure to the
external dangers and maximize their access to food [8–20].

Within this scenario, we should ask ourselves which
is the mechanism that makes individuals come together.
Phenomenon, that on the other hand, could have been
created as a response to the adverse action of an exter-
nal factor (e.g., emergence of a predator in the biosystem
or a catastrophe that heavily limited or reduced the re-
source) [5]. It is clear that this response is due to differ-
ent mechanisms depending on the species concerned. Nu-
merous cases have been studied and reported, although
with stable global constraints, i.e., not in a crisis sce-
nario. They are reports that suggest a mechanism of at-
traction between individuals [21–24] and benefits due to
aggregation [8–20].

It is argued, with some supporting circumstantial evi-
dence, that the evolution of life and with it the species in-
volved would have been in jumps, as a response to eventual
crisis scenarios [5]. In this context, one would assume that
these mechanisms of attraction and their consequential
benefits have emerged in the same way.

Beyond how this happened, it seems that the response
to the crisis was to propel (looking at it along a large
enough time scale) a unifying force; or, to put it an-
other way, the favoring of the survival of those individuals
affected by such a mechanism of interaction that induces
them to come together. What follows is a dynamic that
destabilizes the homogeneous initial distribution and ends
with stable groups of individuals or with extinction. A
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dynamic that to the understanding of the authors of this
paper, is interesting to describe globally by an appropriate
mathematical model. We start with a situation previous to
the crisis, where the dynamics of the system is described
by the reduced Nagumo equation (1) with u1 = 0. Then,
we consider a crisis that triggers a mechanism of attraction
between individuals and observe the generated dynamics.
The result does not necessarily have to be the response to
subsistence, we only describe the structures that stabilize
when a mechanism of this kind is triggered. For example,
in the case of the aforementioned experiment [6], a param-
eter that regulates the mechanism of attraction between
individuals can determine the size of the colony; but the
size that will result, according to Darwin’s theory, will be
determined by the competition between the predator and
the colonies of different sizes; as well as, the competition
between the colonies for the resource.

A circumstance to consider is that the force that in-
duces the rapprochement between individuals must oper-
ate in a manner that prioritizes an optimal distance be-
tween them. An individual does not invade the space of
another; therefore the proposed attraction must act up
to a certain distance, beyond which they will repel each
other. It is known that this is what happens in the aggre-
gation of living beings [18–20,25,26]. In a previous report,
a similar mechanism acting in a context defined by the
Fisher model [27] has already been proposed.

First we describe the proposed model. Then we show
how the attraction between individuals leads to the desta-
bilization of a non zero population with homogeneous dis-
tribution (stable in the absence of attraction). It is true
that the latter seems to run counter to survival; how-
ever, we present as evidence relevant effects of the at-
traction between individuals on the dynamics and stabi-
lization of fronts, patterns, and solitons. Thus, if a crisis
pushes the system from the survival basin, causing a front
to move towards extinction, attraction between individu-
als can avoid extinction by promoting life in the form of
these structures.

All the analysis is done using the technique of reac-
tion diffusion equations modified by the effect of a cur-
rent caused by the attraction between individuals. The
latter is expressed in terms of a potential of the mean
field caused by the set of individuals in a given point
in space. We solved the equations describing the dynam-
ics by resorting to numerical calculation1. We also use
an analytical approach to evidence that, indeed, the at-
traction between individuals is that which enables the
formation and stabilization of the solitons.

2 Model

In applying the Nagumo model, we consider that each
individual requires a minimum vital space (a space that

1 The numerical scheme used in the simulations is the
method of finite differences with a temporary step to fit the
known numerical convergence criterion: dt

dx2 < 0.5. In partic-
ular, after corroborating that others more rigorous yield the
same result, it was used: dt

dx2 < 0.16.

cannot be invaded by another individual). Thus, we de-
fine u as the coverage of the space available (with u a
dimensionless variable normalized to 1). Under these con-
ditions, the dynamic that the Nagumo model imposes can
be expressed as:

u̇ = F (u) + ∂2
xu, (2)

where F (u) = u(u − αb)(b − u). In comparison with
equation (1), here we have:

1. let u1 = 0 and u3 = b (uniform attractors) and u2 = αb
(ejector), where α is known as the adversity factor,

2. re-scaled t by A and x by Ldiff =
√

D
A (diffusion

length),
3. exchanged the signs of two factors in F (u).

The ejector u = αb marks a limit for subsistence. When u
is less than this value, the system will evolve toward ex-
tinction and when it is larger, toward a population with
density u = b. The Maxwell point (when the free energy
for both attractors is equal) corresponds to α = 1

2 [28,29],
So that when the adversity α < 1

2 , the state u = b is more
favorable; and conversely, when α > 1

2 , the more favor-
able state is u = 0 (hostile environment). Two attractors
are hyperbolic points that can be connected by a solution
front (heteroclinic) between x = +∞ and x = −∞. The
front speed is constant and can be expressed as:

v = ± b4(α − 1
2 )

6
∫ ∞
−∞(∂xu)2dx

, (3)

where the sign ± indicates a front that connects u = 0 at
x = ∓∞ with u = b at x = ±∞. It is observed that the
front is static when α = 1

2 ; if α > 1
2 , the front is moving

toward extinction; and contrary, if α < 1
2 the front moves

toward u = b. At the Maxwell point the speed of the front
is zero and it can be expressed as:

us
∓ =

b

2

[
1 ∓ tanh

b

2
√

2
(x − xf )

]
. (4)

Our goal is to incorporate the effect of attractive
forces f(x) between individuals into the Nagumo model.
Our main assumption is that these forces do not en-
able individuals to interpenetrate their “vital spaces”, so
they must be repulsive at very short distances. Although
it might seem crucial to define the range rr at which
they become repulsive, it has been proved that as far as
rr � ra ≤ 1 (in units of Ldiff), then the average effect of
the repulsive forces becomes irrelevant [27].

The aggregating current can be written as:

JA(x) = ε0 u(1 − u) ∂xU,

where

– parameter ε0 represents interaction intensity,
– u(1 − u) takes into accounts that the flux is propor-

tional to the number of occupied cells and that the in-
dividuals can only migrate to “free cells of vital space”
(taking place at distances |x| ≤ rr),

http://www.epj.org


Eur. Phys. J. B (2013) 86: 390 Page 3 of 13

– we have defined the mean attracting force field on x –
in fact, a functional of u(x) – as:

U [u](x) = −
∫

dx′f(x′ − x)u(x′).

Due to the average character of U [u](x) (weighted more-
over by the population u(x) over “cells of vital space”),
the details of f(x) become less relevant than the value of
the midrange ra itself. We have tried two forms:

– a square shape f(x) = −f1 for rr ≤ |x| ≤ ra,
– a Gaussian shape

f(x) = − fo√
π

exp
(
− |x|2

r2
a

)
ra

,

without observing qualitatively relevant differences in our
calculations.

The next step is to incorporate the effect of the
attractive forces into equation (2) as −∇JA = −∂xJA:

u̇ = F (u) + ∂xxu − ε0∂x

[
u(1 − u)∂xU

]
. (5)

As observed, the signs of the last two terms of the above
expression are contrary, indicating competition between
the agglutinative effect caused by the attractive forces
and the homogenizing effect corresponding to the diffu-
sion processes. For some constructive effect (to support
the growth of any non homogeneity) to be possible it
is necessary that the third term (effect of the attractive
forces) exceeds the second (diffusion process) for any value
of the field u, and this is only possible if ε0 > 4 [27,30,31].

3 Stability of the u= b state under
the attractive forces

In order to perform the linear stability analysis and other
calculations described below, we write equation (5) in the
form of a reaction-diffusion equation with a variable dif-
fusion coefficient. To that end (and based solely on its
mathematical similarity) we define an effective diffusion
coefficient

Deff = 1 − ε0
∂xU

∂xu
u(1 − u),

where the first term represents real diffusion and the sec-
ond one expresses the effect of the attractive forces (which
create an aggregating current that opposes diffusion).
Equation (5) now reads

u̇ = F (u) + ∂x

[
Deff ∂xu

]
. (6)

The fact that Deff can be negative does not mean a vio-
lation of the second law of thermodynamics, since its role
is formal.

Fig. 1. Ωk vs. k for exponential interaction. Top curve:
ε0 = 22, middle curve: ε0 = 20.013 and down curve: ε0 = 18.
Other parameters: ra = 1, α = 0.5 and b = 0.9.

As stated above, we have tried both square and
Gaussian forms of interaction between individuals. How-
ever, since the results do not provide significant differ-
ences between the two, here we only present the ones
corresponding to the Gaussian form. By introducing

u = b + δφ exp(Ωkt) exp(ikx)

(where δφ represents the amplitude of a small perturba-
tion) into equation (6), we obtain first ∂xU

∂xu = exp(− r2
ak2

4 )
and then a linearization:

Ωk = −b2(1−α)−
[
1 − ε0 exp

(
−r2

ak2

4

)
b(1 − b)

]
k2, (7)

Ωk = 0 and ∂kΩk = 0 determine both, the first mode
that destabilizes u = b (km) and the limit curve that sep-
arates the stable region (where the solution u = b does
not reach destabilization by the perturbation) from the
unstable (where the solution u = b is destabilized by the
perturbation).

Figure 1 is a plot of Ωk vs. k for parameter values
close to the limit curve; in particular, we consider growing
values of ε0. It is noted that above a certain value of ε0,
there are a number of values of k for which a homogeneous
solution is destabilized. Our calculations result in:

k2
m =

−b2(1 − α) +
√

b4(1 − α)2 + 16b2(1−α)
r2

a

2

and the limit curve

ε0 =
b2(1 − α) + k2

m

k2
mb(1 − b)

exp
(

r2
ak2

m

4

)
.

Figure 2 shows the stability limit curve (SLCb, phase di-
agram) for ε0 vs. b corresponding to two extreme values
of ra (ra = 0.001 and ra = 1). It is noted that the dom-
inant form, even for ra = 1, is that corresponding to
the strongest approximation. For the particular case in
that the midrange is much less than the diffusion length
(ra � 1): k2

m ≈ 2b
√

1−α
ra

and ε0 ≈ 2+rab
√

1−α
2b(1−b) ≈ 2

2b(1−b) .
These approximations work well enough even for ra ∼ 1.
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Fig. 2. Phase diagram: ε0 vs. b. Top curve: ra = 0.001 and
down curve: ra = 1, α = 0.4.

Fig. 3. Fronts solutions for different values of the intensity of
interaction (10 = Ldiff). Up left: right to left: ε0 = 5 − 7 −
15, up right: ε0 = 18, down left: ε0 = 20 and down right:
ε0 = 21. Other parameters: b = 0.9 and α = 0.3, ra = 1.
Arrow indicates the direction of movement and the absence of
an arrow indicates the front is static.

It is clear that the solution u = 0 is always stable. If
u = b is destabilized by a non homogeneous perturbation,
the system can evolve towards u = 0 or stabilized fronts,
patterns or localized structures.

4 Fronts and patterns

Since equation (2) has front solutions which we already
know (see expression (4)), we introduced these solutions
in equation (5), we force the ends of the system in such a
way as to hold the front (u[±∞] = b/0 or u[∓∞] = 0/b)
and follow its evolution in numerical form. For ε0 = 0, the
width of the front is of the order of the diffusion length
Ldiff ; but, when we introduce the effect of attractive forces,
we also introduce another characteristic length (midrange
of interaction: Ldiffra). The scale of observation and the
value of both characteristic lengths suggest which param-
eter will be dominant (one of them, or both if their values
are of the same order).

Figure 3 shows stationary profiles for a wide range of
values of ε0 (Figs. 4 and 5 show expanded views of two

Fig. 4. Expanded view of fronts solutions for ε0 = 20
(10 = Ldiff). Arrow indicates the direction of movement.

Fig. 5. Expanded view of static fronts solutions for ε0 = 21
(10 = Ldiff).

fronts to see the detail of the continuity of the curves).
We mainly solved cases in which the midrange of the in-
teraction is of the order of Ldiff (ra ∼ 1). It is noted that
for values of ε0 between 0 and 5 (much below the stability
limit curve of the stationary solution u = b) the profiles
are similar to those already calculated for the case of ab-
sence of attractive forces (see expression (4)). But, while
for ε0 = 0 the front is static if α = αe = 0.5, when ε0 in-
creases, the static adversity αe decreases noticeably (this
happens even for values upon ε0 
 8).

Figure 6 shows (ε0 = 7) a static front (αe 
 0.247)
and two fronts moving in either direction (α = 0.246 –
survival – and α = 0.248 – extinction). Then, for values of
ε0 between 8 and 20, the front always evolves towards ex-
tinction, even for ε0 = 20, a value above the stability limit
curve (SLCb), although close to it. As seen in Figure 3,
for this range of values, an insipient oscillation arises im-
mediately behind the front (on u = b) that is dampened
over a short distance. This oscillation grows strongly as
ε0 increases. Then, when ε0 reaches 21, profiles change
abruptly. In this last case (ε0 = 21) the front is static and
separates a pattern of extinction, circumstances in which
the midrange of the interaction becomes the dominant pa-
rameter. Now we present a simple calculation applicable
to the observed case when ε0 < 8 and later we will deal
with the other more interesting case (ε0 > 8).
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Fig. 6. Fronts solutions for three different values of α
(10 = Ldiff): left: α = 0.248, middle: α = 0.246885 and right:
α = 0.246, ε0 = 7, b = 0.9 and ra = 1. Arrow indicates the
direction of movement and the absence of an arrow indicates
the front is static.

Suppose a front that moves with a speed v. If we de-
fine z = x−vt, Ep =

∫
F (u)Deff(u)du and we apply these

definitions to equation (6), then:

∂z

[
Ep(u) +

Deff(u)2

2
∂zu

2

]
= −vDeff(u)∂zzu.

Then, integrating over z between −∞ (u = b/0) and +∞
(u = 0/b) we get an expression similar to equation (3)
which incorporates the effect of the attractive forces
between individuals:

v = ±6
b4

[
24αbε(b − 1

3 + 1) − bε(24+b)
5 − 1

2

]
∫ ∞
−∞ Deff(u)(∂zu)2dz

. (8)

Here we define ε = ε0
∂xU
∂xu . For our analytical calculations,

we are approaching ∂xU
∂xu with a form factor, so that we

can consider ε as independent of u and x. Obviously, equa-
tion (8) does not enable us to calculate v, but from this we
can infer that the Maxwell point is modified and we can
understand the origin of this change. Although this expres-
sion does not accurately estimate under which conditions
the adversity will prevail on survival (ε0 = 7, analytical
value: αe = 0.3677 and numeric value: αe 
 0.247), we
know why when we increase ε0 static adversity reduces.

Figure 3 shows, for α = 0.3 and ε0 = 21, a static
front that separates a pattern of extinction. While for
ε0 lower, although always greater than 8 (for example
ε0 = 18) fronts are seen, that inexorably evolve toward
extinction. This result leads us to explore the features
of such a transition. Thus, we numerically calculate the
corresponding limit curve for this transition (TLC), from
which static pattern/(u = 0) fronts begin to stabilize in-
stead of (u = b)/(u = 0) fronts moving toward extinc-
tion. Surprisingly we found a reentrant behavior with ad-
versity, i.e., a window of values of α inside which these
static pattern/(u = 0) fronts stabilize. This indicates the

Fig. 7. Transition limit curve (TLC) and stability limit curve
for u = b: ε0 vs. α, b = 0.9 and ra = 1.

seemingly counterintuitive result that with a small enough
adversity, the system also evolves towards extinction.

Figure 7 shows such a transition limit curve, as well
as the corresponding stability limit curve for the homo-
geneous solution u = b (SLCb). We can observe that the
branch corresponding to the small adversities that lim-
its the transition between fronts is accompanied by the
SLCb. This leads us to think that this limitation is asso-
ciated to the destabilization of u = b. It is necessary that
the homogeneous solution u = b be destabilized to ensure
that a pattern can be sustained against extinction on a
static front. For values of ε0 well above SLCb (ε0 ≈ 25,
for α = 0.3), we note that the pattern/extinction fronts
stabilize quickly at a steady state, and this is done in a
space period that corresponds to the optimal mode or is
very close to the latter (km such that Ωk(km) is a maxi-
mum). While below this value, the pattern that coexists
with the extinction after quickly reaching a state; but this
time, quasi-stationary (corrections on u of the order of
10−10δt, being δt the temporary step), is subjected to an
intricate process of alternating long times characterized
by imperceptible changes in the profile (with corrections
on u in the same order as the already mentioned) and
notable transformations carried out in a very short time.
We believe that this process can be associated with the
finiteness of the system. When we approached SLCb, the
bandwidth that delimits the destabilizing modes is signif-
icantly reduced and could cause the profile to not quickly
fit to one of those modes.

Figure 8 shows curves Ωk vs. k for values of ε0 be-
tween 21 and 30. As can be seen, although the optimal
mode does not change too much with ε0, the bandwidth
of the destabilizing modes does. The dynamics that the
limitation of the system causes can be interesting if we
consider that real systems are finite.

Figure 9 shows a front previous to one of the mentioned
transformations and another after this transformation.It
is noted that one of the localized structures that make up
the pattern has been eliminated, and that thereafter, the
layout of these is more regular.

http://www.epj.org
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Fig. 8. Ωk vs. k for square interaction. Top to down:
ε0 = 30 − 26 − 24 − 22 − 21. Other parameters: ra = 1, α =
0.3 and b = 0.9.

Fig. 9. Fronts solutions for ε0 = 22 (10 = Ldiff), α = 0.3,
b = 0.9 and ra = 1. Up: previous to the transformation, down:
after the transformation.

Figure 10 shows the details of what happened dur-
ing the transformation. The above graph shows that two
neighboring structures are slowly approaching. The mid-
dle graph shows a rapid transformation that occurs when
the structures collide (the time involved in this process is
much less than that corresponding to what is shown in
the above graph). The graph below shows the result of
the transformation. Only one of the two structures sur-
vives the encounter. In order to monitor in an objective
and measurable manner, so much so this process as the
degree of proximity to the stationary state we adopt the
square of the area under the time derivative of the profile
(u̇) as a reference parameter. It is clear that this reference
parameter must be zero for the steady state.

Figures 11 and 12, respectively, show the reference pa-
rameter following the evolution of the processes described
above and an enlargement of the peak observed in the pre-
vious figure. We corroborate that the peak corresponds
to the displayed transformation. It is noted that the ra-
tio between the time of transformation (middle graph of
Fig. 10) and that corresponding to the elapsed time dur-
ing the whole process (between above and lower graph of
Fig. 10) is of the order of 10−5.

Fig. 10. Expanded view of fronts solutions for
ε0 = 22 (10 = Ldiff), α = 0.3, b = 0.9 and ra = 1. Up:
prior to the transformation, middle: during the transformation
and down: after the transformation.

Fig. 11. Reference parameter versus time recording the trans-
formation. t represents the number of steps used for numerical
calculation (for this case, stages of δt = 0.001).

Fig. 12. Expanded view of reference parameter vs. recording
the transformation. t represents the number of steps used for
numerical calculation (for this case, stages of δt = 0.001).

http://www.epj.org
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Fig. 13. Reference parameter R vs. time recording the slow
movement of a structure. t represents the number of steps used
for numerical calculation (for this case, stages of δt = 0.001).
R is multiplied by 108.

These rapid transformations are happening one by one
during the evolution profile (but with very long intervals
between them), causing the number of structures, over a
very long time, to reduce. We emphasize that the profile is
quasi-stationary; that is to say, except during the transfor-
mations, changes occur very slowly. These changes consist
in the displacement of two structures that are approaching
or of a single one that is moving. It is necessary to clarify
that such structures are equal among themselves and do
not change, neither their shape nor their size, while mov-
ing (only changes related to their movement and which
are imperceptible if contrasted with those of the transfor-
mations); and also, that after a collision in which one of
them is eliminated, the one that survives has the same
shape and size as the previous one. It is clear that the
above description relates to solitons. The slow movement
of these solitons is recorded by the reference parameter as
an extremely low oscillation of the amplitude mounted on
a slower curve variation.

Figure 13 shows the details for this oscillation when
only one structure is moving. We emphasize that dur-
ing this process the only change to the profile is that
associated with the structure that moves.

Figure 14 shows two stages of this movement that cor-
responds to the beginning and end of the curve shown
in the figure above. We interpret that the oscillation of
the reference parameter corresponds to increases and de-
creases in the population belonging to the structure or
its immediate surroundings. This suggests that the move-
ment is that of a worm, but while it moves, it varies in
length.

Finally, after a long time the profile reaches a steady
state consisting of a regular array of structures coexist-
ing with extinction or, for lower intensity of interaction,
only some localized structures distributed irregularly. We
also found that depending on the mode of excitation of
the front (introducing profiles obtained for other values
of the parameters) the dynamic that is later generated
can lead to a different result: a stationary stabilized pat-
tern/extinction front, in another of the excitable modes

Fig. 14. Two stages of a structure moving that correspond
with the beginning and the end of the curve shown in Figure 14.
Right structure: t = 21 600δt and left structure: t = 98 000δt.

Fig. 15. Stationary Fronts and Localized structures solutions
for different ε0 excited from fronts (10 = Ldiff); left up: ε0 = 30,
left middle: ε0 = 26, left down: ε0 = 25, right up: ε0 = 22,
right middle: ε0 = 18, right down: ε0 = 7; α = 0.3, b = 0.9 and
ra = 1.

(able to destabilize u = b) or one or two localized struc-
ture coexisting with extinction. This last can happen when
the frequency of collisions between structures is so large
(each collision eliminates one of them) that the number is
not enough to construct a pattern with excitable modes.

Figure 15 shows a series of these already stationary so-
lutions for values of ε0 which range from 30 to 7 (α = 0.3,
b = 0.9 and ra = 1). Some of them are fronts and other
only localized structures irregularly distributed. In par-
ticular, the last curves (ε0 = 7 and ε0 = 18) may seem
surprising, since for these values of intensity of interaction,
the homogenous solution u = b is stable and in addition
we are under the TLC. To find this solution, we excite
the fronts introducing into the system another solution
front, which was obtained for a case above TLC. Done
in this manner, the profile evolved in a similar way to the
cases already described earlier (long periods with localized
structures moving very slowly interspersed by eventual
rapid transformations when two of them collide), although
after a long time, the state declined toward some localized

http://www.epj.org
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Fig. 16. Stationary patterns obtained by applying periodic
conditions and provided that the spatial mode of the per-
turbation fits to the length of the system (10 = Ldiff); up:
ε0 = 30, from a small spatially harmonica perturbation of so-
lution u = b. Middle: ε0 = 14, from profile of those obtained
for the values of the parameters above SLCB. Down: ε0 = 9,
from profile same as the previous. Other parameters: b = 0.9,
α = 0.3 and ra = 1.

structures (above a given value of ε0) or extinction (below
this value).

We also try to excite patterns. To do so, we introduce
a small spatially harmonic perturbation on u = b selected
from among the band of excitable modes (Ωk(k) > 0) and
apply periodic boundary conditions. For values of param-
eters above TLC (see Fig. 7) and hence also the SLCB,
provided that the spatial mode of the perturbation fits to
the length of the system, a pattern quickly stabilized with
the same excited mode.

Figure 16 shows stationary patterns for different ε0.
As can be seen, the structures that make up the patterns
show differences between them. In particular, for ε0 large,
these are narrower and separated by a greater unpopu-
lated space. While when ε0 is reduced unpopulated spaces
become narrower and the pattern takes on a more har-
monic profile. In the figure, two of the three patterns that
are displayed correspond to values of the parameters be-
low SLCB. These last were excited by entering a profile
of the obtained for values of the parameters above SLCB
into a similar initial condition. That is to say, for this re-
gion of parameters, in addition to the two homogeneous
solutions, stable patterns can also occur.

Figure 17 shows a curve (ε0 vs. α) that indicates the
region of parameter values where one of these patterns can
stabilize.

Generally, when applying periodic boundary condi-
tions, it is implicitly assumed that the system is large
enough to qualify as infinite. This means that there are
no limitations on the excitation of modes by the size of
the system. However we thought it interesting to study
what happens when one excites the system by inserting a
small spatially harmonic perturbation, also about u = b,
but with a mode that does not fit the length of the sys-
tem and values of ε0 near SLCB. As we expected, based
on the results obtained for fronts, it was a more complex

Fig. 17. Stability limit curve for patterns and stability limit
curve for u = b: ε0 vs. α, b = 0.9 and ra = 1.

dynamic. Above a certain value of the intensity of inter-
action (ε0 ≈ 26 for α = 0.3) a pattern stabilizes quickly
(though not as much as in the previous case) in an ex-
citable mode usually different from that of the pertur-
bation and with some minor regularity defects. However,
below this value of ε0, depending on the mode of the ex-
citation, different evolutions can occur. If such a mode
does not fit the length of the system, what results is: first,
in a short initial time, a self-constructing pattern occurs
with characteristics similar to the previous but not steady.
Later two fronts between patterns emerge (different val-
ues of k) that are propagated from the ends/center (k of
the stationary profile) toward the center/ends (k of initial
pattern) of the system. The mode k of the stationary pat-
tern is included in a slightly enlarged band of excitable
modes (it can be a stabilizing mode to just outside that
band).

Figure 18 shows different stages in the evolution of
one of these fronts. The dynamics adds another feature
for even lower ε0 (ε0 ≈ 22/24 for α = 0.3) and same
conditions as above. After the spread of the fronts, the
state of the patterns remains as quasi-stationary. What
follows is similar to that described for fronts under the
same conditions: a quasi-stationary state characterized by
slow-moving structures interrupted by eventual collisions,
after which, only one of them survives. Finally, stabilizing
the pattern in excitable mode (including those outside the
band, but close to the edge) or stabilizing a few localized
structures arranged irregularly.

Figures 19 and 20, respectively, show three profiles cor-
responding to the first stage of the propagation front and
six profiles corresponding to the second stage described.
Depending on the excitation mode, it may also occur
that the phenomena described as two successive stages
occur simultaneously. That is, at the same time that the
fronts propagate collisions also occur between structures
in the profile away from the fronts. As before, we believe
that these dynamic changes are associated with the size
of the bandwidth of excitable modes. When the band-
width is narrower the result becomes more dependent on
the limitations imposed by the finiteness of the system
and therefore, increases the possibility of a more complex
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Fig. 18. Different stages of evolution for pattern fronts by
applying periodic conditions, provided that the spatial mode
of the perturbation does not fit to the length of the system
and excited from a small spatially harmonica perturbation of
solution u = b (10 = Ldiff); left up: t = 9 × 108δt, left middle:
t = 207×108δt, left down: t = 279×108δt, right up: t = 369×
108δt, right middle: t = 414×108δt, right down: t = 495×108δt
(stationary state). Parameters values: ε0 = 25, b = 0.9, α = 0.3
and ra = 1.

dynamics than that which can change the result of pat-
terns to localized structures. It is clear that forcing the
periodicity of a finite system can represent an artificial
situation, however, it seems to us that the dynamics that
this generates is rich enough to deserve mention. A more
realistic situation is to set boundary conditions fixed for u
(any value between 0 and 1). So therefore, we numerically
solved cases like these and got the same results as those
described above. We highlight that when referring to the
finiteness of the system we are not saying that the com-
plexity of the described dynamics is very sensitive to the
size of the system. We doubled and quadrupled the size of
the system and we did not appreciate loss of complexity in
the dynamics. It seems that what triggered this dynamics,
beyond the size of the system, is the mismatch of then non
homogeneity with the boundary conditions.

5 Localized structures

The coexistence of patterns and homogeneous solu-
tions suggest the possibility of localized structures
can stabilize [33,34]. In the previous section we note
some cases where quasi-stationary patterns or pat-
tern/extinction front arise as numerical solutions of equa-
tion (5), but that in a very long time they slowly evolve to-
ward stable localized structures with mobility (solitons) to
finally be stationary. These types of solution for the origi-
nal Nagumo model (see Eq. (2)) are not stable [28,29,32].

We propose a more in depth study, of the possi-
bility that attractive interactions can stabilize localized
structures.

To explore this possibility we did a rough calculation
using a technique already known by applying the condition
of solubility [28,29,32–34]. After a linearization of equa-
tion (6) is obtained: φ̇ = £φ, where φ is a non homoge-

Fig. 19. Different stages of evolution for pattern fronts by
applying periodic conditions, provided that the spatial mode
of the perturbation does not fit to the length of the system
and excited from a small spatially harmonica perturbation of
solution u = b (10 = Ldiff); up: t = 18×108δt, middle: t = 27×
108δt, down: t = 54×108δt (quasistationary state). Parameters
values: ε0 = 22, b = 0.9, α = 0.3 and ra = 1.

Fig. 20. Different stages of evolution for an array of local-
ized structures originating from a quasi-stationary patterns by
applying periodic conditions, provided that the spatial mode
of the perturbation does not fit to the length of the system
and excited from a small spatially harmonica perturbation of
solution u = b (10 = Ldiff); up to down: t = 54 × 108δt,
t = 108×108δt, t = 198×108δt, t = 288×108δt, t = 558×108δt
and t = 648 × 108δt. Parameters values: ε0 = 22, b = 0.9,
α = 0.3 and ra = 1.

neous small perturbation and £ a linear operator which
has the form:

£ = ∂uFus

+ ∂x

[
Dus

eff∂x + ∂uDus

eff∂xus
]
,

representing us the stationary solution front of equa-
tion (6). For this calculation we again consider ∂xU

∂xu as
a form factor, so that we can assume ε independent
of u and x.

Since the operator £ accepts as eigenvectors to ∂xus,
with eigenvalue zero (£∂xus = 0); and that for values of
ε0 below the limit curve of stability corresponding to the
homogeneous solution u = b there are fronts that have the
appearance of the solutions of equation (2), in this case,
we can approximate us ≈ us∓ (see expression (4)) and
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then apply the referred technique [28,29,33,34] to the case
above.

Thus, we propose as an approximation for the localized
structure: u = us

+ + us
− − b + φ, with φ = η∂xus∓, being

η a small parameter and

us
∓ =

b

2

[
1 ∓ tanh

b

2
√

2

(
x − x±

f

)]
.

By identifying with x±
f , the position of each front, with

x+
f > x−

f .
Then, we define the width of the localized structure as

Δ = x+
f − x−

f , and adopt Δ � Ldiff and Δ � ra. This

last enables us to approach: us± 
 b[1− e
− b√

2
(Δ+x−x±

f
)] in

the environment of x∓
f , being e

− b√
2

Δ as small as η. Also,
as in the aforementioned reports [28,29,32], we considered
α = αe + δα, with δα ∼ η ∼ e

− b√
2
Δ.

Finally, introducing u in equation (6), applying the
above considerations, and then the condition of solubil-
ity (taking into account that the eigenvectors ∂xus∓ only
affect the environment of the fronts), we obtain:

Δ̇ 
 −2
√

2bδα + 12
√

2b

[
εb

2.62 − 2b

8
+

3
4
αe − 9

8

]
e
− b√

2
Δ

.

(9)
Then, since we are only interested in the role of the attrac-
tive forces in the stabilization of the localized structure,
we consider the strongest approximation:

e
− b√

2
(Δ+x−x±

f ) 
 e
− b√

2
Δ

and so,

Δ̇ 
 −2
√

2bδα +
√

2b
[
εb − 12(1 − αe)

]
e
− b√

2
Δ

. (10)

It can be seen that, indeed, the attractive forces tend to
stabilize localized structures and succeed when ε is large
enough. This is evidenced by the fact that conditions exist
for a stationary solution Δs and the slope of f(Δs) is less
than zero when this happens (Δ̇ = f(Δ)).

It is clear that the range of application of this result
is limited by the assumptions made; nevertheless, it is a
significant indication that the attractive forces may be
sufficient to stabilize localized structures in the Nagumo
dynamic.

It can be observed that the stationary solution corre-
sponds to δα > 0, which tends to cause the collapse of
the fronts and therefore extinction. On the other hand,
the effect of the attractive forces is to contain such a col-
lapse, stabilizing the localized structure. While the dy-
namics of Nagumo drives individuals toward extinction,
they achieve survival by trying to stay in the heart of the
structure (a state energetically favorable if we compare it
with individuals located at the interface).

In references [28,29,32], it was reported that the in-
corporation of a non local term to the Nagumo non-
linearity causes rich dynamics that among other things

Fig. 21. Localized structure just above its stability limit curve:
u vs. x (40 = Ldiff); ra = 2.1, ε0 = 15.2 and α = 0.5.

generates the stabilization of localized structures. In par-
ticular, the non-locality affects the cubic term of Nagumo
non-linearity. This term expresses the Allee effect [2–4]
(competition for resources that causes saturation in the
population density).

In the present report, we show the effect of a phe-
nomenon contrary to the competition: a collaboration (at-
traction between individuals). We show how this phe-
nomenon drives a current JA(x) (which also includes a
non-local term – ∂xU) that leads to similar phenomena of
self-organization.

It is important to emphasize that for the present model
self-organization is caused by a current driven by attrac-
tive forces and not by non locality of the phenomenon. In
fact, in the approximation used the non-local effect has
been minimized to a mere constant form, being the effect
relevant to the stabilization of the localized structures, the
attractive forces in opposition to the phenomenon of diffu-
sion. This view is reinforced by the fact that for the model
that is being reported in references [28,29], the results
strongly depend on the type of kernel used to describe
the non-locality of the phenomenon [35], while that for
the present model this is not the case.

To check this result, starting from u = us
+ + us

− − b,
we numerically calculate the evolution of u(x), whose
dynamics is governed by equation (5). Thus, we find a
region of parameters within which localized structures
stabilize.

Figure 21 shows a case just above the limit curve
(SLCLS) below which these structures are destabilized
and evolve rapidly toward extinction.

Figure 22 shows an expanded view of various localized
structures just above and following the course of such limit
curve for different values of ra ∼ 1. It can be observed that
when the midrange of interaction increases the localized
structures become taller and grow wider.

Figure 23 shows another expanded view of various
localized structures, now ra = 1 and α = 0.5 remain
constant, ε0 increasing from 13.8 to 30. It can be seen
that, under these conditions, when ε0 increases, the local-
ized structures are more square and taller, although their

http://www.epj.org


Eur. Phys. J. B (2013) 86: 390 Page 11 of 13

Fig. 22. Expanded view of localized structures just above its
stability limit curve: u vs. x (40 = Ldiff); α = 0.5. Top to
down: ra = 2.1 − ε0 = 15.2, ra = 1.95 − ε0 = 13.84, ra =
1.8 − ε0 = 13.00, ra = 1.5 − ε0 = 13.15, ra = 1.1 − ε0 = 13.66,
ra = 0.5 − ε0 = 14.8.

Fig. 23. Expanded view of localized structures for different
ε0 starting from its stability limit curve: u vs. x (40 = Ldiff);
b = 0.9 and α = 0.5, ra = 1, and down to top: ε0 = 13.8−14−
15 − 20 − 25 − 30.

average width does not vary significantly. As expected, the
last depends on the midrange of the interaction. In all ob-
served cases the average width of the localized structure
was approximately equal to the double of ra.

Figure 24 shows the limit curve (SLCLS) for a wide
range of values of ra. This figure also shows the stability
limit curve (LCb) corresponding to the solution u = b. It
can be seen that, for smaller values of ra, localized struc-
tures are stabilized only above this last curve (SLCb),
while that for higher values of ra such structures can
stabilize below and above this curve.

Figures 25 and 26 show the corresponding curves
(SLCLS) by varying the parameters b and α, together with
the stability limit curves corresponding to u = b. Here we
can also see that both limit curves intersect. If b or α are
sufficiently large, localized structures can stabilize below
and above the stability limit curve for u = b.

We also calculate cases with ra very small (ra ∼ 0.001)
that, of course, required much more computation time. As
Figure 24 suggests, it was necessary to consider a value

Fig. 24. Phase diagram for localized structures: ε0 vs. ra;
b = 0.9 and α = 0.5.

Fig. 25. Phase diagram for localized structures: ε0 vs. b;
α = 0.5 and ra = 1.

Fig. 26. Phase diagram for localized structures: ε0 vs. α;
b = 0.9 and ra = 1.

of strength of attractive forces large enough to achieve a
stable localized structure (ε0 = 30).

Figures 27 and 28, respectively, show one of these
cases, and an expanded view of the same case added to
another with different adversity (α = 0.4 and α = 0.5).
A tendency to decrease the height of the peak with the
increase of the adversity can be observed. Already for
α = 0.7 localized structures destabilize and evolve towards
extinction.
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Fig. 27. Localized structure: u vs. x (40 000 = Ldiff);
ra = 0.001, ε0 = 30, b = 0.9 and α = 0.4.

Fig. 28. Expanded view of localized structures for two differ-
ent α: u vs. x (40 000 = Ldiff); ra = 0.001, ε0 = 30, b = 0.9
and, top to down: α = 0.4 and α = 0.5.

Another goal that we set for ourselves was to study
the possibility of more complex localized structures, i.e.,
constituted by multiple simple structures. To do this, we
again excite the system starting from u = us

+ + us− − b,
but increasing Δ. To achieve multiple structures we had
to consider values of ε0 higher than those we were using
(ε0 ≥ 40).

Figure 29 shows several solutions for the same set of
values of the parameters that characterize the model. To
obtain these different solutions, we only changed Δ, which
is a parameter that only characterizes the profile with
which the system is excited.

6 Conclusions

As mentioned in the introduction, a crisis can give origin
to gregarious behavior. Several studies support the fact
that this type of behavior is based on physically or chemi-
cally specific mechanisms of each species [21–24]; but that,
generically, it can be represented as a force that induces
individuals to join [27]. We mathematically represent this
effect and add it to a system governed by the Nagumo
dynamic. Since the agglutinating current caused by such

Fig. 29. Multiple localized structures excited from u =
us

+ + us
− − b with different values of Δ (40 = Ldiff). Left

top to down: Δ = 100, 200, 400, 500. Right top to down:
Δ = 600, 700, 800, 1000; ra = 1, ε0 = 40 and α = 0.3.

attractive forces opposes the diffusion process, if the for-
mer are sufficiently strong, they can sustain the growth
of a non homogeneous fluctuation. We show that this is
indeed true by carrying out the corresponding analysis of
stability. Actually there is a band of destabilizing modes
of the homogeneous solution u = b.

Hasty vision could lead us to think that the existence
of these modes could promote extinction. It was quite the
opposite. The attractive forces promoted the stabilization
of static pattern/extinction fronts, patterns and localized
structures of various complexities.

It is clear that if the homogeneous solution u = b
is stable, the attractive forces between individuals do
not promote a benefit for survival. However, a crisis can
cause such large fluctuations, that they can destabilize a
homogeneous solution. In this case, individuals who have
a mechanism of mutual attraction can survive by form-
ing patterns and localized structures that coexist with ex-
tinction or other contexts. Moreover, we show that if the
attraction between them is not sufficiently strong, there
is a dynamic in which localized structures compete for
subsistence.

In particular, we show how these structures (solitons)
move to attract each other, but when they collide, after
that, only one structure survives. We cannot say that the
structure that survives is exactly one of those prior to the
collision, rather it seems to be a new structure, product
of the other two and identical to the previous.

In addition, previous to this dynamic, depending on
excitation, we also observed fronts between patterns char-
acterized by different modes k. We believe that this dy-
namic is associated with the finiteness of the system, i.e.,
that it is driven by the need that the structures fit into the
system available for the life of the population. However, if
the system is infinite and solitons are close enough, they
also attract and finally they coalesce (numerical tests were
carried out to check this).

Similar phenomena have been observed in other con-
texts, particularly in parametrically driven systems [36].
However, that is a different phenomenon than what is
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reported in this paper. First of all, they do not belong to
the same class of universality. This is reflected in the re-
markable differences between the equations that describe
both dynamics. In reference [36] the parametric excita-
tion of the solitons is strictly necessary for these to arise
and be stabilized. In our model the solitons arise spon-
taneously by the perturbation of a homogeneous solution
with a weak spatial oscillation and then, they are pro-
moted and stabilized by the attractive forces between in-
dividuals. In [36], intrinsic frequencies strongly related to
the response that is given by the system due to the ef-
fect of parametric excitation, are reported. In our model,
there are no such frequencies; there are a band of ex-
citable modes affected by the attraction between individ-
uals. What they have in common is that in both cases the
solitons interact among themselves in a similar way. There
are pairs that are attracted to each other which slowly ap-
proach and then coalesce, with finally, only one identical
to the previous ones.

Summarizing, we consider a population of individu-
als governed by the dynamics of Nagumo model and we
incorporate a current that expresses attraction between
individuals. After a stability analysis, we calculate the
dynamics of this system and as a result get static pat-
tern/extinction fronts for a continuous range of values of
the adversity, as well as solitons coexisting in the same
system. Before achieving such coexistence we observed a
surprising dynamic that demonstrated to us that these at-
tract each other until only one of the two survives after
a collision. The movement of these solitons is very slow
in comparison with the duration of each collision. After
a long period of time, during which several of these colli-
sions occur, finally, a steady state is reached in which the
surviving solitons coexist.

I acknowledge financial support from CONICET, Argentina;
and UNMdP, Argentina, EXA603/12. I also acknowledge to
Srta. Natalia Bettiol for great help with the English language.
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