The systematic position of Pteropus leucopterus and its bearing on the monophyly and relationships of Pteropus (Chiroptera: Pteropodidae)

Norberto P. Giannini ${ }^{1,2,5}$, Francisca Cunha Almeida ${ }^{1,3}$, Nancy B. Simmons ${ }^{1}$, and Kristofer M. Helgen ${ }^{4}$
${ }^{1}$ Department of Mammalogy, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
${ }^{2}$ CONICET, Programa de Investigaciones de Biodiversidad Argentina, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Miguel Lillo 205, Universidad Nacional de Tucumán, Tucumán, CP 4000, Argentina
${ }^{3}$ Division of Invertebrate Zoology, Molecular Systematics Laboratory, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
${ }^{4}$ Division of Mammals, National Museum of Natural History, NHB 390, MRC 108 Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012 USA
${ }^{5}$ Corresponding author: E-mail: norberto@amnh.org

Pteropus is the most speciose genus in Pteropodidae, currently comprising 65 species in 18 species groups. Here we examine whether Pteropus as currently understood is monophyletic. We sequenced three nuclear genes (RAG-1, RAG-2 and vWF) totalling c. 3.0 kbp from 18 species of Pteropus representing 12 species groups, plus Acerodon celebensis and megachiropteran outgroups representing all other subfamilies and tribes. Separate and combined parsimony and maximum likelihood analyses recovered a clade containing Acerodon as sister to all Pteropus species to the exclusion of the Philippine endemic taxon 'P. leucopterus', rendering Pteropus paraphyletic. We propose the revalidation of Desmalopex Miller, 1907, an available generic name for leucopterus, adopting the name combination Desmalopex leucopterus (Temminck, 1853). We discuss implications of this result and anticipate further modifications of the classification of Pteropus.

Key words: Philippines, Desmalopex leucopterus, Pteropus, Megachiroptera, phylogeny

FIntroduction

The chiropteran family Pteropodidae comprises 42 currently recognized genera and 186 species, of which as many as 65 species are classified in the genus Pteropus Brisson, 1762 (Simmons, 2005). Distributed from islands off the east coast of Africa to Polynesia in the Western Pacific, the majority of Pteropus species are Indian Ocean and Pacific island endemics. Andersen (1912) established the membership of the genus and clearly distinguished Pteropus species from other closely allied genera known at the time - Acerodon Jourdan, 1837, Pteralopex Thomas, 1888, and Styloctenium Matschie, 1899. Although subsequent authors have generally followed Andersen's (1912) generic arrangement of Pteropus, previous authors sometimes allocated a few species to separate genera, particularly Miller (1907), who erected the genus Desmalopex to accommodate a single distinctive species, Pteropus leucopterus Temminck, 1853,
endemic to the Philippines [see description in Miller (1907) and Andersen (1909, 1912)]. Miller (1907: 60) highlighted affinities between Desmalopex and Pteropus but listed a number of characters that alternatively "distinctly suggest Pteralopex." Andersen (1909, 1912: 294) included leucopterus in Pteropus and associated this form with members of the pselaphon species group, which in his view "shows decidedly leanings towards the highly specialized genus Pteralopex."

Thus while both Miller (1907) and Anderson (1912) recognized the distinctive morphological attributes of leucopterus, their taxonomic arrangements differed markedly. Their mutually exclusive systematic hypotheses (leucopterus placed in a monotypic genus versus leucopterus included within Pteropus) have remained essentially untested since the beginning of the twentieth century. This fact has gone largely unrecognized because leucopterus has been included in Pteropus without comment by all recent authors (e.g., Corbet and Hill, 1992;

Koopman, 1993, 1994; Heaney et al., 1998; Simmons, 2005). Here we begin analyzing the complex problem of the composition and relationships of Pteropus by focusing on the relationship of Pteropus leucopterus to other members of this genus from different species groups, as well as to other pteropodine megabats. Based on parsimony and maximum likelihood analyses of DNA sequences from three nuclear coding genes, we provide evidence bearing on the phylogenetic position of leucopterus and on pteropodid systematics in general.

Materials and Methods

Taxa

For the purposes of this study we chose Pteropodini sensu Bergmans (1997) as the ingroup. We included as outgroups representatives of each main megachiropteran clade following Giannini and Simmons (2005) and Giannini et al. (2006). We choose the same taxa as in Giannini et al. (2006), specifically: Nyctimene albiventer and N. vizcaccia (Nyctimeninae), Cynopterus sphinx and Ptenochirus jagori (Cynopterinae), Eonycteris spelaea, Rousettus amplexicaudatus, and R. aegyptiacus (Rousettinae), Myonycteris torquata and Megaloglossus woermanni (Epomophorinae, Myonycterini), Epomops franqueti and Epomophorus wahlbergi (Epomophorinae, Epomophorini), Harpyionycteris whiteheadi, Dobsonia inermis, and Dobsonia magna (Harpyionycterinae), Macroglossus minimus (Macroglossinae), Melonycteris (Nesonycteris) fardoulisi [incertae sedis, variably associated with macroglossines (e.g., Andersen, 1912; Giannini and Simmons, 2005), pteropodines (e.g., Kirsch et al., 1995; Bergmans, 1997), and other groups], and Eidolon helvum [incertae sedis, allied to Rousettinae (Andersen, 1912; Bergmans, 1997) and Pteropodini (Giannini and Simmons, 2005)]. We included two microchiropteran bats [Rhinopoma hardwickii (Rhinopomatidae) and Artibeus jamaicensis (Phyllostomidae)] to provide an unambiguous root to our tree.

Ingroup taxa included typical pteropodine megabats available to us, including Acerodon celebensis and 18 species of Pteropus from 12 species groups (sensu Andersen, 1912): Pteropus alecto (alecto species group), P. conspicillatus (conspicillatus group), P. pelewensis, P. tonganus (mariannus group), P. molossinus (molossinus group), P. neohibernicus (neohibernicus group), P. capistratus (temminckii group), P. poliocephalus (poliocephalus group), P. leucopterus (pselaphon group), P. anetianus, P. samoensis (samoensis group), P. scapulatus, P. woodfordi (scapulatus group), P. admiralitatum, P. pumilus, P. hypomelanus (subniger group), P. giganteus, P. lylei, and P. vampyrus (vampyrus group).

Museum specimens referenced herein are deposited in the American Museum of Natural History, New York (AMNH); the Natural History Museum, London (BMNH); the Delaware Museum of Natural History, Wilmington (DMNH); the Field Museum of Natural History, Chicago (FMNH); the Nationaal Natuurhistorisch Museum, Leiden, The Netherlands (RMNH); the Senckenberg Museum, Frankfurt (SMF); and the National Museum of Natural History, Smithsonian Institution, Washington, D.C. (USNM). Morphological terminology and usage follow Andersen (1912) and Giannini et al. (2006b).

Sequences and Phylogenetic Analysis

We used sequences of exon 28 of the von Willebrand Factor gene (vWF, 1231 bp) from Giannini et al. (2006), and generated new vWF sequences for Pteropus species for this study. We also generated sequences of two other nuclear coding genes, the Recombination Activating Gene 1 (RAG-1, 1084 bp), and the Recombination Activating Gene 2 (RAG-2, 760 bp), for the total taxonomic sampling. Total DNA was obtained from preserved tissue samples (see voucher list in Appendix) with the DNeasy tissue kit (QIAGEN). PCR amplification was carried out using previously published primers [RAG-1 and RAG-2 (Teeling et al., 2000); vWF (Porter et al., 1996)]. To obtain both forward and reverse sequences for each gene region, internal primers were used for sequencing in addition to the PCR primers (sequences available upon request). All sequences were obtained with an automated ABI 3730XL sequencer. Sequence editing and prealignment were done with the Sequencher 4.2 software (Gene Codes). GenBank accession numbers and voucher information for megabats included in this study are provided in Appendix 1. In addition, we used published sequences for microbat outgroup taxa. GenBank accession numbers for A. jamaicensis are AY834655 (RAG-1), AY834663 (RAG-2), and AY834737 (vWF); for R. hardwickii, accession numbers are AF447518 (RAG-1), AF447535 (RAG-2), and AF447551 (vWF).

Sequences of our three genes were submitted to parsimony analysis, separately and in combination. Here we report results of our combined analysis based on a tree-search strategy that consisted of 1,000 replicates of random addition sequences of taxa, each followed by tree bisection reconnection branch swapping (TBR). An additional round of TBR was done on optimal trees obtained. Clade support was assessed using Bremer or decay values (Bremer, 1994) and jackknife character resampling (Goloboff et al., 2003a). We calculated Bremer values via incremental sampling of suboptimal trees (see Giannini and Bertelli, 2004). Briefly, we saved up to 1,000 suboptimal trees one step longer than the previous optimum in successive stages. That is, we first searched for suboptimal trees 1 step longer than the optimal tree length, next saving suboptimals up to $2,3,4,5,6,7$, 8,9 , and 10 steps longer than the optimal trees $(9,968$ trees up to 10 steps longer than the optimals were found). Second, jackknife frequencies were estimated from 5,000 replications using unbiased symmetric resampling (Goloboff et al., 2003a). These analyses were executed in TNT (Goloboff et al., 2003b, In press).

In addition, maximum likelihood (ML) analyses were performed for individual genes and the combined set using the GTR $+\Gamma$ model. Parameters were estimated from the data for each gene separately, which were treated as partitions in the combined analysis. Starting trees were obtained by maximum parsimony and 100 runs were done on each initial tree to obtaining ML trees. Statistical support was obtained with 100 bootstrap replications. All the ML analyses were run with the program RAxML (Stamatakis, 2006).

Results

In the combined dataset, 751 sites were variable $($ RAG1 $=236$, RAG2 $=163, \mathrm{vWF}=354)$ and 395 were parsimony informative (RAG1 $=116$, RAG2 $=92, \mathrm{vWF}=187$). Most of the substitutions were transitions ($\mathrm{t} / \mathrm{tv}: \mathrm{RAG} 2=10.3, \mathrm{RAG1}=4.5$,
$\mathrm{vWF}=3.9$), but neither transitions nor transversions were saturated in the sample (Fig. 1).

Our combined parsimony analysis of all three genes resulted in 92 trees of 1,327 steps (strict consensus in Fig. 2). An additional TBR round on those trees did not increase the set of optimal trees. Pteropodidae was recovered as monophyletic. Nyctimene was placed as sister to all other megachiropterans, but the backbone of the lower section of the tree was poorly supported. By contrast, clades representing

Fig. 1. Saturation plots of transitions and transversions for each gene analyzed. Proportions of each substitution type were plotted against uncorrected p distances. Circles represent transitions and squares represent transversions. Symbols representing the ingroup are shown in light grey and symbols representing the outgroup are shown in black
a number of subfamilies and other recognized systematic groups were highly supported. Clades recovered included Cynopterinae; a highly-supported group of rousettines and epomophorines; Epomophorinae; a weak association of Macroglossus with a highly supported Harpyionycterinae clade; and a well-supported pteropodine clade (marked A in Fig. 2) inclusive of the genera Melonycteris, Acerodon, and Pteropus.

Within the pteropodine clade, Melonycteris fardoulisi and Pteropus leucopterus formed a trichotomy with a highly supported Acerodon + Pteropus group (clade B in Fig. 2). All the species of Pteropus, to the exclusion of leucopterus, were recovered as monophyletic with high support (clade C in Fig. 2). Resolution within Pteropus was poor. Only three clades were supported with resampling frequencies $>50 \%$. These were Pteropus anetianus + P. samoensis (i.e., the samoensis species group); Pteropus woodfordi + P. molossinus, which renders the scapulatus species group (here represented by P. scapulatus and P. woodfordi) paraphyletic; and two clades with members from mixed species groups. Partial analyses using individual gene partitions (not shown) were less resolved; clades recovered in those analyses are marked with symbols in Fig. 1. In no case did P. leucopterus group with other Pteropus species.

The combined ML tree is shown in Fig. 3. This tree agrees with the combined parsimony tree (Fig. 2) in all supported groups specifically relevant to this study (marked A, B, and C). Groups A and B were recovered in separate ML analyses of each of the three genes, whereas group C was recovered in separate analyses of RAG-1 and vWF. Also, clades recovered within Pteropus were compatible across analyses (cf. Figs. 2 and 3).

Systematics

Desmalopex Miller, 1907 is a valid pteropodid genus presently considered a junior synonym of Pteropus Brisson, 1762. In our combined analyses, as well as in individual-gene analyses, leucopterus never joined other species of Pteropus, demonstrating the paraphyly of Pteropus under its current generic definition (Andersen, 1912; Simmons, 2005). However, all other species of Pteropus were recovered as a natural group identified by shared changes in all three genes independently and in combination, clearly suggesting that Pteropus (at least as represented by our sampling) is indeed monophyletic to the exclusion of leacopterus (clade

C in Figs. 2 and 3) and is sister to the genus Acerodon (clade B in Figs. 2 and 3). 'Pteropus' leucopterus is also easily diagnosed morphologically, unique amongst megachiropterans in exhibiting a mosaic of features recalling both Pteralopex and Pteropus (cf. Andersen, 1909). As a consequence, we remove leucopterus from Pteropus and resurrect

Desmalopex Miller, 1907, originally erected to include this sole species, and adopt the combination Desmalopex leucopterus (Temminck, 1853). We briefly diagnose and discuss the content and distribution of Desmalopex below.

Fig. 2. Strict consensus tree resulting from a parsimony analysis of three nuclear coding genes combined (RAG-1, RAG-2, and vWF). Support values are given above (Bremer) and below (Jackknife) branches. Nodes supported by individual-gene analyses are marked with the following symbols: RAG-1 (ロ), RAG-2 (0), and vWF (\triangle)

Genus Desmalopex Miller, 1907

Diagnosis

Desmalopex uniquely combines distinctive features of both Pteropus and Pteralopex sensu lato (i.e., incorporating both Pteralopex and Mirimiri). Desmalopex is a pteropodid genus uniquely characterized by its relatively large body size (forearm length ca. 100-150); relatively much shortened external ears; pale-dark mottled wing membranes (see below); unusually large and moderately spaced upper incisors, subequal in size, forming an arcuate row; large i2 (wide with one salient lateral cusp) but highly reduced i1, such that i 2 is about five times larger than i1; relatively short canines, without a large secondary posterior cusp on C ; relatively large first premolar that is permanent in both jaws; relatively small cheekteeth; P4 that is larger than M1, which is subsquare rather than rectangular;
orbits deflected distinctly upward relative to the cranial axis; postorbital processes that are ossified to the zygomatic arches in mature individuals, a complete alar canal (an unusual feature in megachiropterans, seen elsewhere only in Mirimiri and some Pteralopex; cf. Giannini et al. 2006: 113); basicranial configuration in which the petrosal is somewhat sunk laterally, the posttympanic and paracondylar processes are unusually large, and the postglenoid foramen is displaced laterally; and relatively gracile mandible featuring a low-slung sloping symphysis and a short and slender coronoid process. We plan to explore in greater detail these and other morphological attributes (and their phylogenetic significance) in subsequent contributions.

Content and Distribution

Desmalopex is endemic to the oceanic Philippines. The type and only described species of

FIG. 3. ML tree of the combined set based on gene partitions modeled using GTR $+\Gamma$ (likelihood score $-11,490.72$). Values near nodes represent bootstrap estimates of clade support based on 100 replications. Pteropus scapulatus was excluded from this analysis due to the influence of its missing data on branch lengths

Desmalopex is Desmalopex leucopterus (Temminck, 1853), known only from forested habitats (up to at least $2,300 \mathrm{~m}$) on Luzon and the adjacent land-bridge island of Catanduanes (specimens at AMNH, BMNH, FMNH, RMNH, SMF, and USNM). Synonyms are Pteropus chinenis Gray, 1870 (misprovenanced from China; see Andersen, 1912) and an incorrect subsequent spelling of leucopterus under the name combination 'Spectrum leucopterum' by Gray (1870). Currently undescribed species referable to Desmalopex have been recorded from the Philippine islands of Mindoro (in the Mindoro Faunal Region; see Heaney et al., 1998) and Dinagat (in the Mindanao Faunal Region; K. Helgen, personal observation - specimens at DMNH).

Discussion

Affinities of Desmalopex remain somewhat uncertain and invite speculation and further research. Desmalopex belongs in Pteropodinae sensu Bergmans (1997), but exactly where in this group is not yet clear. Within the subfamily Pteropodinae, Bergmans (1997) recognized three tribes: Pteropodini (including Pteropus, Acerodon, Neopteryx, Styloctenium, Pteralopex, and the more recently recognized genus Mirimiri; Helgen, 2005), a restricted Macroglossini (incorporating only Macroglossus and Syconycteris), and Notopterini (Melonycteris and Notopteris). The problematic African genus Eidolon was suggested as another candidate member of the Pteropodinae based on morphological evidence and a combined analysis including mitochondrial genes (Giannini and Simmons, 2005), but our current analyses using only nuclear genes either rejected this grouping (Fig. 2) or did not provide clear support for it (Fig. 3). Also from the current analysis [and some of our previous results; e.g., Giannini and Simmons (2003, 2005); Giannini et al. (2006)], it seems clear that Macroglossus [and thus its apparently closely-related sister lineage, Syconycteris; Andersen (1912), Kirsch et al. (1995)] does not belong in Pteropodinae. However, we recovered Melonycteris in clade A (Figs. 2 and 3), an arrangement recalling the DNA-DNA hybridization results of Kirsch et al. (1995), suggesting that the Notopterini may be part of Pteropodinae. Based on RAG-1 changes, Desmalopex joined Melonycteris and typical Pteropodini in a trichotomy (Fig. 2), suggesting that, pending further resolution, Desmalopex may belong in a separate tribe within the subfamily. The single-gene parsimony analyses did not
favor any particular association of Desmalopex in this trichotomy. However, the combined ML analysis suggested, albeit weakly, that Melonycteris may join a clade including Desmalopex (Fig. 3).

Andersen (1912) included leucopterus in Pteropus within the pselaphon species group, which is characterized by many dental traits including heavy teeth, strong ledges (cingula), and relative enlargement of specific incisors (i1) and premolars (p1). To Andersen (1912: 294) 'the pselaphon group shows decidedly leanings towards the highly specialized genus Pteralopex'. We have not had access to tissue samples of Pteralopex, but we hypothesize that, as suggested by Miller (1907), Desmalopex may be part of a lineage including Pteralopex (and its more recently described sister genus, Mirimiri) and perhaps other pteropodine genera. To the craniodental characters, we add several external characters that may support such association. Some photographs of Desmalopex that we have seen seem to show that it has an eye with a red-orange iris, an interesting trait shared also with Pteralopex and Mirimiri, but also with some Pteropus species, in which genus the iris is more usually brown (Flannery, 1995; Helgen, 2005). The external ears of Desmalopex, like those of Pteralopex and Mirimiri, are relatively small in comparison to most species of Pteropus (Corbet and Hill, 1992; Helgen, 2005). Desmalopex also exhibits an uneven distribution of pigment in the patagia ['melanin spotting' of Giannini and Simmons (2005): character 33]. This character state is shared with Pteralopex, Styloctenium, some Pteropus species (e.g., P. capistratus), and is carried to an extreme in Neopteryx (see Hayman, 1946; Bergmans and Rozendaal, 1988). Perhaps significantly, melanin spotting is also present in Melonycteris and Nesonycteris, though it also occurs in at least one phylogenetically unrelated lineage, the Nyctimeninae, and as an individual feature in other pteropodid genera.

Regarding relationships within Pteropus, the nuclear genes that we sampled lack variation sufficient to provide resolution, suggesting that fast-evolving genes (e.g., mitochondrial markers) should be added to the analysis. However, we anticipate that species groups, as traditionally recognized since Andersen (1912), will require some major rearrangements. While our analyses either recover or did not strongly contradict some polytypic species groups (the $s a-$ moensis, tonganus, vampyrus groups), monophyly of at least two such species groups were rejected. First, P. woodfordi (scapulatus species group) appeared as sister to P. molossinus (molossinus species
group) rather than P. scapulatus. Second, P. pumilus did not group with the other member of the subniger species group included in our study (P. hypomelanus). The significance of these results will be more fully explored elsewhere in a review of interspecific relationships among the remainder of species classified within Pteropus.

Unfortunately, we have not had access to tissues or sequences from Pteropus insularis, P. pselaphon, P. pilosus, or P. tuberculatus, all of which Andersen (1912) allied with Desmalopex leucopterus within his 'Pteropus pselaphon group.' Further study is needed to firmly establish the phylogenetic placement of these species. However, we note that none of these species of Pteropus possess some of the more distinctive phenetic anatomical attributes of P. leucopterus, such as its mottled wings, relatively small and subsquare M1, extraordinary discrepancy in size between i2 and i1, co-ossification of the postorbital processes and the jugal spine of the zygomatic arches, and zygomata that are parallel-sided rather than bowed in dorsal view (each of these traits are instead shared with Pteralopex.)

Recognition of Desmalopex as a valid genus brings the number of recognized pteropodine genera (sensu Giannini and Simmons 2005: 24) to seven (Helgen, 2005; Simmons, 2005) or eight [including Eidolon; Giannini and Simmons (2005)]. With the exception of Eidolon, all of these lineages comprise relatively very large-bodied bats with distributions centered on the Indo-Australian region. One is widespread throughout Australasia and the Pacific and Indian Ocean regions (Pteropus), one is shared between Wallacea and the oceanic Philippines (Styloctenium), one occurs primarily throughout Wallacea and the oceanic Philippines but also extends marginally to the Sunda Shelf region on Palawan and adjacent islands (Acerodon), one is restricted to Sulawesi (Neopteryx), one is restricted to the oceanic Philippines (Desmalopex), one is restricted to the Solomon Archipelago (Pteralopex), and one is restricted to Fiji (Mirimiri) (Helgen, 2005; Simmons, 2005; Esselstyn, 2007).

As noted above, our results confirm that one lineage formerly classified among 'macroglossines' (Andersen, 1912; Giannini and Simmons, 2005; Giannini et al., 2006), represented by Melonycteris (endemic to the Bismarck Archipelago) and Nesonycteris (endemic to the Solomon Archipelago), variably recognized as separate genera or congeneric subgenera (Pulvers and Colgan, 2007), is also referable to the Pteropodinae (Bergmans, 1997). The West Pacific genus Notopteris (occurring in

Vanuatu, New Caledonia, Fiji, and the subfossil record of Tonga), unsampled in our study, is potentially another member of this clade (Kirsch et al., 1995). Concentration of endemic pteropodine lineages throughout insular archipelagos from Sulawesi and the Philippines to the Solomons and Fiji indicates a probable origin for the group within the Indo-Pacific region's extensive island arc systems.

Finally, our parsimony analyses and our previous studies (Giannini and Simmons, 2005; Giannini et al., 2006) suggest that members of Pteropodinae are nested within Pteropodidae. By contrast, our combined ML analysis and a previous study that included a comparable sample of Pteropus species (Colgan and Da Costa, 2002: 19 species) place pteropodines in a more basal position amongst megachiropterans. However, the weakly supported backbone of both MP and ML trees (Figs. 2 and 3) indicate only uncertainty about the placement of pteropodines with this limited taxonomic sample.

Conclusions

We have provided evidence that leucopterus does not belong within the taxonomic boundaries of a monophyletic genus Pteropus, and resurrect Desmalopex Miller, 1907 as a valid generic name to accommodate this species. Morphological evidence points to an association of Desmalopex with Pteralopex and Mirimiri, and perhaps to pteropodine genera other than Acerodon and Pteropus. With the exclusion of leucopterus, monophyly of the genus Pteropus (as represented by a sample of 18 species from 12 species groups) is supported by shared changes in three nuclear coding genes. At least two of the currently recognized species groups of Pteropus may not be monophyletic.

Acknowledgements

We thank Lawrence Heaney (Field Museum of Natural History, Chicago), Jim Patton and Carla Cicero (Museum of Vertebrate Zoology, Berkeley), John Wible and Suzanne McLaren (Carnegie Museum, Pittsburgh), Burton Lim and Judith Eger (Royal Ontario Museum), Denis O’Meally (Australian Museum), Jeremy Jacobs, Louise Emmons, and James Mead (USNM) for access to tissue samples that made possible this contribution. Linda Gordon and Don Wilson (USNM), Lawrence Heaney (FMNH), Paula Jenkins (BMNH), Dieter Kock (SMF), Chris Smeenk (RMNH), Burton Lim and Mark Engstrom (ROM), graciously allowed access to specimens in their care. We also thank Natalee Stephens for help in the laboratory, Paul Sweet for additional tissue samples, and especially Lawrence Heaney and Jacob Esselstyn for fruitful exchange of ideas on the problem of Desmalopex. Funding for this report was provided by the National Science Foundation
(research grant DEB-9873663 to N. B. S.), Coleman and Vernay postdoctoral fellowships at the AMNH to N.P.G., a Henry MacCracken doctoral fellowship at New York University to F.C.A., and a postdoctoral fellowship at the Smithsonian Institution and funding from the Bernice P. Bishop Museum to K.M.H.

Literature Cited

Andersen, K. 1909. On the characters and affinities of 'Desmalopex' and Pteralopex. Annals and Magazine of Natural History, 8, 3: 213-222.
Andersen, K. 1912. Catalogue of the Chiroptera in the collection of the British Museum. Volume I: Megachiroptera. Trustees British Museum (Natural History), London, ci + 854 pp.
Bergmans, W. 1997. Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera). 5. The genera Lissonycteris Andersen, 1912, Myonycteris Matschie, 1899, and Megaloglossus Pagenstecher, 1885; general remarks and conclusions; annex: key to all species. Beaufortia, 47: 11-90.
Bergmans, W., and F. G. Rozendaal. 1988. Notes on collections of fruit bats from Sulawesi and some off-lying islands (Mammalia, Megachiroptera). Zoologische Verhandelingen, 248: 1-74.
Bremer, K. 1994. Branch support and tree stability. Cladistics, 10: 295-304.
Colgan, D. J., and P. da Costa. 2002. Megachiropteran evolution studied with 12 S rDNA and c-mos DNA sequences. Journal of Mammalian Evolution, 9: 3-22.
Corbet, G. B., and J. E. Hill. 1992. Mammals of the Indomalayan region: a systematic review. Oxford University Press, London, 488 pp.
Esselstyn, J. A. 2007. A new species of stripe-faced fruit bat (Chiroptera: Pteropodidae: Styloctenium) from the Philippines. Journal of Mammalogy, 88: 951-958.
Flannery, T. F. 1995. Mammals of Papua New Guinea. Robert Brown and Association, Sydney, 439 pp.
Giannini, N. P., and S. Bertelli. 2004. A phylogeny of extant penguins based on integumentary characters. The Auk, 121: 422-434.
Giannini, N. P., and N. B. Simmons. 2003. A phylogeny of megachiropteran bats (Mammalia: Chiroptera: Pteropodidae) based on direct optimization analysis of one nuclear and four mitochondrial genes. Cladistics, 19: 496-511.
Giannini, N. P., and N. B. Simmons. 2005. Conflict and congruence in a combined DNA-morphology analysis of megachiropteran bat relationships (Mammalia: Chiroptera: Pteropodidae). Cladistics, 21: 411-437.
Giannini, N. P., F. C. Almeida, N. B. Simmons, and R. DeSalle. 2006a. Phylogenetic relationships of the enigmatic harpy fruit bat, Harpyionycteris (Mammalia: Chiroptera: Pteropodidae). American Museum Novitates, 3533: 1-12.
Giannini, N. P., J. R. Wible, and N. B. Simmons. 2006b. On the cranial osteology of Chiroptera. I. Pteropus (Megachiroptera: Pteropodidae). Bulletin of the American Museum of Natural History, 295: 1-134.

Goloboff, P. A., J. S. Farris, M. Källersjö, B. Oxelman, M. Ramírez, and C. Szumik. 2003a. Improvements to resampling measures of group support. Cladistics, 19: 324-332.
Goloboff, P. A., J. S. Farris, and K. Nixon. 2003b. TNT: Tree analysis using new technology. Version 1.1. Available at www.zmuc.dk/public/phylogeny/TNT.
Goloboff, P. A., J. S. Farris, and K. Nixon. In press. TNT, a free program for phylogenetic analysis. Cladistics.
Gray, J. E. 1870. Catalogue of monkeys, lemurs and fruit eating bats in the collections of the British Museum. British Museum, London, 137 pp .
Hayman, R. W. 1946. A new genus of fruit-bat and a new squirrel, from Celebes. The Annals and Magazine of Natural History, 11, 12: 569-578.
Heaney, L. R., D. S. Balete, M. L. Dolar, A. C. Alcala, A. T. L. Dans, P. C. Gonzales, N. R. Ingle, M. V. Lepiten, W. L. R. Oliver, P. S. Ong, E. A. Rickart, B. R. Tabaranza, Jr., and R. C. B. Utzurrum. 1998. A synopsis of the mammalian fauna of the Philippine Islands. Fieldiana Zoology (N.S.), 88: 1-61.

Helgen, K. M. 2005. Systematics of the Pacific monkey-faced bats (Chiroptera: Pteropodidae), with a new species of Pteralopex and a new Fijian genus. Systematics and Biodiversity, 3: 433-453.
Kirsch, J. A., T. F. Flannery, M. S. Springer, and F.-J. LaPOINTE. 1995. Phylogeny of the Pteropodidae (Mammalia: Chiroptera) based on DNA hybridization with evidence of bat monophyly. Australian Journal of Zoology, 43: 395-428.
Koopman, K. F. 1993. Order Chiroptera. Pp. 137-241, in Mammal species of the World: a taxonomic and geographic reference, 2nd edition (D. E. Wilson and D. M. Reeder, eds.). Smithsonian Institution Press, Washington D.C., 1206 pp.
Koopman, K. F. 1994. Chiroptera: systematics. Handbook of zoology. Vol. 8, Part 60: Mammalia. Walter de Gruyter, Berlin, 217 pp .
Miller, G. S., Jr. 1907. The families and genera of bats. Bulletin of the United States National Museum, 57: 1-282.
Porter, C. A., M. Goodman, and M. J. Stanhope. 1996. Evidence on mammalian phylogeny from sequences of exon 28 of the von Willerbrand factor gene. Molecular Phylogenetics and Evolution, 5: 89-101.
Pulvers, J. N., and D. J. Colgan. 2007. Molecular phylogeography of the fruit bat genus Melonycteris in Northern Melanesia. Journal of Biogeography, 34: 713-723.
Simmons, N. B. 2005. Order Chiroptera. Pp. 312-529, in Mammal species of the World: a taxonomic and geographic reference, 3rd edition (D. E. Wilson and D. M. ReEDER, eds.). The Johns Hopkins University Press, Baltimore, 2142 pp.
Stamatakis, A. 2006. RAxML-VI-HPC: Maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22: 2688-2690.
Teeling, E. C., M. Scally, D. Kao, M. Romagnoli, M. S. Springer, M. J. Stanhope. 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature, 403: 188-192.
ApPENDIX
Voucher information and GenBank accesion numbers of megabat specimens used in the present study, in alphabetical order by species. Imprecise localities are quoted. Abbreviations of Institutions: AM M, Australian Museum, Sydney; AMCC, Ambrose Monell Cryo Collection (AMNH); AMNH, American Museum of Natural History, New York; CMNH Carnegie Museum of Natural History, Pittsburgh; EBU Evolutionary Biology Unit, Australian Museum, Sydney; FMNH, Field Museum of Natural History, Chicago; MVZ, Museum of Vertebrate Zoology, University of California, Berkeley; ROM Royal Ontario Museum, Toronto; USNM Smithsonian Institution, National Museum of Natural History, Washington D.C. Other abbreviations refer to collector's catalog

Species	Voucher	Tissue ID	Accession numbers			Locality
			RAG-1	RAG-2	vWF	
AceFrodon celebensis	AMNH 272877	AMCC 124966	UE617946	UE617896	UE617928	'Indonesia, Sulawesi'
Cynopterus sphinx	AMNH 274354	AMCC 101688	UE617947	UE617897	DQ445697	Vietnam, Ha Giang Province, Vi Xuyen District, Cao Bo Commune, Mt Tay Con Linh II
Desmalopex leucopterus	FMNH EAR 1697	FMNH EAR 1697	UE617966	UE617915	UE617929	Philippines, Catanduanes
D. leucopterus	FMNH EAR 1698	FMNH EAR 1698				Philippines, Catanduanes
Dobsonia inermis	AMNH PRS 2771	AMCC 124428	UE617948	UE617898	DQ445686	Solomon Islands, Western Prov., New Georgia Group, Vonavona Lagoon
D. magna	AM M 20735	EBU 25757	UE617949	UE617899	UE617930	Papua New Guinea, Sideia Mission, Milne Bay Province
D. magna	MVZ 138495	MVZ 138495				Papua New Guinea, Baiyer River, Trauna Valley, Western Highlands Province
Eidolon helvum	CMNH 102020	SP 5079	UE617950	UE617900	UE617931	Kenya, Mbale, Kakamega District, Western province
E. helvum	CMNH 102021	SP 5080				Kenya, Mbale, Kakamega District, Western province
Eonycteris spelaea	MVZ 176480	MVZ 176480			DQ445685	China, Yunnan Province
E. spelaea	MVZ 176487	MVZ 176487	UE617951	UE617901	DQ445684	China, Yunnan Province
Epomophorus wahlbergi	AMNH 117336	JCK 4820	UE617953	UE617903	DQ445691	Mozambique, Zambezia, Mt. Namuli
Epomops franqueti	AMNH 238356	AMCC 109070	UE617952	UE617902	DQ445692	Central African Republic, Sangha, Dzanga-Sangha
Harpyionycteris whiteheadi	FMNH 146646	LRH 4811	UE617954	UE617904	DQ445690	Philippines, Mindanao, Bukidnon Prov., Mount Kitanglad Range
H. whiteheadi	FMNH 146650	LRH 4866			DQ445689	Philippines, Mindanao, Bukidnon Prov., Mount Kitanglad Range
Macroglossus minimus	CEF 800	AMCC 124283	UE617955	UE617905	DQ445693	Solomon Islands, Western Province, New Georgia Group, Vella Lavella Island
Megaloglossus woermanni	AMNH 268358	AMCC 109064	UE617956	UE617906	DQ445702	Central African Republic, Sangha, Dzanga-Sangha
Melonycteris fardoulisi	AMNH PRS 2653	AMCC 124279	UE617957	UE617907	DQ445699	Solomon Islands, Western Prov., New Georgia Group, Vella Lavella Island
Myonycteris torquata	AMNH 268362	AMCC 109058	UE617958	UE617908	DQ445700	Central African Republic, Sangha, Dzanga-Sangha
Nyctimene albiventer	No voucher	No voucher	AY249870	AF447531	AF447549	
N. vizcaccia	AMNH PRS 2636	AMCC 124208	UE617959	UE617909	DQ445698	Solomon Islands, Western Prov., New Georgia Group, Vella Lavella Island
Ptenochirus jagori	FMNH 175395	LRH 6700	UE617960	UE617910	DQ445696	Philippines, Luzon, Kalinga Prov., Balbalan Munic., Balbalasang
Pteropus alecto	AM M 32564	EBU 9873	UE617961	UE617911	UE617932	Australia, Lismore District, New South Wales
P. anetianus	AMNH 272874	AMCC 124963	UE617962	UE617912	UE617933	Vanuatu
P. capistratus	USNM LHE 1009	USNM LHE 1009				'Papua New Guinea'
P. capistratus	USNM 580018	USNM 580018	UE617975	UE617923	UE617943	'Papua New Guinea'
P. conspicillatus	MVZ 138494	MVZ 138494				Papua New Guinea, Madang, Madang province
P. conspicillatus	MVZ 140201	MVZ 140201	UE617963		UE617934	Papua New Guinea, Baitabag Plantation, Madang, Madang province
P. giganteus	CMNH 92205	NK 10524	EU617964	EU617913	EU617935	India, Araku, Andhra Pradesh

Appendix. Continued

Species	Voucher	Tissue ID	Accession numbers			Locality
			RAG-1	RAG-2	vWF	
Pteropus giganteus	CMNH 92208	NK 10523				India, Araku, Andhra Pradesh
P. hypomelanus	Uncataloged	P 4447	UE617965	UE617914	DQ445687	Captivity Lubee Foundation
P. lylei	ROM 110943	F 44269	UE617967	UE617916	UE617916	Vietnam, Soc Trang
P. lylei	ROM 110944	F 44270				Vietnam, Soc Trang
P. molossinus	USNM 566567	USNM 566567	UE617969	UE617918	UE617938	'Caroline Islands'
P. molossinus	USNM 566568	USNM 566568				'Caroline Islands'
P. neohibernicus	AMNH 272872	AMCC 124961	EU617970	EU617919	EU617939	'Papua New Guinea'
P. pelewensis	USNM 566587	USNM 566587	XXXX	XXXX	XXXX	Palau
P. pelewensis	USNM 566588	USNM 566588	XXXX	XXXX	XXXX	Palau
P. poliocephalus	M 35496	EBU 13768	EU617971	EU617920	EU61740	Australia, Mortdale, New South Wales
P. pumilus	FMNH LRH 4261	FMNH LRH 4261	EU617972	EU617921	EU617941	'Philippines'
P. pumilus	FMNH SMG 2872	FMNH SMG 2872				'Philippines'
P. samoensis	AMNH 272876	AMCC 124965	EU617973	EU617922	EU617942	'American Samoa'
P. scapulatus	AM M 32440	EBU 9341	EU617794			Australia, Werrington Downs, Penrith, New South Wales
P. tonganus	AMNH 272873	AMCC 124962	EU617976	EU617924	DQ445695	Tonga
P. vampyrus	AMNH 272871	AMCC 124960				Unregistered
P. vampyrus	ROM 110948	F 44274	EU617977	EU617925	EU617944	Vietnam, Soc Trang
P. woodfordi	AMNH 272875	AMCC 124964	EU617978	EU617926	EU617945	'Solomon Islands'
Rousettus aegyptiacus	AMNH 117386	JCK 4960	EU617979	EU617927	DQ445688	Mozambique, Zambezia, Mt. Namuli
R. aegyptiacus	AMNH 117335	JCK 4821			DQ445694	Mozambique, Zambezia, Mt. Namuli
R. amplexicaudatus	No voucher	No voucher	AF447512	AF447529	AY057836	

