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Abstract. Artificial intelligence (AI) methods have the potential for broad im-
pact in smart homes. Different AI methods offer different contributions for this
domain, with different design goals, tasks, and circumstances dictating where
each type of method best applies. In this chapter, we describe motivations and
opportunities for applying case-based reasoning (CBR) to a human-centered ap-
proach to the capture, sharing, and revision of knowledge for smart homes. Start-
ing from the CBR cognitive model of reasoning and learning, we illustrate how
CBR could provide useful capabilities for problem detection and response, pro-
vide a basis for personalization and learning, and provide a paradigm for home-
human communication to cooperatively guide performance improvement. The
episodic memory developed by case-based reasoning systems within the home
can both guide behaviors by the smart home and help its inhabitants to augment
their own memories. After sketching how these capabilities could be served by
case-based reasoning, the chapter discusses some design issues for applying CBR
within smart homes and case-based reasoning research challenges for realizing
the vision.

1 Introduction

Smart home environments have the potential for extensive impact on occupant comfort,
convenience, and safety. Serious accidents can occur in the home because individu-
als are distracted or overwhelmed by ongoing events, and natural age-related declines
in mobility and cognitive abilities may exacerbate problems, with occupants requiring
monitoring and assistance (Craik & Salthouse 2000). For eldercare, smart home tech-
nology offers the prospect of a more independent life style in a private home compared
to high-cost assisted living alternatives, or increased support and efficiency in group set-
tings. Consequently, smart home technology may help alleviate the looming health-care
crisis resulting from steady increases in health care cost and a rapidly aging population
(Mann & Helal 2004; Mynatt, Essa, & Rogers 2000; Pollack 2005). Even for those who
do not need special assistance, smart homes can facilitate daily tasks and provide an
added measure of security by detecting and responding to emergencies.

Artificial intelligence (AI) methods for smart homes may provide both the flexibility
to adapt to changing circumstances and the reasoning capabilities required to interpret
events within the home and to make the right choices at the right times. In the intro-
ductory chapter to this volume, Augusto and Nugent (2005) argue for the suitability of



smart homes as an AI domain, both because of the potential payoff for AI methods and
because their constrained task environment facilitates application of AI solutions. Be-
cause intelligent technology may be applied in many areas of a home, different types of
support may suggest applying different types of AI methodologies. This chapter focuses
on developing methods to enable smart homes to learn from observation of and direct
interaction with their inhabitants, to be adaptable both to new tasks and to particular
individuals’ needs. The proposed approach is inspired by human-centered computing
(HCC), in focusing on the home-inhabitant team rather than solely on the house as an
autonomous agent.

The HCC approach dictates developing systems which can provide varying levels
of autonomy and interaction, based on different individuals’ needs and desires. In ad-
dition, it goes beyond simply requiring that the home attempt to “do the right thing”
to requiring that the home can interact effectively with its inhabitants, sharing the bur-
den with them in whatever ways will maximize overall performance. When the home
can provide capabilities that the human lacks, or can increase efficiency, it should do
so; when the human has unique capabilities or prefers to act independently, the home
should defer and support the human’s preference. This suggests that smart homes should
support the explanation of their decisions, (1) to help an informed and capable occu-
pant trust the home enough to accept its judgments and determine when to relinquish
control, and (2) as background for an informed and capable inhabitant to directly ad-
just the home—reducing the learning burden on the system and making it feasible to
refine system behavior more rapidly and reliably. It also suggests that the home should
support a simple and transparent learning process, making it easy to revise system be-
haviors. These desiderata suggest exploring methods which learn in a way that people
find understandable and offer simple processes for capturing new information.

Case-based reasoning (CBR) is a methodology for reasoning and learning based on
the capture of specific experiences and their retrieval and adaptation to fit new needs.
One of the inspirations for case-based reasoning comes from cognitive modeling of
human reasoning and learning (e.g., (Kolodner 1994; Leake 1998)). Experience with
fielded CBR systems suggests that humans are comfortable receiving information in
the form of cases, and experiments show the usefulness of cases for explaining sys-
tem reasoning (Cunningham, Doyle, & Loughrey 2003). Likewise, CBR provides a
simple, easily comprehensible learning process. This chapter sketches how CBR could
be applied to smart homes tasks such as responding to and learning from expectation
failures, generalizing patterns of events to refine system expectations and to help care-
givers and relatives to identify problems, as well as potentially interacting with inhabi-
tants/caregivers through examples, to explain and adjust the homes’ behaviors.

The chapter begins with a synopsis of case-based reasoning, including both the role
of cases in human understanding, reasoning, and learning and the pragmatic motiva-
tions for applying case-based reasoning as an AI technology. It then illustrates how
CBR can be applied to a number of distinct tasks desirable for smart homes, through
multiple case-based processes. It then discusses special challenges for CBR to realizing
the vision.



2 A Synopsis of CBR: Cases for Understanding, Learning, and
Problem- Solving

One of the early foundations for case-based reasoning was Schank’s study of human re-
minding during understanding, which gave rise to Schank’s Dynamic Memory Theory
((Schank 1982); summarized in (Schank & Leake 2002)). Dynamic Memory Theory
addresses the relationship of human understanding, learning, and memory, with a cen-
tral focus on how knowledge is structured, organized and revised based on experience.
This approach is of interest to smart home development for three reasons. First, a fun-
damental need for smart homes is recognizing events and predicting following steps.
Second, no smart home can be perfect: Smart homes will need to adapt to experience.
Third, the use of human-like learning methods may help inhabitants to understand and
interact with the smart home, increasing its acceptance.

In Dynamic Memory Theory, standard event sequences (such as the events involved
in hosting a party—sending invitations, preparing food, welcoming guests, offering
them food, etc.,) are characterized by sequences of basic components, called scenes,
which normally describe events which take place in a single location, with a single pur-
pose, and in a single time interval. These sequences are captured in knowledge struc-
tures called Memory Organization Packages, or “MOPs”. They are hierarchical, with
shared structure enabling lower-level components to be shared by a number of MOPs.

A central focus of Dynamic Memory is the process by which an understander re-
fines its knowledge structures, to improve future predictive power—a process of great
importance to smart homes as well—and the role of remindings in that process. Each
MOP provides certain expectations, which provide top-down guidance for understand-
ing. If these expectations are not borne out, an expectation failure occurs. For example,
with RFID tags, a smart house might detect an impaired occupant picking up a tooth-
brush, leading to the expectation for toothpaste to be picked up next. If, instead, the
patient picked up a tube of shoe polish, an expectation failure would occur—and would
require a warning.

A tenet of Dynamic Memory Theory is that failure episodes are stored under the
processing structures in effect at the time of the failure, making them accessible as re-
mindings when another similar failure occurs. Dynamic Memory Theory and later work
in its tradition (e.g., (Domeshek 1992; Leake 1992b; Schank et al. 1990)) developed in-
dexing vocabularies aimed at capturing the features needed for computer models to
generate the types of remindings observed in humans. If we accept the general ability
of people to generate useful remindings, we can expect that analogous remindings may
be pragmatically useful for a smart home to generate, as a surrogate memory for the
home’s inhabitants. These remindings provide a starting point for case-based reasoning
by either the human or the home.

Beyond the immediate usefulness of remindings to aid current tasks (e.g., by warn-
ing of a possible mistake or suggesting a useful past solution), such remindings can
provide data for future generalization to generate new schemas. For example, the first
time a patient confuses shoe polish with toothpaste, a warning may be sufficient, but
if this happens often, the smart house may determine that the patient will reach for
anything available, and might need to start guiding a visiting nurse to remove any po-
tentially dangerous objects when preparing the house for the night. Likewise, case data



may be useful to refine responses such as warnings (e.g., whether a nurse should be
called or an audible warning generated with a speech synthesizer is sufficient, and what
volume warning is needed).

For a system trying to explain subject behavior, having access to cases for prior
experiences provides a number of potential benefits. First, the cases focus attention
on scenarios which actually have happened for the particular subject. Second, cases
augment the system’s built-in knowledge. Third, remindings can carry solutions or pre-
dictions which applied in the past, and which may be useful again. If the last time a
subject overslept, he skipped breakfast, the home might not turn on the coffee maker,
but instead could start warming up the car. If the heat is on, but the home does not
become warm, a reminding that the same problem occurred when a door was left ajar,
and was fixed by closing it, might provide a solution. Third, the case provided by the
reminding may contain lessons from both successes and failures.

This process provides a first-pass suggestion of a framework for how smart homes
may combine general schemas with cases to understand actions, predict the actions to
follow—in order to support them—and note deviations in order to explain, react, and
learn. For example, the schema for a daily routine might include getting up, dressing,
eating breakfast, and so on. If a home’s inhabitant fails to get up when the alarm goes
off one morning, the anomaly might prompt remindings of other similar instances, for
example, a case of prior illness.

In general, a case-based reasoning system exploits remindings to help interpret new
situations or to solve new problems. When faced with a new problem, a CBR system
retrieves prior cases for similar problems and adapts their solutions to fit new circum-
stances. When faced with a new situation to interpret, a CBR system retrieves prior
cases for similar situations and compares and contrasts them to the current situation to
form a new interpretation. The steps of the CBR process include situation assessment,
to describe a situation in a vocabulary commensurate with the indices used in memory,
then retrieval and similarity assessment of candidate cases, then adaptation to fit the
case to the new situation and evaluation of the results (first by internal reasoning and
then by application of the case to the new problem, providing real-world feedback). If
problems are detected, the adaptation/evaluation cycle may be continued, until the final
result is stored in the case base. Figure 1 sketches this process. Additional variations
and extensions are possible—for example, drawing on multiple cases to provide parts
of a solution. For a more in-depth overview, see, for example, (Aamodt & Plaza 1994;
Kolodner & Leake 1996a; Leake 1996).

Flexible processes for situation assessment, similarity assessment, and case adapta-
tion enable cases to be applied in new contexts and despite imperfect matches to past
events. In smart homes, it might seldom be true that two tasks were performed exactly
the same way and in the same context. To realize the full potential of CBR, a CBR
system must generalize its indices—even as it keeps the cases themselves specific—
to enable potentially relevant cases to be retrieved, must be able to assess similarity
of differing situations, and must be able to adapt solutions to new needs. In practice,
CBR applications will address these to different levels. Depending on the granularity
of sensor information, for example, different amounts of indexing information will be
needed.
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Fig. 1. The CBR cycle

The CBR literature presents a number of practical motivations for using CBR (see
(Leake 1996) for one more detailed treatment):

1. Knowledge acquisition by example: Providing knowledge in the form of cases
can seem more natural to subjects than attempting to distill knowledge into general
rules. Cases only need to be captured for situations that actually arise in practice,
and the system can be fielded with a small set of “seed cases,” acquiring more
cases as needed. However, more traditional knowledge acquisition problems may
arise in case engineering or capturing supporting knowledge such as similarity or
adaptation knowledge.

2. Learning from both successes and failures: Case acquisition not only accumu-
lates successful cases as future guidance, but also failure cases which can serve as
warnings of problems.

3. Inertia-free learning: Cases provided to the system may immediately be applied,
without any need for re-training of the system or learning period during which the
system responds incorrectly until more evidence is acquired.

4. Simple and lazy learning: Case acquisition to cover new problems can improve
system coverage with a very simple learning process, and small initial cost. Effort
to generalize cases, etc., need only be applied if similar circumstances arise in the
future, only need to be done to the extent required by the new situation, and can
immediately be tested with the feedback of that situation.

5. Ability to draw on multiple types of knowledge: What domain knowledge is
available can be integrated into many parts of the CBR process, to improve indexing
or ease adaptation.

6. Problem-solving efficiency: Case-based reasoning can be combined with other
methods, such as rule-based or model-based reasoning, to provide speedup learning
by reusing results of past reasoning rather than requiring them to be derived from
scratch.

7. Ability to function in poorly-understood domains: When a domain is poorly
understood, cases that have worked in similar situations may implicitly capture im-
portant factors that would not be captured in rules reflecting current understanding.



8. Ability to provide operational and contextualized guidance: Because cases are
kept at an operational level rather than generalized, they may be easier to apply
(e.g., a cooking plan could be stored including the specific places to look for an
ingredient in a household, etc.)

9. User acceptance: Cases capturing similar prior situations can provide effective ex-
planations for why a system performed as it did (Cunningham, Doyle, & Loughrey
2003).

3 Opportunities for CBR in Smart Homes

Case-based reasoning has been widely applied to advisory tasks, including the selection
of assistive technology for smart houses (Wiratunga et al. 2004). However, the direct
application of CBR to the internal function of smart homes remains unexplored. As
many stands of CBR research have potential applications to smart homes, this section
will outline the reasons for applying CBR to this domain and avenues for its application.

The characteristics of CBR suggest four motivations for applying CBR as an AI
methodology within smart homes. First, case learning provides a simply method for
refining and personalizing a smart home over time by storing cases for new event se-
quences, to be generalized into new schemas, and for learning appropriate responses.
Second, its ability to reuse prior reasoning—regardless of the original reasoning process–
can increase efficiency for expensive reasoning tasks with substantial potential payoffs
for smart homes, such as abductive explanation of observed anomalies (Leake 1993)
and use of these explanations to support multiple reasoning tasks explanations may be
tailored to addressing individual needs (Leake 1992a). Third, the use of CBR can facil-
itate human-system interactions by enabling humans to provide unanalyzed examples
(or provide feedback on examples) as a means of training the smart house. Fourth, ref-
erences to cases provide an intuitive way for smart homes to explain their behaviors
to people (Kolodner 1991; Cunningham, Doyle, & Loughrey 2003; Leake & McSherry
2005).

In the remainder of this section, we illustrate the potential usefulness of CBR to
support selected smart home tasks. In this discussion, we will assume that the smart
house is equipped with the array of sensors described in the introduction to this volume,
providing capabilities to monitor properties such as the locations of inhabitants, on/off
states of appliances, and vital signs of inhabitants. Later sections highlight some issues
that must be addressed to develop CBR systems for smart homes.

3.1 Monitoring, problem detection and response

An essential capability for smart homes is the ability to monitor household events and
inhabitant state. This monitoring may serve two purposes. One is to recognize instances
of routine patterns, to enable the home to anticipate and satisfy standard needs (e.g., to
turn on the coffer maker after the occupant gets up, or to guide an impaired inhabitant
through normal steps of daily life). Another is to recognize unusual and potentially
hazardous situations and respond. For both types of tasks, case-based methods can be
useful.



Cases for monitoring and explanation Comparison to past cases can help to detect
situations which have proven interesting in the past, with a case base directly capturing
events of interest and responses to them. For example, a case could be indexed by a
patient in a nursing home falling to the floor (as determined by the change in location
of a sensor worn by the patient), and could directly suggest a response (e.g., making
an urgent call to a nursing station, broadcasting to the inhabitant that help has been
requested, and turning on house lights). By storing cases captured in similar circum-
stances (e.g., at the same nursing home), local details (e.g., telephone numbers) can be
captured. Similar prior cases may also be used as a reference for comparing events, in
order to detect anomalies. For example, if a patient’s heart rate after climbing stairs is
much higher than it was the previous time, that increase should be noticed.

Likewise, cases can play a role in monitoring more routine activities. Although
these may in principle be as diverse as the number of ways humans interact with the
domestic environment, particular individuals’ tasks and strategies tend to recur, at least
in similar forms. Cases provide a first vehicle for recognizing events, as well as data
for generalizing the cases into schemas which can be used to track actions and form
expectations for inhabitant activities (e.g., to turn on the bedroom light if the inhabitant
is preparing for bed), as well as to detect, explain, and respond to expectation failures.
Thus it provides an alternative to alternatives such as reinforcement learning (Mozer
2005), with the ability to explain system actions in terms of desired actions in similar
situations.

CBR can also be useful as a way to explain anomalies detected by other AI methods.
For example, (Leake 1992b) shows how a pattern-based method for anomaly detection
can generate indices when generating explanations for the anomalies by case-based
reasoning. The resulting explanations can then be made available to CBR or other AI
methods to determine appropriate responses, once the cause of the unexpected event
has been determined by CBR.

CBR for anytime response After detection of a situation requiring a response, CBR
may again be useful, both for proposing responses and for tailoring problem response
speed to problem urgency. When emergency conditions require very rapid response
(e.g., when a heat sensor detects a fire), it may be crucial to begin actions without exten-
sive reasoning, suggesting the use of anytime algorithms (Dean & Boddy 1988), which
can be terminated at any time while still providing a meaningful answer, and which
can return answers whose quality improves with increased processing time. Riesbeck
(Riesbeck 1996) points out that CBR has “anytime” properties, as a system may im-
mediately begin acting based on a similar case, while continuing to search for possibly
more on-point cases and possible adaptations as time permits.

For example, given a fire, the system might immediately find a case for another fire
involving turning on sprinklers, turn off room power and call for emergency services,
all of which can be applied directly from a prior case. Other aspects of the case, such
as calls to the previous patient’s relatives, would require adaptation, and, perhaps addi-
tional effort (e.g., searching for the relative’s number, or taking additional steps if the
relative is hard to reach). Different types and levels of alarms could suggest different
points at which to harvest the intermediate results of CBR. Applying this approach re-



quires methods for estimating problem severity, applicability of the current case and
usefulness of its components, and expected adaptation cost for the cases in order to
guide the response process.

3.2 Personalizing case application

A smart home guided by standard schemas can provide stereotyped responses, but not
the differing needs of different users. Building up personalized sets of cases for different
users addresses that problem. For example, suppose that a window was left open on a
cool summer night, with the air conditioner on but not running. If, next morning, the
house becomes warm enough for the air conditioner to start, one person might close the
window (favoring temperature) and another might turn off the air conditioner (favoring
fresh air). Case-based reasoning has already been applied to recommendation systems,
with good results (e.g., (Smyth & Cotter 2005)).

For any new user, there will be a transition period until sufficient personalized cases
are built up. During that period, the system must still rely on knowledge developed for
other users. If that knowledge is drawn from cases, there are opportunities for adapting
the CBR process to provide more personalized results, even when the cases are drawn
from other users.

As proposed in (Leake 2002), developing personalized CBR systems requires re-
placing the task-centric view—that there is a single solution for each problem—with
a user centric view that supports multiple solutions, based on the user as well as the
problem situation. This can be addressed by modeling the user as well as the task, and
using both types of information to guide CBR at many levels.

Again, different CBR processes can play different roles. A secondary CBR process
can be used to directly support personalization process (Blanzieri 2002), to classify a
new individual based on individuals already classified; this can be an index provided
to the main CBR process to reflect different users during retrieval, adaptation, evalua-
tion and storage. Augmenting cases descriptions with user properties can improve the
system ability to identify useful solutions.

3.3 Personalized smart home autonomy

However, not all advice is useful, and not all aid is desired; different individuals have
varying needs and tolerances. Likewise, it may be desirable for a system to balance user
preferences against general policies (e.g., comfort vs. energy costs (Mozer 2005)). Con-
sequently, a smart home should provide adjustable autonomy (Musliner & Pell 1999),
furnishing different levels of support depending on its own capabilities, user prefer-
ences, user needs, and general policies. Thus another useful type of personalization
would consider potential actions and decide which should actually be performed for a
particular inhabitant, or how to adapt them to make them more acceptable.

Decisions about whether to act depend on many factors, such as the user’s physical
and mental condition, the user’s tolerance of system intervention, system’s confidence
in its assessment of a situation, the cost of action, the potential risk of failure to act,
and so on. Because of the complexity of weighing these conflicting factors, it may be
desirable either to rely on experience, using CBR to asking what this user or similar



users have favored in similar situations, or to exploit CBR to retrieve and adapt the
results of prior calculations performed by other AI methods for similar prior problems.

3.4 Personalization of information presentation

In addition to deciding when to present information, a smart home must decide how
to present it from a plethora of interface options. For example, one direct presentation
approach is implemented in the REA system (Cassell 2001), a fully, virtually embodied
interface agent that advises customers on real-estate purchases, uses a variety of ver-
bal and non-verbal input modalities when interacting with its customers; the ambient
display technologies that exist in the periphery of our perception and only appear if we
choose to interact, thereby contributing to a calm environment (Weiser 1991). Examples
of such technologies include Hello.Wall, which facilitates communication by present-
ing unobtrusive digital light patterns to individuals as they walk by, to alert them of new
messages which can be accessed through a PDA if desired (Streitz et al. 2005). Am-
bient display technologies demonstrate the potential for interactions going far beyond
traditional keyboard-mouse-based human-computer interaction, which require users to
be located in a single spot and to explicitly initiate each interaction. In contrast, spoken-
dialogue systems with a variety of input and output modalities allow for spontaneous
interaction between humans and the system.

3.5 Explanation of system decisions

It has long been recognized that confidence in and acceptance of intelligent system
decisions may benefit from increased user understanding of system reasoning (e.g.,
(Buchanan & Shortliffe 1984)). For non-impaired inhabitants, the ability to explain
may be helpful as well, both to instill confidence and to enable systems to guide repair
of problems (e.g., if a system sets an early alarm for Friday, believing that it is a work
day, when the inhabitant works only Monday to Thursday).

Case-based reasoning provides a natural vehicle for explanations. Unlike, for exam-
ple, neural networks, case-based reasoners can account for their decisions by presenting
specific prior cases, which inhabitants can examine to assess their applicability. Early
CBR work sometimes considered the case alone to be a sufficient explanation; recent
work is developing a richer view (for a sampling of recent work, see (Leake & Mc-
Sherry 2005)). In addition to providing arguments for the relevance of a case and a
conclusion (e.g., in the form of comparisons and contrasts (Ashley & Rissland 1987)),
current research is examining how to explain other facets affecting system conclusions,
such as how features of a case contribute to similarity calculations (Massie, Craw, &
Wiratunga 2004). Each of these explanations in turn provides a point to which a user
might provide feedback accounting for an erroneous conclusion and enabling system
refinement.

3.6 Providing task-relevant reminders from captured cases

Elderly or infirm patients may have difficulty following normal task sequences. Con-
sequently, the ability to capture and provide task guidance could be valuable. More



generally, memory augmentation, in the form of environment-aware systems which can
use context to disambiguate requests for information, could provide valuable services
in smart homes—from guiding tasks to providing recipes to more general questions.

Much work has already been done in the area of intelligent reminder systems, and
many tools have been developed to augment human memory through context-based
proactive assistance in homogeneous and regulated environments. Much of this work
centers on the desktop paradigm, where tasks are often limited to editing, searching,
entertainment and communication (Rhodes & Starner 1996; Budzik & Hammond 1999;
Rhodes 2000; Budzik, Hammond, & Birnbaum 2001). Within this paradigm, case-based
systems have already been applied to tutoring systems which monitor an individual’s
progress in a simulated environment, tracking behavior to detect potential problems and
present video clips of cases with “remindings” warning about potential pitfalls (Burke
& Kass 1996). While smart home environments would present many challenges beyond
the simulated one, this work provides a general sketch for this approach. An additional
issue will be the need to aid more general tasks and provide smooth integration, by
being delivered using the right modality, at the right time, and at the right location.
In general, making this determination may be a daunting task, making it appealing to
gather examples, which may be combined with general rules for deciding where and
when to provide guidance.

Systems that offer guidance as the individual completes daily activities have been
developed primarily to assist the cognitively impaired. Some of these systems, such as
Autominder (Pollack et al. 2003), are general purpose tools. They operate by monitor-
ing the individual’s task and perform schedule management functions that otherwise
would require human assistance. Others have as a goal to assist more specific tasks.
An example of such a system is COACH (LoPresti, Mihailidis, & Kirsch 2004), a tool
developed to assist in the hand washing process by providing needed reminders. A pri-
mary motivation for exploring CBR for these tasks would be their capability for simple
and lazy learning, and their ability to function in new domains by providing them with
additional examples, making them especially suitable to adapt to diverse situations,
without the need for a predefined plan of daily activities.

3.7 Enabling user instruction of smart homes

No smart home will be perfect; the home must learn. One form of learning is simply for
the system to observe the user’s actions. If the system mis-sets the morning temperature
and the user adjusts it, the system can adapt the outcome of its stored case, replacing its
initial choice with the user’s corrected one. Observing and learning from user settings
alone is a promising vision, but also has limitations in that few cues may be directly
available to the system (Mozer 2005). In addition, if the smart home learns by methods
requiring much training data, the system may continue in its old behavior for some time
after the user’s behavior changes, prompting user frustration.

The more sophisticated inferences a home requires, the more it may be difficult
for a system to autonomously select appropriate behaviors and learn from the limited
information that may be available by observation. Consequently, it may be desirable
to enable users to choose to share some of the burden in exchange for faster learning
or better performance. CBR provides a potential avenue for this. If cases are captured



in a comprehensible form and made available to users for interactive case adaptation,
users can refine cases to directly reflect the conclusions they find appropriate. Numerous
avenues for interaction with CBR systems have been explored (Aha & Munoz 2001),
and this continues to be an active research area.

An interesting extension of these approaches would be to provide new paradigms
for interacting with cases, such as enabling user actions in the home to automatically
connect to refinements of case information. For example, if an individual following
a recipe replaces ingredients, such changes might be easy to detect through the use of
RFID tags, enabling the system to generate a new recipe without bothering the user, and
to save that for later use. Because cases encode episodes, which may be presentable in
an intuitive way, case presentation and editing interfaces might provide general-purpose
methods to enable sophisticated users to adjust system behavior themselves through
case editing. For example, some CBR research has pursued using concept maps (Novak
& Gowin 1984) as the basis for browsable and editable cases (Cañas, Leake, & Wilson
1999; Leake & Wilson 2001).

4 Putting it into practice: Case generation and access for smart
homes

Building any CBR application requires developing methods for the core CBR tasks of
Section 2, as described in sources such as (Kolodner 1993; Watson 1997). This section
focuses on two key issues, generating the system’s initial case base and accessing the
cases based on information available from the home.

4.1 Generating Case Bases

CBR systems are only as good as their cases. Consequently, case capture and engi-
neering are central issues in fielding CBR applications, and a first step is determining
the case representation. As discussed in (Kolodner & Leake 1996a), a case is a con-
textualized piece of knowledge representing an experience that teaches a lesson funda-
mental to achieving the goals of the reasoner. Cases must contain a problem/situation
description, describing the state of the world when the episode recorded in the case
occurred, a solution or interpretation; and the outcome of applying the solution. The
solutions/interpretations that cases provide may take different forms, ranging from sim-
ple textual advice to an inhabitant (e.g., “Are you forgetting to take out the garbage?”) to
rich structured representations (e.g., the plan for a recipe). The preferred representation
will depend on the task, in light of a tradeoff between easy generation (e.g., for textual
cases) and the ability for cases to support further reasoning (e.g., for a recipe, for which
the home might suggest how to revise the recipe when substituting for an unavailable
ingredient).

In order for a CBR-based system to be useful as soon as it is fielded, developers
must “jump start” the system with initial knowledge capturing the events, actions, and
behaviors of individuals in the home relevant to system tasks. For a CBR system which
monitors and predicts behaviors, one option would be to base initial processing on gen-
eralized schemas; another would be for developers to manually identify prototypical or



critical events and activities for the system to handle, such as common, regular activi-
ties and behaviors (e.g. when people get up in the morning, when they leave the house,
etc.), or to analyze automatically generated cases to determine which to store. Addi-
tional cases may be added automatically by varying the values of case features within a
predefined range.

Cases may be useful if their history suggests that they would be frequently used
in the home, if they would help solve critical problems (e.g., for emergencies), if they
would fill gaps in the system problem coverage, or if they would be easily adaptable,
increasing system flexibility. The result is an initial case base with a representative
set of cases capable of adapting to the specific requirements. Given the range of CBR
processes that may apply within a smart home, multiple case bases may be needed, e.g.,
for monitoring inhabitant vital signs, monitoring home conditions, etc.

4.2 Information sources and situation assessment

Accessing the right cases requires methods for retrieving relevant cases, based on infor-
mation from the smart home. Work on pervasive computing for smart homes has devel-
oped sensor technologies and smart appliances to monitor individuals and their physical
environment, and has built middleware to provide services and facilitate communica-
tion among the different components. A number of research projects have focused on
developing an infrastructure to deal with context in smart home environments (e.g., the
Aware Home Research Initiative (Dey, Abowd, & Salber 1999; Meyer & Rakotonirainy
2003)), providing a foundation on which case-based smart home applications could
build.

Generally, a pervasive computing architecture for smart homes can be broken down
into a physical layer, a middleware service layer, and an application layer, which to-
gether provide a platform delivering high-level information abstracted from the sensors,
detectors, actuators, smart appliances and wired or wireless communication devices to
integrate new technologies and services in smart homes (examples include the Gator
Tech Smart House (Helal et al. 2005) and MavHome (Cook et al. 2000)). The CBR
layer, like other AI methods for smart homes, can be integrated into the pervasive com-
puting architecture, to process a comparatively high-level information stream.

Existing projects address many component issues for deriving a number of types of
information which might be useful for a CBR system to generate indices for retrieval.
For example, the Pfinder project studies tracking individuals in a smart room (Pentland
1996), and the Sociometer project studies how to track people’s interaction with oth-
ers (Choudhury & Pentland 2003), potentially providing a basis for generating more
abstract indices.

To facilitate humans interactively providing the system with supplementary infor-
mation (e.g., by an inhabitant simply telling the system that he or she wants to bake
a cake), information provided to situation assessment could also be based on human-
like input and output modalities such as speech, body postures, eye movements and
other non-verbal gestures. All such interactions must be able to feed into the CBR sys-
tem, and their interpretation may itself require considerable AI processing to provide
the information used in indexing. For example, the Trips system (Allen et al. 2001), a
spoken-dialogue computer system for planning, parses human language into practical



dialogues that capture what the user meant by an utterance, applies domain-independent
problem-solving models, and domain-specific task models and is capable of recogniz-
ing user intentions, which could then become part of the context used by CBR retrieval.

4.3 Capturing context and context-based indexing

In order to access the right cases, cases must be organized; the indexing problem is the
problem of assuring that a case is accessed whenever appropriate (Kolodner & Leake
1996b). The CBR system’s situation assessment process must be able to generate suit-
able indices. A number of general indexing vocabularies have been developed for tasks
such as indexing explanations of anomalies (Leake 1992b), and could be exploited in
the smart homes setting. However, for smart homes, contextual factors will play a key
role in indexing as well, and the range of potential information is extensive. For exam-
ple, Dey proposes that “Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and applications
themselves” (Dey 2001). Capturing context for reasoning in smart environments is chal-
lenging because of the need to determine relevant classes of features and how they can
be recognized based on numerous heterogeneous sources. In the proposed scenario for
this volume, which assumes simple on/off device information, the informativeness of
each individual sensor’s information may be fairly small—determining useful informa-
tion may depend on the context of other sensor readings and sensor changes over time.

It is difficult to determine in advance which aspects of a situation are important to in-
clude in context-based indices, because feature relevance will change from situation to
situation. However, general vocabularies can be developed to capture fundamental prop-
erties. For example, (Gross & Specht 2001) proposes including dimensions for identity
(information about user’s short and long term needs, interests, preferences, knowledge,
etc.) as also discussed in Section 3.2, location, time (while tracking time is simple, using
temporal information for planning and decision-making poses several challenges; see
the discussion of temporal reasoning in smart homes in this volume (?) (CITATION TO
BE INSERTED), and environment and activity, describing the artifacts and the phys-
ical location of the current situation. Awareness of the environment beyond the house
could be relevant to issue recommendations or alerts. For example, during a rainy day
a smart home could remind the inhabitant to carry an umbrella. Efforts to develop suit-
able vocabularies can draw on considerable active research on context modeling (for a
sampling, see (Schulz, Roth-Berghofer, & Leake 2005)).

A smart home system makes predictions from its observations based on current
system knowledge and the current state of the environment. A discrepancy between a
prediction and the actual outcome may suggest the need for updates to system knowl-
edge, to learn from a new situation. A difficult problem for both prediction and learning
is that effects may depend on hidden context, causing smart home systems to make
incorrect recommendations or to generate false alerts due to incomplete information.
Thus an important goal for smart home systems is to detect context changes without
being explicitly informed about them and to quickly recover from context changes, ad-
justing their hypotheses to fit the new context. Approaches to this problem as it relates



to concept learning may also be valuable for smart home systems (Widmer & Kubat
1996).

The situation assessment and indexing problems are open-ended. Developing vo-
cabularies for describing fairly specific features, such as patient vital signs, will be
straightforward. Developing principled methods to derive highly abstract features is
still an open challenge for long-term research (e.g., to recognize that an occupant is
having a bad day).

5 Some Research and Practical Issues for Realizing the Vision

While CBR provides an appealing methodology for smart homes, many specific issues
must be addressed to fully realize its promise. This section highlights a few which may
be especially salient for the smart homes domain.

Case Engineering: In broad outline, CBR simplifies knowledge acquisition by allevi-
ating the need to develop rules (for a rule-based system) or to acquire extensive training
data (e.g., for neural network approaches). However, CBR requires its own knowledge
sources, such as indexing and similarity knowledge and knowledge to adapt cases to fit
new needs. While it may be possible to develop, e.g., standardized types of indices for
the smart homes domain (following the example of standardized indexing vocabularies
of (Domeshek 1992; Leake 1992b; Schank et al. 1990)), enabling multiple projects to
leverage this research, a major effort would be required to develop indices or similarity
criteria covering a wide range of scenarios.

Segmentation and distillation of cases from the information stream: When a CBR sys-
tem captures cases based on observing actions in a “messy” real-world environment,
events may need to be recognized from sensor changes over time, and new methods
will be needed to delineate case-relevant information and determine case boundaries in
an information stream.

Integrating similarity judgments with additional information sources: In the basic CBR
model, each problem is addressed by identifying the most similar case and adapting
its solution to the new situation. However, in problem detection tasks, it may not be
desirable to predict problems whenever the most similar case was a problem case, due
to the risk of false alarms. Addressing this issue may require combining case-based
prediction with other reasoning methods. For example, CBR could provide candidate
predictions which could then be further scrutinized by Bayesian methods (e.g., based
on patient history, probabilities of particular events, etc.) as part of the case evaluation
process.

Case adaptation: Automated case adaptation has long been recognized as a key chal-
lenge for case-based reasoning (Barletta 1994; Leake 1996; Mark, Simoudis, & Hinkle
1996). Although many methods exist (see (Mantaras et al. 2006) for a recent survey)),
it can still be difficult to capture the needed case adaptation knowledge. A number of
systems have explored interactive adaptation methods (e.g., (Smith, Lottaz, & Faltings



1995)), including methods in which system adaptation is augmented by the user as
needed (Gervasio et al. 1998)). With appropriate interfaces, such methods might pro-
vide a means for competent inhabitants and care-givers to initially guide the application
of prior cases as needed, in conjunction with methods to allow traces of their adap-
tations to themselves be captured and reused by CBR, as in (e.g., (Leake, Kinley, &
Wilson 1995)).

Case-base maintenance: As CBR systems have received extended use, maintenance of
CBR systems has become an active CBR research area (e.g., (Leake et al. 2001)). In
smart homes, changes in the home and inhabitants (e.g., during the course of a terminal
disease) would require methods to address both the volume of new cases and the chang-
ing circumstances which might render old cases or similarity metrics obsolete (Leake
& Wilson 1999; Zhang & Yang 1998).

Event mining for case generation: The monitoring processes of smart homes will pro-
vide a rich stream of information to mine for cases. However, segmenting these into
meaningful cases—both indices and responses—may be difficult to automate. Some
CBR research has considered mining cases from sources such as database records (e.g.,
(Yang & Cheng 2003)) and has considered issues in capturing and controlling contin-
uous phenomena through CBR (Ram & Santamaria 1993). However, this area remains
largely unexplored.

Exploiting multiple case sources: As already mentioned, a question for CBR in smart
homes concerns how to enable the system to function during early use, when little
experience is available. If the smart home system begins with an initial set of standard
schemas, those schemas will provide a basis for initial processing, but will not reflect
special individual needs.

An interesting alternative is case-based experience sharing. Many opportunities to
support human decision making can come from other people’s experiences. When an
individual encounters a situation that is novel to him or her, but potentially successful
solutions can be collected from the experiences of other individuals, CBR can empower
the individual with the ability to make more informed decisions. Collective case mem-
ories provide the knowledge that a single individual may lack.

Approaches such as multi-case-base reasoning (MCBR) (Leake & Sooriamurthi
2004) are designed to address gaps in a single reasoner’s case base by drawing on
external case bases and adapting externally provided cases to reflect differences in task
and user characteristics. Applying MCBR requires developing adaptation methods not
only for particular tasks, but also for differences in user characteristics. In the smart
homes domain, MCBR approaches might also need to address instances of cases which
simply conflict, by choosing between a range of alternatives for handling a particular
situation.

It may also require addressing potential differences in the vocabularies in which
cases are captured. Otherwise, cases and events may fail to match simply due to differ-
ences in terminology between case descriptions and event descriptions. For example, an
event stove-turned-on cannot trigger the selection of a case describing the same event
as range-turned-on. This vocabulary issue is well known in AI, and can be overcome by



using ontologies (Gruber 1993) to provide standardized representations (e.g., an ontol-
ogy could simply specify that stove-turned-on and range-turned-on are equivalent). In
addition, ontologies may capture the information required to facilitate further reasoning
about cases or to enable their adaptation to new circumstances.

Internal system confidence: The smart homes domain has a marked difference from
many CBR applications. Many CBR systems are advisory to an expert, who makes the
final decisions; autonomous systems making judgments about health and safety issues
must address substantial risk issues. Recent research has begun to examine how CBR
systems can confidence in their own solutions (Cheetham & Price 2004). However, this
is only a first step towards assuring the needed system reliability.

Trust: Related to internal confidence is external trust in the quality of system decisions.
Regardless of the objective performance of a CBR systems, its practical use depends on
those with authority over the smart home having sufficient trust to place certain tasks
under system control. As mentioned previously, presentation of cases may itself con-
stitutes a useful form of explanation, helping to build user trust in a recommendation.
Current CBR research is augmenting this type of explanation with new methods (see
(Leake & McSherry 2005) for a collection of this work). Special challenges for building
trust may arise if CBR systems are fielded with a limited set of cases, to be augmented
as needed in response to failures. In that case, a certain level of failure will be expected
during the learning process.

Privacy, security, and control: For smart home technology to gain wide acceptance,
issues of privacy, security, and control are of great importance. Occupants must feel
in control of the information collected—they must be assured that their privacy is pro-
tected, that information is secure from illegal access, and that it is shared and dissemi-
nated only to appropriate parties, for the occupants benefit. For example, for eldercare,
any abnormalities in a person’s behavior that may indicate a serious change in health
or well being may need to be shared with relatives and caretakers, while daily rou-
tines and more personal choices need to be private. Thus, the smart home environment
must provide a flexible security system to adapt to the privacy and security needs of
its residents. One strategy for alleviating privacy issues as cases are shared might be to
aggregate cases from a number of users before distribution (Smyth et al. 2005).

In agent-based systems, issues of privacy and security control have been addressed
through the use of policies (Schreckenghost, Martin, & Thronesbery 2002; Barett 2004).
These may restrict both what an agent, or a smart home can and also what they must
do, allowing system developers to specify a “legal” framework within agents operate.
Applying a CBR approach to control privacy and security has the advantage of not re-
quiring a full “legal” framework to fully function. For example, an initial case base
may include the most important restrictions and obligations that the system must fol-
low for privacy and security protection. Subsequently, the CBR system may acquire
additional cases derived from interactions with residents that model exceptions to an
initially more restrictive and generic framework. However, the use of such cases raises
additional issues for, for example, security of case sources and reliability of case selec-
tion procedures.



6 Conclusion

The previous sections have discussed three main areas in which the use of case-based
reasoning may provide benefits for smart homes: supporting personalization, supporting
interactive adjustment of the system by the user, and facilitating customization and
knowledge acquisition by the developer. The connections of CBR to human reasoning
make cases a promising way to communicate knowledge and to explain system actions,
potentially increasing trust. This is important because the success of smart homes will
rest not only on their ability to fulfill human needs, but on the willingness of inhabitants
or caregivers to entrust themselves or their charges to the home’s care.

Case-based methods promise to be applicable to many different processes within
smart homes, and case-based methods can be combined with other approaches to ex-
ploit their strengths and capture their results for efficient reuse. Likewise, case-based
smart home installations may be designed to share experiences with other smart homes,
to assure their competence not only for common cases, but for rarely-occurring emer-
gencies. Thus smart homes offer a rich potential area for the application of CBR.
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