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Synchronization of chemical noise-sustained structures in asymmetrically coupled
differential-flow reactors
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The differential-flow-induced chemical instability is investigated in the context of two coupled reactors with
cubic autocatalytic kinetics (the Gray-Scott model). Previous results for master-slave arrangement [Izús, Deza, and
Sánchez, J. Chem. Phys. 132, 234112 (2010)] are extended in this study to include bidirectional coupling between
reactions. Numerical simulations in the convectively unstable regime show that synchronized noise-sustained
structures are developed in both reactors due to the selective amplification of noise. A theoretical analysis shows
that the nature of the synchronization and the stability of the synchronized manifold are related with the properties
of the critical modes.
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I. INTRODUCTION

The differential-flow-induced chemical instability (DIFICI)
[1,2] is a well-established mechanism for pattern formation
that presents inherent differences with the more widely
investigated Turing instability. In the latter, steady waves or
patterns in the reactant concentrations are formed through a
diffusion-driven mechanism according to which fluctuations
in reactant concentrations self-organize spontaneously out of
a nonstructured medium as a consequence of the competition
between autocatalytic reaction steps and differential diffusivi-
ties of activator and inhibitor species. However, key species can
be disengaged by their differential transport and homogeneous
steady states may be destabilized by flows of activator and in-
hibitor at different flow rates in the DIFICI mechanism. This in-
stability was predicted [1] and experimentally observed [2] by
Menzinger and Rovinsky for the ferroin catalyzed Belousov-
Zhabotinsky reaction in a quasi-one-dimensional flow tube.

Experimental observation of DIFICI requires a differential-
flow reactor, a device where some of the reactants are
immobilized within the reactor while the rest of the reactive
species are allowed to diffuse and flow freely. For instance,
in the so-called packed-bed reactors a solid matrix (usually
a cation exchange resin) is packed inside the reactor in such
a way that it immobilizes one reactant, while the remaining
reactive species flow and diffuse [2]. In cross-flow reactors one
may resort to semipermeable membranes or discrete injection
and removal ports positioned along the reactor axis, allowing
one to keep the system uniformly far from equilibrium [3].

The convective nature of the DIFICI mechanism was
recognized in numerical simulations [4] and theoretically
established for the Brusselator [5] and the Gray-Scott (GS)
kinetics [6,7]. Some extensions include cases where all the
reactants flow at different rates through the reactor [8]. In
the convectively unstable regime, local perturbations of the
steady state are advected more rapidly than their rate of
spreading and the system is driven out of its steady state
toward a new state where, by dynamical amplification of
noise, a macroscopic pattern called a noise-sustained structure
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(NSS) is continuously formed and regenerated [9]. This is the
main difference with the absolutely unstable regime where
perturbations grow everywhere in time and eventually con-
taminate the entire system. In fluid convection experiments, for
instance, the NSS observed in both Taylor-Couette [10,11] and
open flow [12] configurations are a macroscopic manifestation
of amplified thermal fluctuations. Another possibility for
self-organization in convectively unstable systems requires a
permanent perturbation at the boundary. Examples thereof are
a time-oscillating source [13] or a constant displacement away
from the homogeneous steady state of the system [14].

As stated before, a model system where the convective
nature of the DIFICI mechanism has been theoretically
established is the Gray-Scott model [15], a variant of the
autocatalytic Selkov model of glycolysis [16], based on the
reaction between a substrate A and the autocatalyst B in a
three-step kinetic scheme, the intermediate step having cubic
autocatalytic kinetics:

P
k0→ A

A + 2B
k1→ 3B

B
k2→ C.

Here the ki (i = 0,1,2) are constants and the system is kept
out of equilibrium by feeding the precursor P and removing
the product C.

Numerical simulations of the GS system have revealed
a set of strikingly complex patterns [17], including self-
replicating ones: pulses in one dimension [18–22] and spots
in two dimensions [17,23]. Reaction-diffusion GS models
are now frequently used to generate spatiotemporal chaos
[24,25], whose control and eventual synchronization is an
active research topic for its promising applications [26]. For
example, spatiotemporal chaos synchronization in pairs of
unidirectionally coupled reaction-diffusion GS equations has
been analyzed in Ref. [27]. In the same sense, the effect of
noise on the GS dynamics has been considered in the context of
intermittence [28], control and characterization of spatiotem-
poral chaos [29,30], or effects induced by internal reaction
noise [31], to cite a few examples where noise plays a relevant
role. Having a rich variety of spatiotemporal patterns, the
GS system is a suitable computational model to explore new
pattern formation phenomena in reaction-diffusion systems.
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In the following, we assume the GS reaction to take place in
a one-dimensional (1D) differential-flow reactor where species
A is immobilized along the bed reactor by an exchange resin,
whereas B is advected by the flow and is also free to diffuse.
This is a well-established technology to obtain differential
diffusivities in the context of chemical reactions [2,32]. Note
that a particular reactor geometry is required because on one
hand, it is the precursor P what is injected at constant rate and
on the other, its immediate product A must be immobilized.1

After scaling concentrations by (k2/k1)1/2, time by k−1
2 , and

length by (DB/k2)1/2, the GS rate equations read
∂a

∂t
= μ − a b2 + ξ (x,t), (1)

∂b

∂t
= ∂2b

∂x2
− φ

∂b

∂x
− b + a b2, (2)

where μ stands for the scaled version of k0p0 and φ for that
of the fluid velocity v. The real Gaussian noise ξ , with zero
mean and 〈ξ (x,t)ξ (x ′,t ′)〉 = 2ηδ(x − x ′)δ(t − t ′), in the rate
equation for a accounts for fluctuations in p0. For μ > 1,
the uniform steady state b = a−1 = μ becomes convectively
unstable at a finite wavelength for a critical value φc(μ) [6].
A complete derivation, including the validation of the polled-
chemical approximation inherent in Eqs. (1) and (2) is given
in Refs. [33,34].

Noise-sustained structures have been predicted and nu-
merically observed for Eqs. (1) and (2) above threshold φc

(see Ref. [35] for further details). In particular, NSS in the
GS model can be replicated through appropriate coupling
between reactors. In Refs. [36,37] we have shown that uni-
directional coupling in the autocatalytic component originates
synchronized NSS, for both uniform (1D) and Poiseuille (2D)
flows. A feature of the master-slave coupling is its ability to
replicate the NSS in the coupled reactor with a high degree
of correlation. Note that this is an example of synchronization
between extended systems, which is formulated in terms of
the dynamics of unidirectionally coupled nonlinear fields.
In fact, arrays of coupled oscillators appear ubiquitously
in nature, and their mutual synchronization is one of the
highly intriguing phenomena arising in complex systems
[38]. In particular, the synchronization of coupled chaotic
systems has been an intensively studied topic since 1990 [39],
its effects having been explored in natural phenomena and
laboratory experiments [40–43]. An active field of research
for its potential applications is the study of synchronization
phenomena in spatially extended systems, such as populations
of coupled chaotic units and neural networks [44–48], coupled
map lattices [49], and continuous systems ruled by partial
differential equations [27,50–52]. Among them, the synchro-
nization of extended chemical reactions has become a relevant
field for its experimental observations, as, e.g., the syn-
chronization of Belousov-Zhabotinsky reactions in extended
flowing systems [53], locally coupled reactions [54,55], or

1For example the resin can be a previously loaded plate, which is
continuously fed from one surface while the reaction takes place in
the opposite one, where A remains fixed. Particular reactor aspect
ratios must be also considered in order to have an effective quasi-
one-dimensional reaction.

interacting microreactors [56]. In most cases, synchronization
studies have mainly considered bidirectional symmetric or
unidirectional master-slave coupling configurations. In many
practical situations, however, it is not expected to have
purely unidirectional nor perfectly symmetric coupling [57];
quantifying asymmetries in the coupling scheme is relevant in
applications such as the study of the human cardiorespiratory
system [58]. For instance, Ref. [59] has shown that asymmetry
in the coupling of two 1D complex Ginzburg-Landau equations
enhances the synchronization and plays an important role in
controlling the synchronized dynamics. The characterization
of the synchronization between NSS under general couplings
results, in consequence, are of interest to elucidate the
robustness of the phenomena and to clarify the role of the
coupling structure in the process of NSS replication.

Our aim is to investigate the synchronization between NSS
generated by the DIFICI mechanism in bidirectionally coupled
reactors with cubic kinetics and additive noise, by considering
the possibility of asymmetric coupling. Synchronized NSS
are numerically observed and theoretically analyzed. The
theoretical stability-analysis results for both the uniform
steady state and the synchronized manifold are checked against
numerical simulations, which confirm the predicted thresholds
and their dependence on the couplings.

The paper is organized as follows. Section II presents
the equations of the coupled reactors, the linear stability
analysis of the uniform solution, and the features of the critical
modes. Section III illustrates the synchronization of NSS under
bidirectional coupling, characterizing the typical features of
the structures and their correlations. Section IV sketches the
stability of the synchronized manifolds in terms of a damped
dynamics of Fourier modes. Finally, the main conclusions are
summarized in Sec. V.

II. SYSTEM

In this work, we consider two identical reactors coupled in
a not necessarily symmetric way:

∂a1

∂t
= μ − a1 b2

1 + ξ1(x,t), (3)

∂b1

∂t
= ∂2b1

∂x2
− φ

∂b1

∂x
− b1 + a1 b2

1 + ε12(b2 − b1), (4)

∂a2

∂t
= μ − a2 b2

2 + ξ2(x,t), (5)

∂b2

∂t
= ∂2b2

∂x2
− φ

∂b2

∂x
− b2 + a2 b2

2 + ε21(b1 − b2). (6)

ξ1 and ξ2 are uncorrelated white noises with the same
intensity η, and ε12 and ε21 denote the corresponding coupling
strengths. While positive values of the latter correspond to
diffusive coupling, negative coupling strengths correspond to
“active” interaction where reactants must “climb” gradients of
concentration. Although there are examples of this behavior
in the context of biological systems, such as sodium and
potassium pumps in cell membranes [60], the implementation
of active couplings in the context of extended chemical
reactions is not straightforward, requiring a continuous passive
measure of reactive species along the reactor and pumps that
create the corresponding cross flows by injecting reactants and
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removing products.2 Nevertheless, full characterization of the
sync dynamics demands including this case. In fact some of
the results shown below can be applied in the more general
framework of coupled nonlinear oscillators. In the context
of neural arrays, e.g., the active coupling corresponds to the
antiphase one, experimentally observed in human epileptic
astrocyte cultures [62] and numerically investigated in neural
arrays [62,63].

Equations (3)–(6) have a stationary uniform solution, given
by b1 = b2 = a−1

1 = a−1
2 = μ. Its linear stability can be

obtained in the usual way, through a small perturbation to
the solution of the form

a1 = 1/μ + �a1 exp(ikx + σ t), (7)

b1 = μ + �b1 exp(ikx + σ t), (8)

a2 = 1/μ + �a2 exp(ikx + σ t), (9)

b2 = μ + �b2 exp(ikx + σ t). (10)

Inserting these expressions in (3)–(6) and keeping only linear
terms in departures from the stationary state, the following
eigenvalue problem results:

σ�a1 = −μ2�a1 − 2�b1 (11)

σ�b1 = μ2�a1 + (1 − ε12 − k2 − iφk)�b1 + ε12�b2 (12)

σ�a2 = −μ2�a2 − 2�b2 (13)

σ�b2 = ε21�b1 + μ2�a2 + (1 − ε21 − k2 − iφk)�b2,

(14)

which can be exactly solved. Introducing the functions

S(z) = 1 − z − iφk − k2 − μ2, (15)

R(z) =
√

S(z)2 − 4(1 + z + iφk + k2)μ2, (16)

the four eigenvalues read

σ1,2 = 1
2 [S(0) ∓ R(0)], (17)

σ3,4 = 1
2 [S(2ε) ∓ R(2ε)], (18)

where ε = (ε12 + ε21)/2 denotes the mean coupling. Note that
σ1,2 depend on φ, k, and μ, while σ3,4 depend also on ε. The
eigenvectors are given by

(�a1,�b1,�a2,�b2)1,2

=
(

4

−S(0) ± R(0) − 2μ2
,1,

4

−S(0) ± R(0) − 2μ2
,1

)
(19)

(�a1,�b1,�a2,�b2)3,4

=
(

4 ε12/ε21

S(2ε) ∓ R(2ε) + 2μ2
,− ε12

ε21
,

−4

S(2ε) ∓ R(2ε) + 2μ2
,1

)
.

(20)

2Another possibility (in the context of photosensitive chemical
reactions) is to introduce the coupling through a mask of illumination,
whose intensity is related to the (optically measured) difference of
concentrations, as reported in Ref. [61] for the synchronization of
two extended Belousov-Zhabotinsky reactions.

FIG. 1. Plot of the 
 function for μ = 2 and different values of
ε. The ε = 0 instability takes place at kc = 0.592 for φc = 8.16. For
ε < −0.5 the system is unstable still in the absence of flow.

While the eigenvectors corresponding to σ1,2 have the same
parameter dependence as their eigenvalues, the ones cor-
responding to σ3,4 also include a dependence on the ratio
ε12/ε21. The form of the eigenvectors is also of relevance
for our analysis: the ones corresponding to the “1–2”
branch are in phase (�a1 = �a2, �b1 = �b2) whereas the
relative amplitude and sign can change in the second one
(�a1/�a2 = �b1/�b2 = −ε12/ε21).

As soon as Re(σj ) > 0 for any j , the solution becomes
unstable. Just at the instability point, σj is an imaginary
number. Replacing σj = iλ (with real λ) into Eqs. (11)–(14),
we obtain the characteristic equation, which in this situation
factorizes into two complex equations. Each one of them gives
a relation between the flux velocity and the wave number k.
Defining the function


(z,k) = μ2 + k2 + z − 1

|k|

√
1 + k2 + z

1 − k2 − z
(21)

we have

φ1 = 
(0,k), (22)

φ2 = 
(2ε,k), (23)

where φ1 (φ2) correspond to the instability of σ1,2 (σ3,4).
In Fig. 1 we show both branches of 
 as functions of k

(φ1 in solid line). The minimum of φ1 corresponds to the

FIG. 2. φ2c as function of ε for μ = 2. The inset shows a wider
range of values in a logarithmic scale.
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FIG. 3. k2c as function of ε for μ = 2.

critical value φc, which is independent on the couplings. For
φ > φc and positive mean coupling it is the first mode that
destabilizes. In contrast, the second branch φ2 is associated to
larger or lower values of φ, depending on whether ε > 0 or
ε < 0, respectively. For both cases, its minimum value (φ2c)
corresponds to the destabilization of the second branch of
eigenvectors σ3,4. As we will see later, both thresholds have
physical meaning. Note that for ε > 0 (ε < 0) the critical flow
velocity of the finite-wavelength instability is determined by
φc (φ2c). The critical value φ2c and its critical wave vector k2c

as a function of ε are shown in Figs. 2 and 3, respectively. The
values kc and φc can be read off in the corresponding figure at
ε = 0.

For ε12 = ε21 = 0, Eqs. (3)–(6) describe two uncoupled
reactions, identical with regard to the parameters but submitted
to independent spatiotemporal noises. NSS have been reported
in this case for φ > φc [35]. For ε12 = 0 and ε21 > 0,
Eqs. (3)–(6) describe two unidirectionally coupled reactions,
for which replicated NSS have been reported in Ref. [37] in the
convectively unstable regime. This master-slave configuration
presents the same threshold of convective instability as a single
reactor. We conclude that this is a general property associated
to arbitrary couplings satisfying ε > 0.

To discriminate between convective and absolute instabili-
ties we need to analyze the eigenvalues in the complex k plane.
The asymptotic linear behavior of arbitrary wave packets
can be obtained using the method of steepest descent [64].
Following Refs. [6,9], we determine the saddle point [root of
∂kσ (k) = 0] as ks = −iφ/2. Evaluating the eigenvalues (17)
and (18) at ks , we find that the uniform state is stable (φ < φc or
φ < φ2c for ε positive o negative, respectively) or convectively

FIG. 4. The different stability regimes for μ = 2.

FIG. 5. Pattern b1 and β (shifted) as a function of the space
variable x for φ = 8.8 (φc = 8.16), ε12 = ε21 = 0.04 and t = 1.2 ×
106�t . A similar picture (not shown) is obtained for a1 and α.

unstable (φ > φc or φ2c) if μ and ε satisfy ε > −1/2 and
μ >

√
1 − 2ε, respectively. A diagram of the situation is

shown in Fig. 4 for μ = 2. In addition, a regime of absolute in-
stability is found for ε < −1/2 and φ < φa(ε) = 2

√−2ε − 1,
while the instability becomes convective for φ > φa(ε) (that
zone is not in the ε range displayed in Fig. 4, see footnote in
Sec. III).

III. NUMERICAL RESULTS

Equations (3)–(6) have been integrated using an Euler
stochastic scheme in a grid of N = 16384 sample points with
a space step �x = 0.1 and time step �t = 10−4. Throughout
the paper η = 10−7, μ = 2, and the length L = N�x are
chosen in such a way that spatiotemporal patterns develop
well before they reach the outlet. For each system, Dirichlet
BC are assumed at the inlet of the reaction domain [a1(0,t)−1 =
a2(0,t)−1 = b1(0,t) = b2(0,t) = μ] and Neumann BC at the
outlet x = L.

Equations (22) and (23) indicate that the coupling de-
pendence of the critical values is only through ε. We first
analyze the case ε > 0. The linear stability analysis predicts
that NSS are expected in both reactors for φ > φc. Numerical
simulations confirm this fact and synchronized NSS are
observed in this regime. We illustrate this point in Fig. 5, where

FIG. 6. Similar magnitudes as in Fig. 5, for higher flow veloc-
ity. The parameters are φ = 22, ε12 = 0.1125, ε21 = 0.0675, and
t = 6 × 105�t .

062909-4



SYNCHRONIZATION OF CHEMICAL NOISE-SUSTAINED . . . PHYSICAL REVIEW E 88, 062909 (2013)

FIG. 7. E vs ε, averaged over 40 realizations for φ near
threshold. Here ε = ε12 = ε21. Solid, dotted and dashed-dotted lines
correspond to φ = 8.6, φ = 8.7, and φ = 8.8, respectively. Here
t = 2.4 × 106�t .

we show a snapshot of the emerging patterns near threshold
and also the deviation fields

α(x,t) = a1(x,t) − a2(x,t),
(24)

β(x,t) = b1(x,t) − b2(x,t).

Near the critical point, the structures have small amplitude.
For larger values of φ, well-developed synchronized NSS are
observed in both reactors, as shown in Fig. 6.

In order to quantify the synchrony, the global synchroniza-
tion error

E(t) =
√

1

L

∫ L

0
[α2(x,t) + β2(x,t)] dx, (25)

is introduced. We numerically observe that the degree of
correlation depends on the mean coupling strength ε, as
predicted. This fact has been numerically checked for a wide
range of situations. In Fig. 7 we plot E vs ε for flow velocities

FIG. 8. E vs ε, averaged over 20 realizations. Diamonds corre-
spond to ε12 = 1.25 ε and ε21 = 0.75 ε, while squares correspond to
ε12 = 1.65 ε and ε21 = 0.35 ε. The remaining parameters are φ = 8.8
and t = 1.4 × 105.

FIG. 9. Global synchronization error E vs t averaged over 40
realizations. The coupling values are: ε12 = 0.1, ε21 = 0.3 (solid line);
ε12 = 0.15, ε21 = 0.25 (dotted line); ε12 = 0.2, ε21 = 0.2 (dashed
line), while the remaining parameters are φ = 21 (upper curves),
φ = 16 (lower curves). For clarity, only error bars corresponding to
the solid line are showed. All coupling combinations correspond to
ε = 0.2. The time scales are tf = 7.5 × 105�t (upper curves) and
tf = 12480�t (lower curves).

near the critical value. We stress the robustness of the obtained
results, which keep their degree of correlation determined by
ε, as illustrated in Fig. 8 for larger values of the mean coupling.

Watching the temporal evolution of E, one sees a different
qualitative behavior whether φ < φ2c or φ > φ2c. While
below φ2c the error grows monotonically and saturates, for
φ > φ2c the same synchronization phenomenon is observed
asymptotically, but now the error grows for short times
indicating a lack of synchrony in the linear regime (related
to the destabilization of the second branch of eigenvalues).
When the structures are well developed, the systems eventually
synchronize and the error relaxes to its asymptotic value, as
illustrated in Fig. 9. Note the different time scale of each curve
in the figure.

Now we consider the case ε < 0. We limit the analysis
of active couplings to the region −0.3 � ε, where the

FIG. 10. Detail of patterns in the B species for both reactors with
symmetric negative coupling. The parameters are ε12 = ε21 = −0.1,
φ = 7.5 and t = 2.5 × 105�t . In solid (dashed) line b1 (b2).
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FIG. 11. Correlation for patterns in Fig. 10: Cb1b2 (solid line)
and Ca1a2 (dashed dotted line). The spatial variable was scaled with
λ2c = 2π/k2c.

FIG. 12. Snapshot of the patterns in the B species for both reactors
(b2 shifted). The parameters used in the simulations are ε12 = −0.05,
ε21 = −0.15, φ = 7.5, and t = 2.5 × 105�t . Note that ε and the
rest of parameters, except individual coupling, are the same as those
of Fig. 10.

FIG. 13. Correlation for patterns in Fig. 12: Cb1b2 (solid line) and
Ca1a2 (dashed dotted line).

concentrations of all species remain positive.3 The linear
stability analysis also leads to expect NSS in both reactors
for φ > φ2c. Numerical simulations confirm this prediction
and synchronized NSS are also observed in this regime. For
ε12 = ε21 the resulting structures have the same amplitudes, but
they are shifted in half a wavelength, as observed in Fig. 10. To
quantify the phenomenon, we introduce the cross-correlation
function

Cpq(t,z) = C{p(x,t),q(x,t),z}
=

∫
[p(x + z,t) − 〈p(x,t)〉]

× [q(x,t) − 〈q(x,t)〉] dx/
√

σ (p)σ (q), (26)

where p and q can be a1,2 or b1,2, 〈.〉 denotes mean value in
space and σ (.) denotes variance. In Fig. 11 we plot Cb1b2 and
Ca1a2 as a function of z, for the well-developed NSS illustrated
in Fig. 10: a maximum of order one is observed at z = π/k2c.

For ε12 �= ε21, a similar behavior for the correlation is
observed (although the structures have different amplitudes,
as illustrated in Fig. 12). Again the maximum correlation is
observed at z = π/k2c, as shown in Fig. 13.

IV. STABILITY OF THE SYNCHRONIZATION MANIFOLD

As in Ref. [35] the critical modes determine the kind of
NSS to be observed above threshold. For ε > 0 the threshold
is independent of the couplings, while for ε < 0 this situation
changes and NSS are numerically observed for lower values
of φ.

Since reactors 1 and 2 synchronize in both cases, manifolds
a1 = a2 and b1 = b2 are expected to be at least linearly
stable. In particular, the linear stability analysis for (α,β)
around the uniform rest state goes through as in Ref. [36],
and the same occurs for the stability around the stochastic
macroscopic structures. A similar synchronization scenario,
related with a damped dynamics of the deviation field’s
Fourier modes, remains valid. The stability analysis around the
uniform solution confirms that the synchronization manifold
is linearly stable for φ > φc (ε > 0) or φ > φ2c (ε < 0). For
positive (negative) ε they become convectively unstable above
φ2c (φc).4

V. CONCLUSIONS

We have investigated the formation and synchronization
of noise-sustained structures in one-dimensional differential-
flow reactors with cubic kinetics (Gray-Scott model) and
linear couplings in the inhibitor components. By coupling
the corresponding points of both reactors bidirectionally, we

3We numerically observe the possibility to obtain negative concen-
trations for smaller coupling values. For chemically active coupling,
the εij should be εij θ (bj ) in order that the concentration be non-
negative (being θ the step function). Nevertheless this correction
does not change the stability analysis and further considerations.

4The equations for the stability of the synchronized manifold in
Ref. [36] remain valid by changing the master-slave coupling ε by
2ε = ε12 + ε21 in the general case.
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have shown that appropriate values of the external flow rates
drive the dynamics toward a convectively unstable regime,
where complete synchronization of the emerging macroscopic
noise-sustained structures is achieved. The usual estimators of
synchrony, such as correlations or global sync error, indicate
that twin structures can be obtained for appropriate value of
strength couplings and flow velocity. We have also shown that
the correlation is present point-to-point and this means that the
phenomenon is spatially distributed.

From the theoretical point of view we have performed the
linear instability analysis of the steady-state solution. That
analysis reveals the existence of two branches of eigenvalues,
one of them independent of couplings, while the other one
depends on the average coupling value ε. We remark that this
is a generic property of the considered couplings. In fact, it can
be proved that Eqs. (3)–(6), with arbitrary nonlinearities but
the same linear coupling, diffusion, and flow terms, originate
a similar behavior of the eigenvalues: a branch independent
of the couplings and the other one depending on couplings
only through ε. As usual, instabilities are associated with the
lower branch and the parameters must be specified in order to
identify the critical mode. Equations (22) and (23) are a good
example of that: while the ε-independent branch is the critical
one for positive ε, the ε-dependent branch is the critical one
for negative ε. In both cases, the instability takes place at finite
wavelength, providing the route to pattern formation.

An important point when addressing issues related to
experimental observation of synchronization is robustness:
in this respect, the dependence of sync with the structure
and strength of the couplings results relevant. An important
prediction of our analysis is that uncoupled, unidirectionally
coupled in master-slave configuration, and bidirectionally
(symmetrically or asymmetrically) coupled reactors have the
same threshold of convective instability for ε � 0. Numerical
simulations have confirmed this result and have also shown
that the emerging structures in both reactors are synchronized.
We remark that our analysis imposes a restricted scenario
to reaction-diffusion-advection systems with DIFICI mech-
anisms, and linearly coupled in the diffusive species. Key
indicators (such as critical flow velocity or wavelength) can
depend on coupling only through ε, and this fact opens
interesting possibilities. For instance, several properties of
bidirectionally coupled reactions could be first characterized in
terms of the master-slave ones, without loss of generality. The
linear stability analysis of the synchronized manifold around
the uniform solution confirms this fact and also predicts a
convective instability when the ε-dependent branch becomes
critical. This instability has been numerically verified and we

have shown that in this regime the systems exhibit an initial
lack of synchrony. In all the cases, the reactors eventually
synchronize and the stability analysis presented in Ref. [36]
for unidirectional couplings can be applied in this case. An
effective dynamics (in terms of damped Fourier modes for the
stability of the synchronized manifolds) eventually drives the
dynamics to the sync regime.

The eigenvalue branches exchange their relative stabilities
for negative ε, and the ε-dependent branch becomes critical
at a finite wavelength for some value of the external flow
velocity. In this regime we have shown that the system
can self-organize with smaller values of flow velocity and
synchronized structures appear, but now with a shift of half a
wavelength in space if both couplings have the same sign. This
particularity can be traced back to the structure of the critical
mode of the second branch, where the possibility to have a
relative negative sign in the components originates the spatial
shift. Even more, the observed relative amplitude between the
noise-sustained structures is in qualitative agreement with the
eigenvector structure. For symmetric couplings both patterns
have the same amplitude, while structures with different
amplitudes are developed in each reactor in the asymmetric
case. As a limit case, unidirectional coupling in this regime
can originate a noise-sustained structure in the coupled reactor
while the other one remains in the steady state, reflecting the
fact that the modes of the uncoupled reactor remain damped
in this regime. Note that this scenario is different from the one
reported in Ref. [36], where the master-slave configuration
starts from the destabilization of the master reactor and the
emerging structure is finally replicated in the slave one.

We finally point out that the imposed flow breaks in a
generic way the spatial symmetry of the coupled systems
for any reaction, allowing eventual convective instabilities.
In the same sense, the imposed coupling factorizes the
eigenvalue spectrum for reaction-diffusion-advection systems
in a characteristic way, where the dependence of thresholds on
the coupling strengths results particularly restricted. Thus, we
expect synchronized chemical noise-sustained structures to be
observed in coupled flow-reactors under general conditions. In
this sense, we hope our study will qualitatively apply to other
reactions with DIFICI mechanism.
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