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Real polarizers and faster than light signaling
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Abstract

An imperfection of real polarizers (as opposite to ideal ones) seems to provide a method for faster than light signaling, threatening the
structural stability of quantum field theory. The cause of the unphysical result is explained, and the problem of structural stability is
solved.
� 2007 Elsevier B.V. All rights reserved.
A property required to any acceptable description of the
physical world is that the unavoidable imperfections in the
realization of a gedankenexperiment do not affect essential
results. More precisely, what we expect is: if an experiment
is performed in conditions having a small deviation from
the ideal case, the observed results will also show a small
deviation from the predictions obtained for that ideal case.
This property is generally named ‘‘structural stability’’. The
name comes from the theory of bifurcations [1], and it
refers to the invariance of the configuration of critical
points of a family of functions, against changes on their
parameters. In the same context, the term ‘‘unfolding’’
names the expression of the family of functions which
results to be structurally stable. The unfolding is reached
by adding extra terms to the expression of the family of
functions. It is said that the unfolding stabilizes the family
of functions at the particular critical point under study.

In elementary quantum mechanics (QM), polarizers of
light are represented as projectors. Hence, if two ideal, par-
allel polarizers are successively applied to an arbitrary input
state, the probability of detecting a photon on the deflected
channel of the second polarizer is zero. With real polarizers,
instead, this probability is small but not identically equal to
zero (see Fig. 1). As the state leaving the first polarizer is, by
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definition, joi, it follows that the output states of a real
polarizer, {joi, jei}, are such that jhojeij2 = e2 (we will
assume that e is a real number for simplicity), where e2 is
the probability of observing a photon in the deflected
channel of the second polarizer. Note that this result arises
from elementary QM notation and properties only.

If e2 is small enough to be undetectable (1 + e2 � 1) the
imperfection is irrelevant. But let us consider now the fully
symmetrical Bell state of two photons:

juþinputi ¼ ð1=
p

2Þðjxai � jxbi þ jyai � jybiÞ ð1Þ

which is emitted towards two remote stations, named as
usual, ‘‘Alice’’ and ‘‘Bob’’. Bob performs a measurement
on his photon by using an ideal polarizer oriented at an an-
gle h from the x-axis. The output states are named {j+i,
j�i}, and h�j+i = 0 as usual. Alice, instead, has a real,
imperfect polarizer oriented parallel to the x-axis (see
Fig. 2). The two-photon state after the polarizers is:

juþoutputi ¼ ð1=
p

2Þfjoi � ðcos hjþi � sin hj�iÞ þ jei
� ðsin hjþi þ cos hj�iÞg ð2Þ

Note that this state is normalized. The probability that Bob
detects a photon in the detector ‘‘+’’ is:

Pþ ¼ jhþjuþoutputij
2 ¼ jð1=p2Þðjoi cos hþ jei sin hÞj2

¼ ð1=2Þ � ð1þ 2e cos h sin hÞ ð3Þ
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Fig. 1. Difference between ideal and real polarizers. In the real case, the
amplitude probability of the deflected state after the successive application
of two identical and parallel polarizers is not strictly equal to zero, but
proportional to e. It is assumed that 1 + e2 � 1. Note that, in this context,
the first polarizer defines the states {joi, jei}.

Fig. 2. Scheme of the setup that seemingly performs faster than light
signaling (non-symmetrical setup). The ideal polarizer (Bob’s) is rotated
an angle h respect of the real polarizer (Alice’s).
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In the same way, the probability of detection in the detec-
tor ‘‘�’’ is:

P� ¼ jh�juþoutputij
2 ¼ ð1=2Þ � ð1� 2e cos h sin hÞ ð4Þ

Note that P+ + P� = 1 as it must be. But the perfect ana-
lyzer at Bob’s station shows an unbalance, at first order in
e:

R � Pþ=P� � 1þ 2e sin ð2hÞ ð5Þ
So that Alice would be seemingly able to send to Bob mes-
sages instantaneously, by modulating the value of e or by
rotating her polarizer. The measurable unbalance of Alice’s
real polarizer is of order e2, which is not observable by
hypothesis. In a symmetrical setup with two real polarizers
at 45� of each other, the unbalance at Alice’s side would be:

RjAlice � 1þ 2eBob þ higher orders inðeAlice; eBobÞ; ð6Þ
And symmetrically for Bob, so that they would be able to
send messages in both directions instantaneously, and
simultaneously, using the same set of entangled states!

In many real world polarizers the value of e2 is far from
being negligible, but this is not relevant. The relevant point
is: an infinitesimally small imperfection does not affect the
QM results, but it does affect instead, and in a non-infini-
tesimal way, the compatibility of QM with the special the-
ory of relativity (SR).

The existence of faster than light signaling obviously is a
wrong result. If it were correct, the compatibility between
QM and SR would be broken. As a consequence, quantum
field theory (which is based both in QM and SR) would be
at stake.

Even though QM have always been suspected to be in
contradiction with SR because of the nonlocal properties
of entangled states, all attempts to exploit these nonlocal
properties to send signals have failed, and SR and QM
have enjoyed what Shimony has called a ‘‘peaceful coexis-
tence’’ [2]. These words suggest a precarious situation, but
there are good reasons to believe that the ‘‘peaceful coexis-
tence’’ is based on firm grounds. In our opinion, the most
sounding reason that ensures compatibility between QM
and SR is the equivalence between the gauge invariance
of the electromagnetic field and the phase invariance of
the wavefunction (see, for example, Ref. [3]). Besides, expli-
cit proofs that the non-locality of entangled states cannot
be used to achieve signaling can be found in Refs. [4,5],
and they are briefly reviewed in the Appendix.

We can rely on the existing demonstrations of compati-
bility between QM and SR for ideal realizations: perfect
polarizers, perfect principle of superposition (see below),
perfect phase invariance, etc. But what if there is an infini-

tesimal deviation from ideal conditions? A physically
acceptable theory must be ‘‘robust’’ (i.e., structurally sta-
ble) against these deviations. As we have just seen, the com-
patibility seems to be broken if e is not strictly equal to
zero. It can be immediately shown that also the proofs in
Refs. [4,5] fail if e 5 0 (see Appendix).

Therefore, the compatibility between QM and SR, and
hence quantum field theory, appear to be structurally
unstable at the point (in parameters’ space) e = 0. This is
an unacceptable result. The problem now is to demonstrate
that QM and SR remain compatible even if e 5 0.

A solution, that comes immediately into the mind, is
that the effect of signaling arises from an erroneous nota-
tion of the output states of the imperfect polarizer. An
approach following the quantum description of the beam
splitter [6] writes the output states in terms of four orthog-
onal output modes. In this way, one always gets e = 0. For
several reasons [7], we do not find this explanation fully
satisfactory. The main reason is that it does not solve the
general problem (i.e. regardless the cause of the imperfec-
tion) of stabilizing the theory at e = 0.

It has also been argued that the error in the seeming
mechanism of signaling presented here is that only strictly
unitary transformations (that is, that e must be always
strictly equal to zero) are acceptable in QM. But this argu-
ment is not really a solution. Banning even an infinitesimal
deviation from e = 0 is equivalent to accepting that there is
no way to stabilize the theory at that critical point. Giving
up the requirement of structural stability is not only dan-
gerous but, as we will see, unnecessary, for the theory
can indeed be stabilized, and at a negligible cost.
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It is worth mentioning here, as an illustration, another
example of structural instability of the compatibility
between QM and SR. An essential property of QM is that
it is a linear theory. But, some nonlinear extensions of QM
appear unavoidable. The theories of decoherence often
assume the interaction with an environment. This interac-
tion naturally leads to a nonlinear Schrödinger equation,
which does allow signaling. This problem has been solved
by the addition of a noise term, which is a natural conse-
quence of an interacting environment [8]. Hence, using
the wording of bifurcation theory, we may say that quan-
tum field theory has been stabilized by the noise term, at
the critical point (in the parameters’ space) where that non-
linearity vanishes. Also, we may say that (QM + SR +
noise term) is the unfolding of that critical point. In short,
structural stability imposes noise (fluctuations) to be intro-
duced whenever decoherence (dissipation) is present. This
sounds most reasonable. However, it should be remem-
bered that, in general, stabilization of a theory might imply
its complete reformulation.

Let us summarize the situation at this point. If one
hypothesizes a small (actually infinitesimal) non-orthogo-
nality of the output states of a polarizer, even if it is other-
wise undetectable (/e2), the compatibility between QM and
SR collapses (signal / e). This implies that quantum field
theory is structurally unstable, that is, physically untenable.
This is a wrong result, no question about this. The right
questions are: what does stabilize the theory, and why?

The acceptable answers cannot use ideas or properties
belonging to a field theory. Otherwise, one may fall into
a logical loop. Electromagnetism (and Optics) imply or
include SR, because of the Lorentz invariance of the Max-
well’s equations. One may believe that is demonstrating
something that one has, actually, assumed. That is why a
safe demonstration of the compatibility between QM and
SR must use elementary QM concepts only. This is what
has been achieved in the Refs. [4,5] for the case e = 0. As
we show, this is also possible even if e 5 0.

We present the answer we found below.
Note that a real polarizer transforms an input state

jwii = ajxi + bjyi into an output state jwoi = ajoi + bjei.
This output state is, in general, not normalized:

hwojwoi ¼ jaj
2 þ jbj2 þ a�bhojei þ ab�hejoi ð7Þ

For some particular case (as the state juþoutputi is) the output
state is normalized, but its modulus changes if the axes are
rotated, because in (7) the modulus is a function of the
product of the original components. Regardless any consid-
eration about compatibility with SR, this feature is unac-
ceptable. It is unacceptable even inside the framework of
elementary QM. In order to get the modulus of the output
state independent of the axes’ choice, it must be ‘‘renormal-
ized’’. From elementary geometry, the correction for an
arbitrary input state is:

jwii ¼ ðajxi þ bjyiÞ ! jwoicorrected

¼ jwoi � a�bhojeijwoi=ðjaj
2 þ jbj2Þ ð8Þ
The modulus of jwoicorrected is independent of the axes’ ori-
entation, as required. This equation can be regarded as a
correction to the standard QM formalism, to include infin-
itesimal non-unitary components. Now, we show that this
correction term also eliminates signaling.

Applying Eq. (8) to the state hþjuþinputi:

hþjuþinputi ! hþjuþoutputicorrected

¼ hþjuþoutputi � e cos h sin hhþjuþoutputi ð9Þ

Then:

Pþ ¼ jhþjuþoutputicorrectedj
2

¼ ð1=2Þ � ð1þ e cos h sin hÞ2ð1� e cos h sin hÞ2 � 1=2

ð10Þ

The same happens with P�, and the effect of signaling dis-
appears. A description in terms of sin (e) and cos (e),
which is valid at all orders in e, leads to the same result.
Also, the demonstrations of impossibility of signaling de-
tailed in the Refs. [4,5] become valid again (see the
Appendix). Note that we have not used ideas or argu-
ments other than elementary QM properties and needs,
as required.

We stress that the origin of the unfolding term in Eq. (8)
is the renormalization of the output vector jwoi. Therefore,
it is not an ad hoc recipe to avoid signaling but an opera-
tion of normalization, a necessary step previous to calcu-
late probabilities. Note that it must be included every
time hojei is not strictly equal to zero, even if the imperfec-
tion is not detectable, or if jwoi is normalized for the par-
ticular axes’ orientation being used, or if it is obtained as
the projection of a normalized state of a higher dimension.
As far as we know, this connection between the conserva-
tion of the state vector’s norm and the impossibility of sig-
naling has not been indicated before, and it may put some
new light on this question.

In summary: a usual imperfection of real polarizers
seemingly allows faster than light signaling. This imperfec-
tion involves a slightly non-orthogonal basis, or in other
words, an infinitesimal deviation from a strict unitary
transformation. Regardless of its cause, this deviation must
be taken into account for the theory to be structurally sta-
ble (at e = 0 in parameters’ space). It cannot be simply ‘‘for-
bidden’’. We have found that an elementary QM
requirement (i.e. that a state vector must have the same
modulus for every axes’ choice) forces the addition of a cor-
rection term, and that this term also cancels the signaling
effect. This term is, in consequence, the ‘‘unfolding’’ that
stabilizes the compatibility between QM and SR at e = 0.
Acknowledgement

This work is part of the activities in contracts PICT03-
14240 and PICT04-20596, BID 1728 OC/AR (ANPCyT),
and PIP04 5310 (CONICET).



A.A. Hnilo, M.G. Kovalsky / Optics Communications 281 (2008) 2834–2837 2837
Appendix. On the demonstrations of the impossibility of

signaling

There are several proofs of the impossibility of signaling.
We discuss here two of the main ones, and show why their
conclusions do not apply if e 5 0. Let us begin by summa-
rizing Bussey’s [4] proof. Following his notation, consider
the entangled state:

jwið1;2Þ ¼ Raijjiið1Þjjið2Þ ðA:1Þ

Let {jii(1)} be the eigenstates of one of the quantities that
Alice (or ‘‘1’’) can choose to measure. Then, the probability
that Bob (or ‘‘2’’) observes the state jji(2) is:

W ð2Þ
j ji ¼ Ra�ijaij ðA:2Þ

It is assumed that the basis {jii(1)} is orthonormal. Now, we
assume that Alice chooses to measure on a different basis
{jni(1)}, which is linked to the previous basis through:

jiið1Þ ¼ Rbinjni
ð1Þ ðA:3Þ

Calling bnj = Raijbin, the entangled state is now:

jwið1;2Þ ¼ Rbnjjnið1Þjjið2Þ ðA:4Þ

And therefore:

W ð2Þ
j jn ¼ Rb�n0jbnjhn0jni ðA:5Þ

If the basis {jni(1)} is orthonormal, and using Rbin * bkn =
dik, we obtain W ð2Þ

j ji ¼ W ð2Þ
j jn and no signaling is possible,

because the result is the same no matter the measuring ba-
sis Alice chooses to use. When e 5 0 instead, the second
basis is not orthonormal and the proof is not valid. To
see the changes explicitly, the coefficients bo+ and be+ can
be calculated, as:

boþ ¼ axþbxo þ ayþbyo ¼ ð1=
p

2Þ cos h � 1þ ð1=p2Þ sin h � 0
¼ ð1=p2Þ cos h ðA:6Þ
¼ axþbxe þ ayþbye ¼ ð1=

p
2Þ cos h � 0þ ð1=p2Þ sin h � 1

¼ ð1=p2Þ sin h ðA:7Þ

Then, the probability that Bob observes ‘‘+’’ is:

W ðBobÞ
þ jreal polarizer ¼ ðb�oþhoj þ b�eþhejÞðboþjoi þ beþjeiÞ

¼ b2
oþ þ b2

eþ þ 2eboþbeþ ðA:8Þ
Because now hn0jni 6¼ dn0nðhojei ¼ eÞ. This expression (and a
similar one for W�) leads to signaling in the same way as
described in the main text.

The proof by Cantrell and Scully [5] is based on the
description (of a single particle in a multiparticle state) with
the reduced density matrix. They demonstrate that the
reduced matrix of Bob’s particle is the same (and propor-
tional to the identity matrix, i.e. maximally mixed), regard-
less the operation Alice may perform on her particle. Once
again, the argument does not hold here because of the non-
orthogonality of the transformed basis. This can be shown
from the calculation of Bob’s particle reduced matrix (from
Eq. (2)):

qBob ¼ hojuþoutputihuþoutputjoi þ hejuþoutputihuþoutputjei
¼ ð1=2Þ � ð1þ e sin 2hÞjþihþj
þ ð1=2Þ � e cos 2hfjþih�j þ j�ihþjg
þ ð1=2Þ � ð1� e sin 2hÞj�ih�j ðA:9Þ

Then P+ = h+jqBobj+i, P� = h�jqBobj�i and this leads to
signaling again.

On the other hand, if the state hþjuþoutputicorrected (see Eq.
(9)) is used in (A.9), the extra terms arising from the
unfolding exactly cancel the signaling terms. The same hap-
pens when it is used in (A.6–A.7).
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